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Abstract

The Bioconductor project is an initiative for the collaborative creation of extensi-
ble software for computational biology and bioinformatics. We detail some of the
design decisions, software paradigms and operational strategies that have allowed
a small number of researchers to provide a wide variety of innovative, extensible,
software solutions in a relatively short time. The use of an object oriented pro-
gramming paradigm, the adoption and development of a software package sys-
tem, designing by contract, distributed development and collaboration with other
projects are elements of this project’s success. Individually, each of these concepts
are useful and important but when combined they have provided a strong basis for
rapid development and deployment of innovative and flexible research software
for scientific computation. A primary objective of this initiative is achievement of
total remote reproducibility of novel algorithmic research results.
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Abstract

The Bioconductor project is an initiative for the collaborative creation of extensible
software for computational biology and bioinformatics. We detail some of the de-
sign decisions, software paradigms and operational strategies that have allowed a small
number of researchers to provide a wide variety of innovative, extensible, software so-
lutions in a relatively short time. The use of an object oriented programming paradigm,
the adoption and development of a software package system, designing by contract,
distributed development and collaboration with other projects are elements of this
project’s success. Individually, each of these concepts are useful and important but
when combined they have provided a strong basis for rapid development and deploy-
ment of innovative and flexible research software for scientific computation. A primary
objective of this initiative is achievement of total remote reproducibility of novel algo-
rithmic research results.
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Background
The Bioconductor project is an initiative for the collaborative creation of extensible
software for computational biology and bioinformatics (CBB). Biology, molecular bi-
ology in particular, is undergoing two related transformations. First, there is a growing
awareness of the computational nature of many biological processes and that compu-
tational and statistical models can be used to great benefit. Second, developments in
high throughput data acquisition induce requirements for computational and statistical
sophistication at each stage of the biological research pipeline. The main goal of the
Bioconductor Project is creation of a durable and flexible software development and
deployment environment that meets these new conceptual, computational, and inferen-
tial challenges. We strive to reduce barriers to entry to research in CBB. A key aim is
simplification of the processes by which statistical researchers can explore and interact
fruitfully with data resources and algorithms of CBB, and by which working biologists
obtain access to and use state-of-the-art statistical methods for accurate inference in
CBB.
Among the many challenges that arise for both statisticians and biologists are tasks

of data acquisition, data management, data transformation, data modeling, combining
different data sources, machine learning and developing new modeling strategies suit-
able to CBB. Fundamental to all of these tasks is the need for software; ideas alone
cannot solve the substantial problems that arise. In this paper we consider problems
particular to CBB as well as more general issues that arise when beginning a relatively
large open source scientific software project. We hope that some of the strategies used
by the Bioconductor project will be useful to other software initiatives.
The primary motivations for an open source computing environment for statistical

genomics are transparency, pursuit of reproducibility, and efficiency of development.

• Transparency. High-throughput methodologies in CBB are extremely complex,
and many steps are involved in the conversion of information from low-level
information structures (e.g., microarray scan images) to statistical databases of
expression measures coupled with design and phenotype data. It is not possible
to say a priori how sensitive the ultimate analyses are to variations or errors in
the many steps in the pipeline. Credible work in this domain requires exposure
of the entire process.

• Pursuit of reproducibility. Experimental protocols in molecular biology are fully
published lists of ingredients and algorithms for creating specific substances or
processes. Accuracy of an experimental claim can be checked by complete obe-
dience to the protocol. This standard should be adopted for algorithmic work in
CBB. Portable source code should accompany each published analysis, coupled
with the data on which the analysis is based.

• Efficiency of development. By development we refer not only to the develop-
ment of the specific computing resource but to the development of computing
methods in CBB as a whole. Software and data resources in an open source
environment can be read by interested investigators, and can be modified and
extended to achieve new functionalities. Novices can use the open sources as
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learning materials. This is particularly effective when good documentation pro-
tocols are established. The open source approach thus aids in recruitment and
training of future generations of scientists and software developers.

The rest of this paper is devoted to describing the computing science methodology
underlying Bioconductor. The main sections to follow detail design methods and spe-
cific coding and deployment approaches, describe specific unmet challenges, and re-
view limitations and future aims. Because a large number of software components
and projects are referenced, we have included a glossary of technical terms as a final
section. Terms defined in the glossary are marked at first mention with a superscript
asterisk.

Methodology
The software development strategy we have adopted has several precedents. In the mid-
1980s Richard Stallman started the Free Software Foundation and the GNU∗ project
as an attempt to provide a free and open implementation of the Unix operating sys-
tem. One of the major motivations for the project was the idea that for researchers in
computational sciences “their creations/discoveries (software) should be available for
everyone to test, justify, replicate and work on to boost further scientific innovation”
[1]. Together with the Linux kernel the GNU/Linux combination sparked the huge
open source movement we know today. Open source software is no longer viewed
with prejudice, it has been adopted by major information technology companies and
has changed the way we think about computational sciences. A large body of litera-
ture exists on how to manage open source software projects, see [2] for both a good
introduction and a comprehensive bibliography.
One of the key success factors of the Linux kernel is its modular design, which

allows for independent and parallel development of code [3] in a virtual decentralised
network [1]. Developers are not managed within the hierarchy of a company, but are
directly responsible for parts of the project and interact directly (where necessary) to
build a complex system [4]. Our organization and development model has attempted
to follow these principles, as well as those that have evolved from the R project.
In this section, we review seven topics important to establishment of a scientific

open source software project and discuss them from a CBB point of view: language
selection, infrastructure resources, design strategies and commitments, distributed de-
velopment and recruitment of developers, reuse of exogenous resources, publication
and licensure of code, and documentation.

Language selection
CBB poses a wide range of challenges and any software development project will need
to consider which specific aspects it will address. For the Bioconductor project we
wanted to focus initially on bioinformatics problems. In particular we were interested
in data management and analysis problems associated with DNA microarrays. This
orientation necessitated a programming environment that had good numerical capabil-
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ities, flexible visualization capabilities, access to databases and a wide range of sta-
tistical and mathematical algorithms. Our collective experience with R [5] suggested
that its range of well-implemented statistical and visualization tools would decrease
development and distribution time for robust software for CBB. We also note that R
is gaining widespread usage within the CBB community independently of the Biocon-
ductor Project. Many other bioinformatics projects and researchers have found R to be
a good language and toolset with which to work. Examples include the Spot system
(see glossary), MAANOVA [6], and dChip [7]. We now briefly enumerate features of
the R software environment that are important motivations behind its selection.
Prototyping capabilities. R is a high level interpreted language in which one can

easily and quickly prototype new computational methods. These methods may not run
quickly in the interpreted implementation, and those that are successful and that get
widely used will often need to be reimplemented to run faster. This is often a good
compromise; we can explore lots of concepts easily and put more effort into those that
are successful.
Packaging protocol. The R environment includes a well-established system for

packaging together related software components and documentation. There is a great
deal of support in the language for creating, testing, and distributing software in the
form of packages. Using a package system lets us develop different software modules
and distribute them with clear notions of protocol compliance, test-based validation,
version identification, and package interdependencies. The packaging system has been
adopted by hundreds of developers around the world and lies at the heart of the Com-
prehensive R Archive Network, where several hundred independent but interoperable
packages addressing a wide range of statistical analysis and visualization objectives
may be downloaded as open source.
Object-oriented programming support. The complexity of problems in CBB is of-

ten translated into a need for many different software tools to attack a single problem.
Thus, many software packages are used for a single analysis. To secure reliable pack-
age interoperability, we have adopted a formal object oriented programming discipline,
as encoded in the ‘S4’ system of formal classes and methods [8]. The Bioconductor
project was an early adopter of the S4 discipline and was the motivation for a number
of improvements (established by John Chambers) in object oriented programming for
R.
WWW connectivity. Access to data from on-line sources is an essential part of most

CBB projects. R has a well-developed and tested set of functions and packages that
provide access to different databases and to web resources (via http, for example).
There is also a package for dealing with XML∗, available from the Omegahat Project,
and an early version of a package for a SOAP client∗ [9], SSOAP, also available from
the Omegahat Project. These are much in line with proposals made in [10] and have
aided our work towards creating an environment in which the user perceives tight inte-
gration of diverse data, annotation and analysis resources.
Statistical simulation and modeling support. Among the statistical and numerical

algorithms provided by R are its random number generators and machine learning al-
gorithms. These have been well tested and are known to be reliable. The Bioconductor
Project has been able to adapt these to the requirements in CBB with minimal effort.
It is also worth noting that a number of innovations and extensions based on work of
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researchers involved in the Bioconductor project have been flowing back to the authors
of these packages.
Visualization support. Among the strengths of R are its data and model visualiza-

tion capabilities. Like many other areas of R these capabilities are still evolving. We
have been able to quickly develop plots to render genes at their chromosomal locations,
a heatmap function, along with many other graphical tools. There are clear needs to
make many of these plots interactive so that users can query them and navigate through
them and our future plans involve such developments.
Support for concurrent computation. R has also been the basis for pathbreaking

research in parallel statistical computing. Packages such as snow and rpvm simplify
the development of portable interpreted code for computing on a Beowulf or similar
computational cluster of workstations. These tools provide simple interfaces which
allow for high-level experimentation in parallel computation by computing on func-
tions and environments in concurrent R sessions on possibly heterogeneous machines.
The snow package provides a higher level of abstraction which is independent of the
communication technology such as MPI∗ or PVM∗. Parallel random number gener-
ation [11], essential when distributing parts of stochastic simulations across a cluster,
is managed by rsprng. Practical benefits and problems involved with programming
parallel processes in R are described more fully in both [12] and [13].
Community. Perhaps the most important aspect of using R is its active user and

developer communities. This is not a static language. R is undergoing major changes
that focus on the changing technological landscape of scientific computing. Exposing
biologists to these innovations and simultaneously exposing those involved in statistical
computing to the needs of the CBB community has been very fruitful and we hope
beneficial to both communities.

Infrastructure base
We began with the perspective that significant investment in software infrastructure
would be necessary at the early stages. The first two years of the Bioconductor project
have included significant effort in developing infrastructure in the form of reusable data
structures and software/documentation modules (R packages). The focus on reusable
software components is in sharp contrast to the one-off approach that is often adopted.
In a one-off solution to a bioinformatics problem, code is written to obtain the answer
to a given question. The code is not designed to work for variations on that question
or to be adaptable for application to distinct questions, and may indeed only work
on the specific dataset to which it was originally applied. A researcher who wishes
to perform a kindred analysis must typically construct the tools from scratch. In this
situation, the scientific standard of reproducibility of research is not met except via
laborious re-invention. It is our hope that reuse, refinement and extension will become
the primary software-related activities in bioinformatics. When reusable components
are distributed on a sound platform, it becomes feasible to demand that a published
novel analysis be accompanied by portable and open software tools that perform all
the relevant calculations. This will facilitate direct reproducibility, and will increase
the efficiency of research by making transparent the means to vary or extend the new
computational method.
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Two examples of the software infrastructure concepts described here are the exprSet
class of the Biobase package, and the various Bioconductor metadata packages, for ex-
ample hgu95av2.
An exprSet is a data structure that binds together array-based expression mea-

surements with phenotype and administrative data for a collection of microarrays.
Based on R data.frame and list structures, exprSets offer much convenience
to programmers and analysts for gene filtering, constructing annotation-based subsets,
and for other manipulations of microarray results. The exprSet design facilitates a
three-tier architecture for providing analysis tools for new microarray platforms: low-
level data are bridged to high-level analysis manipulations via the exprSet structure.
The designer of analysis procedures can focus on the exprSet data representation
and ignore low-level structures and processes; likewise the low-level process designer
need not cater for any particular analysis data structure expectation, but need only
program to the exprSet representation. This design has been accepted by several
distinct microarray processing initiatives (affy, by Irizarry, Gautier and Bolstad, mar-
rayClasses, by Dudoit and Yang, limma, by Smyth, Ritchie, Wettenhall and Thorn, and
exprDB, a high-performance microarray data store package based on Berkeley DB∗ by
Ellis). Here, “acceptance” of the design entails that key products of the packages can
be formally coerced to instances of the exprSet class.
The hgu95av2 package is one of a large collection of related packages that re-

late manufactured chip components to biological metadata concerning sequence, gene
functionality, gene membership in pathways, and physical and administrative infor-
mation about genes. The package includes a number of conventionally named hashed
environments providing high-performance retrieval of metadata based on probe nomen-
clature, or retrieval of groups of probe names based on metadata specifications. Both
types of information (metadata and probe name sets) can be used very fruitfully with
exprSets: for example, a vector of probe names immediately serves to extract the
expression values for the named probes, because the exprSet structure inherits the
named extraction capacity of R data.frames.

Design strategies and commitments
Well-designed scientific software should reduce data complexity, ease access to mod-
eling tools and support integrated access to diverse data resources at a variety of levels.
Software infrastructure can form a basis for both good scientific practice (others should
be able to easily replicate experimental results) and for innovation.
The adoption of designing by contract, object-oriented programming, modular-

ization, multiscale executable documentation, and automated resource distribution are
some of the basic software engineering strategies employed by the Bioconductor Project.

Designing by contract. While we do not employ formal contracting methodologies
(e.g., Eiffel∗) in our coding disciplines, the contracting metaphor is still useful in char-
acterizing the approach to the creation of interoperable components in Bioconductor.
As an example, consider the problem of facilitating analysis of expression data stored in
a relational database, with the constraints that a) one wants to be able to work with the

7

Hosted by The Berkeley Electronic Press



data as one would any exprSet and b) one does not want to copy unneeded records
into R at any time. Technically data access could occur in various ways, using ODBC∗

connections, DCOM∗ communications, or CORBA∗, to name but a few. In a designing
by contract discipline, the provider of exprSet functionality must deliver a specified
set of functionalities. Whatever object the provider’s code returns, it must satisfy the
exprSet contract. Among other things, this means the object must respond to the ap-
plication of functions exprs and pData with objects that satisfy the R matrix and
data.frame contracts respectively. It follows that exprs(x)[i,j], for example,
will return the number encoding the expression level for the ith gene for the jth sam-
ple in the object x, no matter what the underlying representation of x. Here i and j
need not denote numerical indices but can hold any vectors suitable for interrogating
matrices via the square-bracket operator. Satisfaction of the contract obligations sim-
plifies specification of analysis procedures, which can be written without any concern
for the underlying representations for exprSet information.
A basic theme in R development is simplifying the means by which developers

can state, follow, and verify satisfaction of design contracts of this sort. Environment
features that support convenient inheritance of behaviors between related classes with
minimal recoding are at a premium in this discipline.

Object-oriented programming. There are various approaches to the object-oriented
programming methodology. We have encouraged, but do not require, use of the so-
called S4 system of formal classes and methods in Bioconductor software. The S4 ob-
ject paradigm (defined primarily by Chambers in Programming with Data, with modi-
fications embodied in R) is similar to that of Common Lisp [14] and Dylan [15]. In this
system, classes are defined to have specified structures (in terms of a set of typed slots)
and inheritance relationships, and methods are defined both generically (to specify the
basic contract and behavior) and specifically (to cater for objects of particular classes).
Constraints can be given for objects intended to instantiate a given class, and objects
can be checked for validity of contract satisfaction. The S4 system is a basic tool in
carrying out the designing by contract discipline, and has proven quite effective.

Modularization. The notion that software should be designed as a system of inter-
acting modules is fairly well-established. Modularization can occur at various levels of
system structure. We strive for modularization at the data structure, R function, and R
package levels. This means that data structures are designed to possess minimally suffi-
cient content to play a meaningful role in efficient programming. The exprSet struc-
ture, for example, contains information on expression levels (exprs slot), variability
(se.exprs), phenotype data (phenoData slot), and several types of metadata (slots
description, annotation, and notes). The tight binding of phenotype data
with expression data spares developers the need to track these two types of information
separately. The exprSet structure explicitly excludes information on gene-related an-
notation (such as gene symbol or chromosome location) because these are potentially
volatile and are not needed in many activities involving exprSets. Modularization
at the R function level entails that functions are written to do one meaningful task and
no more, and that documents (help pages) are available at the function level with
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worked examples. This simplifies debugging and testing. Modularization at the pack-
age level entails that all packages include sufficient functionality and documentation to
be used and understood in isolation from most other packages. Exceptions are formally
encoded in files distributed with the package.

Multiscale and executable documentation. Accurate and thorough documentation
is fundamental to effective software development and use, and must be created and
maintained in a uniform fashion to have the greatest impact. We inherit from R a
powerful system for small-scale documentation and unit testing in the form of the exe-
cutable example sections in function-oriented manual pages. We have also introduced
a new concept of large-scale documentation with the vignette concept. Vignettes go
beyond typical man page documentation which generally focuses on documenting the
behavior of a function or small group of functions. The purpose of a vignette is to
describe in detail the processing steps required to perform a specific task, which gener-
ally involves multiple functions and may involve multiple packages. Users of a package
have interactive access to all vignettes associated with that package.
The Sweave system [16] was adopted for creating and processing vignettes. Once

these have been written users can interact with them on different levels. The trans-
formed documents are provided in Adobe’s portable document format (PDF) and ac-
cess to the code chunks from within R is available through various functions in the tools
package. However, new users will need a simpler interface. Our first offering in this
area is the vignette explorer vExplorer which provides a widget that can be used to
navigate the various code chunks. Each chunk is associated with a button and the code
is displayed in a window, within the widget. When the user clicks on the button the
code is evaluated and the output presented in a second window. Other buttons provide
other functionality, such as access to the PDF version of the document. We plan to
extend this tool greatly in the coming years and to integrate it closely with research
into reproducible research.

Automated software distribution. The modularity commitment imposes a cost on
users who are accustomed to integrated ‘end to end’ environments. Users of Biocon-
ductor need to be familiar with the existence and functionality of a large number of
packages. To diminish this cost, we have extended the packaging infrastructure of
R/CRAN to better support the deployment and management of packages at the user
level. Automatic updating of packages when new versions are available and tools that
obtain all package dependencies automatically are among the features provided as part
of the reposTools package in Bioconductor. Note that new methods in R package de-
sign and distribution include the provision of MD5 checksums with all packages, to
help with verification that package contents have not been altered in transit.
In conclusion, these engineering commitments and developments have led to a rea-

sonably harmonious set of tools for CBB. It is worth considering how the S language
notion that “everything is an object” impacts our approach. We have made use of this
notion in our commitment to contracting and object-oriented programming, and in the
automated distribution of resources, in which package catalogs and biological meta-
data are all straightforward R objects. Packages and documents are not yet treatable
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as R objects, and this leads to complications. We are actively studying methods for
simplifying authoring and use of documentation in a multipackage environment with
namespaces that allow symbol reuse, and for strengthening the connection between
session image and package inventory in use, so that saved R images can be restored
exactly to their functional state at session close.

Distributed development and recruitment of developers
Distributed development is the process by which individuals who are significantly ge-
ographically separated produce and extend a software project. This approach has been
used by the R project for approximately 10 years. This was necessitated in this case
by the fact no institution currently has sufficient numbers of researchers in this area
to support a project of this magnitude. Distributed development facilitates the inclu-
sion of a variety of viewpoints and experiences. Contributions from individuals outside
the project led to the expansion of the core developer group. Membership in the core
depends upon the willingness of the developer to adopt shared objectives and meth-
ods and to submerge personal objectives in preference to creation of software for the
greater scientific community.
Distributed development requires the use of tools and strategies that allow different

programmers to work approximately simultaneously on the same components of the
project. Among the more important requirements is for a shared code base (or archive)
that all members of the project can access and modify together with some form of
version management system. We adopted the Concurrent Versions System (CVS∗,
[17]) and created a central archive, within this system, that all members of the team
have access to.
Additional discipline is needed to ensure that changes by one programmer should

not result in a failure of other code in the system. Within the R language software
components are naturally broken into packages, with a formal protocol for package
structure and content specified in the R Extensions manual [18]. Each package should
represent a single coherent theme. By using well defined applications programming
interfaces (APIs) developers of a package are free to modify their internal structures as
long as they continue to provide the documented outputs.
We rely on the testing mechanisms supported by the R package testing system [18]

to ensure coherent, non-regressive development. Each developer is responsible for
documenting all functions she writes and for providing examples and possibly other
scripts or sets of commands that test her code. Each developer is responsible for en-
suring that all tests run successfully before committing his or her changes back to the
central archive. Thus, the person who knows the code best writes the test programs,
but all are responsible for running them and ensuring that changes they have made do
not affect the code of others. In some cases changes by one author will necessitate
change in the code and tests of others. Under the system we are using these situations
are detected and dealt with when they occur in development, reducing the frequency
with which error reports come from the field.
Members of the development team communicate via a private mailing list. In many

cases they also use private email, telephone and meetings at conferences in order to
engage in joint projects and to keep informed of the ideas of other members.
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Reuse of exogenous resources
We now present three arguments in favor of using and adapting software from other
projects rather than reimplementing or reinventing functionality. The first argument
that we consider is that writing good software is a challenging problem and any reim-
plementation of existing algorithms should be avoided if possible. Standard tools and
paradigms that have been proven and are well understood should be preferred over new
untested approaches. All software contains bugs but well used and maintained software
tends to contain fewer.
The second argument is that CBB is an enormous field and that progress will re-

quire the coordinated efforts of many projects and software developers. Thus, we will
require structured paradigms for accessing data and algorithms written in other lan-
guages and systems. The more structured and integrated this functionality is the easier
it will be to use and hence the more it will be used. As specific examples we consider
our recent development of tools for working with graph or network structures. There
are three main packages in Bioconductor of interacting with graphs. They are graph,
RBGL and Rgraphviz. The first of these provides the class descriptions and basic in-
frastructure for dealing with graphs in R, the second provides access to algorithms on
graphs, and the third to a rich collection of graph layout algorithms. The graph package
was written from scratch for this project, but the other two are interfaces to rich libraries
of software routines that have been created by other software projects, BOOST∗ [19]
and GraphViz∗ respectively, both of which are very substantial projects with large code
bases. We have no interest in replicating that work and will, wherever possible, simply
access the functions and libraries produced by other projects.
There are many benefits from this approach for us and for the other projects. For

bioinformatics and computational biology we gain rapid access to a variety of graph
algorithms including graph layout and traversal. The developers in those communities
gain a new user base and a new set of problems that they can consider. Gaining a
new user base is often very useful as new users with previously unanticipated needs
tend to expose weaknesses in design and implementation that more sophisticated or
experienced users are often able to avoid.
In a similar vein, we plan to develop and encourage collaboration with other projects,

including those organized through the Open Bioinformatics Foundation and the Inter-
national Interoperability Consortium. We have not specifically concentrated on collab-
oration to this point in part because we have chosen areas for development that do not
overlap significantly with the tools provided by those projects. In this case our philos-
ophy remains one of developing interfaces to the software provided by those projects
and not reimplementing their work. In some cases, other projects have recognized the
potential gains for collaboration and have started developing interfaces for us to their
systems, with the intent of making future contributions [20].
Another argument in favor of standardization and reuse of existing tools is best

made with reference to a specific example. Consider the topic of markup and markup
languages. For any specific problem one could quickly devise a markup that is suf-
ficient for that problem. So why then should we adopt a standard such as XML?
Among the reasons for this choice is the availability of programmers conversant with
the paradigm, and hence lower training costs. A second reason is that the XML commu-
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nity is growing and developing and we will get substantial technological improvements
without having to initiate them. This is not unusual. Other areas of computational re-
search are as vibrant as CBB and by coordinating and sharing ideas and innovations
we simplify our own tasks while providing stimulus to these other areas.

Publication and licensure of code
Modern standards of scientific publication involve peer review and subsequent publi-
cation in a journal. Software publication is a slightly different process with limited
involvement to date of formal peer review or official journal publication. We release
software under an open source license as our main method of publication. We did this
in the hopes that it would encourage reproducibility, extension and in general adher-
ence to the scientific method. This decision also ensures that the code is open to public
scrutiny and comment.
There are many other reasons for deciding to release software under an open source

license. Some of these are:

• to provide full access to algorithms and their implementation;
• to provide to users the ability to fix bugs without waiting for the developer, and
to extend and improve the supplied software;

• to encourage good scientific computing and statistical practice by exhibiting fully
appropriate tools and instruction;

• to provide a workbench of tools that allow researchers to explore and expand the
methods used to analyze biological data;

• to ensure that the international scientific community is the owner of the software
tools needed to carry out research;

• to lead and encourage commercial support and development of those tools that
are successful;

• to promote reproducible research by providing open and accessible tools with
which to carry out that research.

Another consideration that arose when determining the form of publication was the
need to allow an evolutionary aspect to our own software. There are many reasons for
adopting a strategy that would permit us to extend and improve our software offerings
over time. The field of CBB is relatively volatile and as new technologies are developed
new software and inferential methods are needed. Further, software technology itself
is evolving. Thus, we wanted to have a publication strategy that could accommodate
changes in software at a variety of levels. We hope that that strategy will also encourage
our users to think of software technology as a dynamic field rather than a static one and
to therefore be on the lookout for innovations in this arena as well as in more traditional
biological ones.
Our decision to release software in the form of R packages is an important part

of this consideration. Packages are easy to distribute, they have version numbers and
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define an API. A coordinated release of all Bioconductor packages occurs twice every
year. At any given time there is a release version of every package and a development
version. The only changes allowed to be made on the release version are bug fixes
and documentation improvements. This ensures that users will not encounter radical
new behaviors in code obtained in the release version. All other changes such as en-
hancements or design changes are carried out on the development branch [see, e.g.,
21].
Approximately six weeks before a release a major effort is taken to ensure that all

packages on the development branch are coordinated and work well together. During
that period extensive testing is carried out through peer review amongst the Biocon-
ductor core. At release time all packages on the development branch that are included
in the release change modes and are now released packages. Previous versions of these
packages are deprecated in favor of the newly released versions. Simultaneously, a new
development branch is made and the developers start to work on packages in the new
branch. Note that these version-related administrative operations occur with little im-
pact on developers. The release manager is responsible for package snapshot and file
version modifications. The developers’ source code base is fairly simple, and need not
involve retention of multiple copies of any source code files, even though two versions
are active at all times.
We would also like to point out that there are compelling arguments that can be

made in favor of choosing different paradigms for software development and deploy-
ment. We are not attempting at this juncture to convince others to distribute software
in this way, but rather elucidating our views and the reasons that we made our choice.
Under a different set of conditions, or with different goals, it is entirely likely that we
would have chosen a different model.

Challenges
We now consider four specific challenges that are raised by research in computational
biology and bioinformatics: reproducibility, data evolution and complexity, training
users, and responding to user needs.

Reproducible Research We would like to address the reproducibility of published
work in CBB. Reproducibility is important in its own right, and is the standard for
scientific discovery. Reproducibility is an important step in the process of incremental
improvement or refinement. In most areas of science researchers continually improve
and extend the results of others but for scientific computation this is generally the
exception rather than the rule.
[22], referring to the work and philosophy of Claerbout, state the following princi-

ple:

An article about computational science in a scientific publication is not the
scholarship itself, it is merely advertising of the scholarship. The actual
scholarship is the complete software development environment and that
complete set of instructions that generated the figures.
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There are substantial benefits that will come from enabling authors to publish not just
an advertisement of their work but rather the work itself. A paradigm that fundamen-
tally shifts publication of computational science from an advertisement of scholarship
to the scholarship itself will be a welcome addition. Some of the concepts and tools
that can be used in this regard are contained in [23] and [24].
When attempting to reimplement computational methodology from a published de-

scription many difficulties are encountered. In [25] the following points are made:

Indeed the problem occurs wherever traditional methods of scientific pub-
lication are used to describe computational research. In a traditional article
the author merely outlines the relevant computations: the limitations of
a paper medium prohibit complete documentation including experimen-
tal data, parameter values and the author’s programs. Consequently, the
reader has painfully to reimplement the author’s work before verifying and
utilizing it.... The reader must spend valuable time merely rediscovering
minutiae, which the author was unable to communicate conveniently.

The development of a system capable of supporting the convenient creation and dis-
tribution of reproducible research in CBB is a massive undertaking. Nevertheless, the
Bioconductor Project has adopted practices and standards that assist in partial achieve-
ment of reproducible CBB.
Publication of the data from which articles are derived is becoming the norm in

CBB. This practice provides one of the components needed for reproducible research
– access to the data. The other major component that is needed is access to the soft-
ware and the explicit set of instructions or commands that were used to transform the
data to provide the outputs on which the conclusions of the paper rest. In this regard
publishing in CBB has been less successful. It is easy to identify major publications in
the most prestigious journals that provide sketchy or indecipherable characterizations
of computational and inferential processes underlying basic conclusions. This problem
could be eliminated if the data housed in public archives were accompanied by portable
code and scripts that regenerate the article’s figures and tables.
The combination of R’s well-established platform independence with Bioconduc-

tor’s packaging and documentation standards leads to a system in which distribution
of data with working code and scripts can achieve most of the requirements of repro-
ducible and replayable research in CBB. The steps leading to the creation of a table or
figure can be clearly exposed in an Sweave document. An R user can export the code
for modification or replay with variations on parameter settings, to check robustness of
the reported calculations or to explore alternative analysis concepts.
Thus we believe that R and Bioconductor can provide a start along the path towards

generally reproducible research in CBB. The infrastructure in R that is used to support
replayability and remote robustness analysis could be implemented in other languages
such as Perl∗ and Python∗.All that is needed is some platform-independent format for
binding together the data, software, scripts defining the analysis, and a document that
can be rendered automatically to a conveniently readable account of the analysis steps
and their outcomes. If the format is an R package, this package then constitutes a
single distributable software element that embodies the computational science being
published. This is precisely the compendium concept espoused in [23].
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Data Evolution Meta-data are data about data and their definition depends on the
perspective of the investigator. Meta-data for one investigator may well be experimen-
tal data for another. There are two major challenges that we will consider. First is
the evolutionary nature of the meta-data. As new experiments are done and as our un-
derstanding of the biological processes involved increases the meta-data changes and
evolves. The second major problem that concerns meta-data data is its complexity. We
are trying to develop software tools that make it easier for data analysts and researchers
to use the existing meta-data appropriately.
The constant changing and updating of the meta-data suggests that we must have a

system or a collection process that ensures that any meta-data can be updated and the
updates can be distributed. Users of our system will want access to the most recent
versions. Our solution has been to place meta-data into R packages. These packages
are built using a semi-automatic process [26] and are distributed (and updated) using
the package distribution tools developed in the reposTools package. There is a natural
way to apply version numbers so users can determine if their data are up to date or if
necessary they can obtain older versions to verify particular analyses. Further, users
can synchronize a variety of meta-data packages according to a common version of the
data sources that they were constructed from.
There are a number of advantages that come from automating the process of build-

ing data packages. First, the modules are uniform to an extent that would not be possi-
ble if the packages were human written. This means that users of this technology need
only become acquainted with one package to be acquainted with all such packages.
Second, we can create many packages very quickly. Hence the labor savings are sub-
stantial. For microarray analyses all data packages should have the same information
(chromosomal location, gene ontology categories, etc). The only difference between
the packages is that each references only the specific set of genes (probes) that were as-
sayed. This means that data analysts can easily switch from one type of chip to another.
It also means that we can develop a single set of tools for manipulating the meta-data
and improvements in those tools are available to all users immediately. Users are free
to extend data packages with data from other, potentially proprietary, sources.
Treating the data in the same manner that we treat software has also had many ad-

vantages. On the server side we can use the same software distribution tools, indicating
updates and improvements with version numbering. On the client side, the user does
not need to learn about the storage or internal details of the data packages. They simply
install them like other packages and then use them.
One issue that often arises is whether one should simply rely on on-line sources

for meta-data. That is, given an identifier the user can potentially obtain more up
to date information by querying the appropriate data bases. The data packages we
are proposing cannot be as current. There are, however, some disadvantages to the
approach of accessing all resources on-line. First, users are not always on-line, they are
not always aware of all applicable information sources and the investment in person-
time to obtain such information can be high. There are also issues of reproducibility
that are intractable since the owners of the web resources are free to update and modify
their offerings at will. Some, but not all, of these difficulties can be alleviated if the
data are available in a web services format.
Another argument that can be made in favor of our approach, in this context, is that
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it allows the person constructing the data packages to amalgamate disparate informa-
tion from a number of sources. In building meta-data packages for Bioconductor, we
find that some data are available from different sources and under those circumstances
we look for consensus, if possible. The process is quite sophisticated and is detailed in
the AnnBuilder package and paper [26].

Training Most of the projects in CBB require a combination of skills from biology,
computer science, and statistics. Since the field is new and there has been little spe-
cialized training in this area it seems that there is some substantial benefit to be had
from paying attention to training. From the perspective of the Bioconductor project
many of our potential users are unfamiliar with the R language and generally are sci-
entifically more aligned with one discipline than all three. It is therefore important
that we produce documentation for the software modules that is accessible to all. We
have taken a two-pronged approach to this, we have developed substantial amounts
of course material aimed at all the constituent disciplines and we have developed a
system for interactive use of software and documentation in the form of vignettes and
more generally in the form of navigable documents with dynamic content.
Course materials have been developed and refined over the past two to three years.

Several members of the Bioconductor development team have taught courses and sub-
sequently refined the material, based on success and feedback. The materials developed
are modular and are freely distributed, although restrictions on publication are made.
The focus of the materials is the introduction and use of software developed as part
of the Bioconductor project but that is not a requirement and merely reflects our own
specific purposes and goals.
In this area we feel that we would benefit greatly from contributions from those

with more experience in technical document authoring. There are likely to be strategies,
concepts and methodologies that are standard practice in that domain that we are largely
unaware of. However, in the short-term, we rely on the students, our colleagues and
the users of the Bioconductor system to both guide us and we hope that many will
contribute. Others can easily make substantial contributions, even those with little or no
programming skills. What is required is domain knowledge in one field of interest and
the recognition of a problem that requires additional domain knowledge from another
of the fields of interest.
Our experience has been that many of these new users often transform themselves

into developers. Thus, our development of training materials and documentation needs
to pay some attention to the needs of this group as well. There are many more software
components than we can collectively produce. Attracting others to collaboratively write
software is essential to success.

Responding to user needs The success of any software project rests on its ability to
both provide solutions to the problems it is addressing and to attract a user community.
Attracting a user community itself requires a method of distributing the software and
providing sufficient training materials to allow potential users to explore the system
and determine whether it is sufficient for their purposes. An alternate approach would
be to develop a graphical user interface (GUI) that made interactions with the system
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sufficiently self-explanatory that documentation was not needed. We note that this
solution is generally more applicable to cases where the underlying software tasks are
well defined and well known. In the present case, the software requirements (as well
as the statistical and biological requirements) are constantly evolving. R is primarily
command-line oriented and we have chosen to follow that paradigm at least for the first
few years of development. We would of course welcome and collaborate with those
whose goal was in GUI development but our own forays into this area are limited to
the production of a handful of widgets that promote user interaction at specific points.
Users have experienced difficulties downloading and installing both R and the Bio-

conductor modules. Some of these difficulties have been caused by the users local
environments (firewalls and a lack of direct access to the internet), by problems with
our software (bugs) which arise in part because it is in general very difficult to ad-
equately test software that interacts over the internet. We have, however, managed
to help every user that was willing to persist get both R and Bioconductor properly
installed. Another substantial difficulty that we had to overcome was to develop a sys-
tem that allowed users to download not just the software package that they knew they
wanted, but additionally and at the same time, all other software packages that it re-
lies on. With Bioconductor software there is a much larger inter-reliance on software
packages (including those that provide machine learning, biological meta-data and ex-
perimental data) than for most other uses of R and the R package system. The package,
reposTools contains much of the necessary infrastructure for handling these tasks. It is
a set of functions for dealing with R package repositories which are basically internet
locations for collections of R packages.
Once the basic software is installed users will need access to documentation such

as the training materials described above and other materials such as the vignettes,
described in a previous section. Such materials are most valuable if the user can easily
obtain and run the examples on their own computer. We note the obvious similarity
with this problem and that described in the section on reproducible research. Again,
we are in the enjoyable situation of having a paradigm and tools that can serve two
purposes.

Discussion
We have detailed the approach to software development taken by the Bioconductor
Project. Bioconductor has been operational for about two years now and in that time
it has become a prominent software project for CBB. We argue that the success of the
project is due to many factors. These include the choice of R as the main develop-
ment language, the adoption of standard practices of software design and a belief that
the creation of software infrastructure is an important and essential component of a
successful project of this size.
The group dynamics have also been an important factor in the success of Biocon-

ductor. A willingness to work together, to see that cooperation and coordination in
software development yields substantial benefits for the developers and the users and
encouraging others to join and contribute to the project are also major factors in our
success.
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To date the project provides the following resources:

• An online repository for obtaining software, data and meta-data, papers, and
training materials.

• A development team that coordinates the discussion of software strategies and
development.

• A user community that provides software testing, suggested improvements and
self-help.

• More than 50 software packages, hundreds of meta-data packages and a number
of experimental data packages.

At this point it is worth considering the future. While many of the packages we
have developed have been aimed at particular problems there have been others that
were designed to support future developments. And that future seems very interesting.
Many of the new problems we are encountering in CBB are not easily addressed by
technology transfer, but rather require new statistical methods and software tools. We
hope that we can encourage more statisticians to become involved in this area of re-
search and to orient themselves and their research to the mixture of methodology and
software development that is necessary in this field.
In conclusion we would like to note that the Bioconductor Project has many devel-

opers, not all of whom are authors of this paper, and all have their own objectives and
goals. The views presented here are not intended to be comprehensive nor prescrip-
tive but rather to present our collective experiences and the author’s shared goals. In a
very simplified version these can be summarized in the view that coordinated coopera-
tive software development is the appropriate mechanism for fostering good research in
CBB.

List of abbreviations
CBB Computational biology and bioinformatics

Glossary
The following provides a description and some references for some of the software and
standards referenced in the paper.

Berkeley DB Berkeley DB is made by Sleepycat Software, www.sleepycat.com and
is widely-used application-specific data management software.

BOOST The Boost web site provides free peer-reviewed portable C++ source libraries,
www.boost.org.

CORBA The Common Object Request Broker Architecture (CORBA) is a vendor-
independent architecture and infrastructure that allows computer applications to
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locate and provide different services over a network. More information is avail-
able from the Object Management Group www.omg.org.

CVS The concurrent version control system, http://www.cvshome.org, is an open source,
widely used, software version control system.

DCOM The Distributed Component Object Model (DCOM) is a protocol that en-
ables software components to communicate directly over a network in a reli-
able, secure, and efficient manner. More information is available at http://www.
microsoft.com/com/tech/dcom.asp.

Eiffel Eiffel is an object oriented programming language that emphasizes the produc-
tion of robust software. See http://smarteiffel.loria.fr/ for more information.

GNU stands for “GNU’s Not Unix” and is the Free Software Foundation’s project to
provide a free alternative of the Unix operating system. The project provides a
huge set of programs for Unix systems, among them a complete development
environment including the GNU C compiler, www.gnu.org.

GraphViz The Graph Visualization Project, GraphViz, provides a collection of tools
for manipulating graph structures and generating graph layouts, www.graphviz.
org.

MPI Message-Passing Interface is a standardized API for communication between
processes located on different machines in a computational cluster. It is im-
plemented by a number of academic groups (usually provided as open source
software) and commercial vendors. See http://www.mpi-forum.org/ for details.

ODBC Open DataBase Connectivity is a database access standard developed by Mi-
crosoft. ODBC enables data between applications and databases. The standard
is open and nonproprietary. Information and documentation is available from a
variety of sources including the MDAC SDK from Microsoft.

Omegahat The Omegahat Project, www.omegahat.org is a joint project with the goal
of providing a variety of open-source software for statistical applications.

PDF Portable Document Format is a standard for creating and distributing electronic
documents. The format is owned/controlled by Adobe (url).

Perl Practical Extraction and Report Language (Perl) is a general high-level program-
ming language that excels at text manipulation. See http://www.perl.org and the
Comprehensive Perl Archive Network (CPAN) for available add-ons to the sys-
tem.

PVM Parallel Virtual Machine is a message passing library for communication of data
between processes in a computational cluster, for the development and ease of
deployment of high-performance computing applications. See http://www.csm.
ornl.gov/pvm/pvm home.html
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Python Python is an interpreted, object-oriented high-level programming language
that can be compiled on some systems. See http://www.python.org.

R is an Open Source implementation of the S language, winner of the 1998 ACM
Software Systems Award. R is similar to the commercial S implementation
S-Plus (www.insightful.com). S is both a general programming language and
an extensible interactive environment for data analysis and graphics. See http:
//www.r-project.org for information on the project and CRAN (the Compre-
hensive R Archive Network) http://cran.r-project.org for available software and
packages.

SOAP is an acronym for the Simple Object Access Protocol which is an XML dialect
for representing distributed or remote method calls between applications. It has
become a very popular protocol for implementing Web services, using HTTP as
the communication mechanism and XML as the data representation. See http:
//www.w3.org/TR/SOAP/ for more information.

Spot (http://spot.cmis.csiro.au) is an R-based system for microarray image analysis.

XML stands for the eXtensible Markup Language, a text-based markup mechanism
for representing self-describing data. Its syntax is the same as the familiar HTML
(the Hyper Text Markup Language). However, one can define new and arbitrary
tags in XML to define new, specialized dialects for representing arbitrary data
in a self-describing manner. XML documents are made up of nodes which are
arranged hierarchically. A class of XML documents (i.e. a dialect) can be de-
scribed symbolically via a Document Type Definition (DTD) which describes the
possible relationships between different types of nodes, i.e. which nodes can be
nested within other node types and in what order. This allows one to also validate
XML documents according to this specification without actually interpreting the
specific content. Schema are a newer way to provide information not just about
the structure of the document, but also about the data types within XML nodes.
The W3 organization (http://www.w3.org) provides much of the standardization
and specification of XML and its dialects. The Cover Pages Web site (http:
//www.coverpages.org provides information on using XML in a wide variety of
different applications.

XSL (the eXtensible Stylesheet Language) is a specific XML dialect that is used to
describe transformations that map an XML document to an other XML document
or different format. Typically, an XSL transformer (XSLT) is used to apply a
stylesheet to an XML document.
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