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Summary. When testing the null hypothesis that treatment arm-specific survival-time distributions are
equal, the log-rank test is asymptotically valid when the distribution of time to censoring is conditionally
independent of randomized treatment group given survival time. We introduce a test of the null hypothesis
for use when the distribution of time to censoring depends on treatment group and survival time. This test
does not make any assumptions regarding independence of censoring time and survival time. Asymptotic
validity of this test only requires a consistent estimate of the conditional probability that the survival event
is observed given both treatment group and that the survival event occurred before the time of analysis.
However, by not making unverifiable assumptions about the data-generating mechanism, there exists a set
of possible values of corresponding sample-mean estimates of these probabilities that are consistent with
the observed data. Over this subset of the unit square, the proposed test can be calculated and a rejection
region identified. A decision on the null that considers uncertainty because of censoring that may depend
on treatment group and survival time can then be directly made. We also present a generalized log-rank
test that enables us to provide conditions under which the ordinary log-rank test is asymptotically valid.
This generalized test can also be used for testing the null hypothesis when the distribution of censoring
depends on treatment group and survival time. However, use of this test requires semiparametric modeling
assumptions. A simulation study and an example using a recent AIDS clinical trial are provided.

Key words: Log-rank test; Randomized clinical trial; Sensitivity analysis; Survival analysis.

1. Introduction
1.1 Background
Consider a randomized clinical trial that enrolls patients
through time and follows them for the occurrence of a primary
event. At the time of analysis, the time from randomization
to the primary event, or survival time, is potentially censored
by the administrative censoring time, the calendar date of
analysis minus the calendar date of randomization. At the
time of analysis, this potential administrative censoring time
is observed in full for each subject enrolled in the study and,
because of randomization, its distribution is conditionally in-
dependent of treatment group given survival time. However,
the time to primary event can be censored before the admin-
istrative censoring time, for example, when a patient is lost to
follow-up before the time of analysis. The time from random-
ization to an event, other than the time of analysis, that can
censor the survival time is referred to as a “nonadministrative
censoring time.” The actual censoring time for each subject
is then the minimum of the administrative censoring time
and the nonadministrative censoring time; this actual censor-
ing time will henceforth be referred to simply as the censoring
time. Unlike the administrative censoring time, the censoring
time is not necessarily observed in full for each subject at
the time of the analysis. For example, when the primary event

is observed and this event is death, the censoring event is
only known to lie in the interval between death and analysis
time.

Study 320 of the AIDS Clinical Trials Group, ACTG
320, enrolled patients from January 1996 to January 1997
(Hammer et al., 1997). The patients were randomized to
receive either the drug combination ZDV+3TC+placebo
(581 patients) or ZDV+3TC+indinavir (575 patients). The
primary endpoint of the study was the time from random-
ization to either death or AIDS, whichever occurred first. On
February 18, 1997, an interim analysis was conducted that as-
sumed noninformative censoring, and the decision was made
to stop accrual and close the study, because of a significant
beneficial effect of indinavir. The assumption of noninforma-
tive censoring here states that the distribution of censoring
time is conditionally independent of the time to either death
or AIDS, whichever comes first, given treatment group and
covariates. There were 66 primary events observed in the
placebo group and 38 primary events observed in the indin-
avir group. For each patient, the administrative censoring
time was the calendar date February 18, 1997, minus the cal-
endar date of enrollment; the median administrative censor-
ing time was 293 days in each treatment group. The number
of patients who were lost to follow-up before their respective

497

Hosted by The Berkeley Electronic Press



498 Biometrics, September 2003

administrative censoring time was 55 in the placebo group
and 39 in the indinavir group.

1.2 Preview of Results
In this article, we show that under the null hypothesis that the
survival-time distribution is independent of randomized treat-
ment group, the log-rank test is asymptotically valid when
the distribution of the time to censoring is conditionally in-
dependent of treatment group given survival time. This is
true regardless of whether the censoring time distribution de-
pends on survival time. An example of when the censoring
time distribution is conditionally independent of randomized
treatment group given survival time, but not independent of
survival time, is when the only form of censoring is adminis-
trative and a trend in patient accrual exists. An example of
this trend is when sicker patients (with shorter survival times
on average) tend to enroll later in the study and as a result
have shorter censoring times on average than those healthier
patients (with longer survival times on average) who tended
to enroll prior to them and thus have on average longer cen-
soring times. On the other hand, when the distribution of cen-
soring time depends on treatment group given survival time,
the log-rank test is asymptotically valid when the distribution
of censoring time is conditionally independent of survival time
given treatment group. An example of such a setting occurs
when no trend in patient accrual exists and the only com-
peting cause of censoring is from study dropout because of a
toxicity that is more likely to occur in one treatment group
than in another, but the distribution of dropout time associ-
ated with this toxicity is conditionally independent of survival
time given treatment group.

For the case when the distribution of censoring depends on
treatment group and survival time, we derive a two-sample
test of the null hypothesis. This test requires a consistent es-
timate of the conditional probability that, under the null hy-
pothesis, the survival event is observed given treatment group
and that the survival event occurred before the time of analy-
sis; for ease of exposition, denote these two probabilities here
by p0 and p1 and their respective sample-mean estimates by p̂0

and p̂1. Unfortunately, without making unverifiable assump-
tions about the data-generating mechanism, there exists a set
of possible values of p̂0 and p̂1 that are consistent with the
observed data. Thus, in order to properly execute such test-
ing methodology, the proposed test needs to be calculated
over this corresponding subset of the unit square and the re-
gion where the test rejects must be identified. Subject-matter
experts may then be elicited for judgments about plausible
ranges for these probability estimates. A decision on the null
hypothesis can then be made after a pure quantification of un-
certainty about this decision because of possible dependence
between censoring time, survival time, and treatment group.
That is to say, such a quantification of uncertainty does not
rely on unverifiable assumptions about the data-generating
mechanism. Although the ultimate decision on the null hy-
pothesis is based on a subjective decision on the plausible
range for p̂0 and p̂1, one can directly assess the effect of this
subjectivity on their decision.

The probability 1 − pj may be easier to interpret than pj ,
j = 0, 1. The quantity 1 − pj denotes the conditional prob-
ability under the null hypothesis of, for a subject in treat-

ment group j, not observing the survival event given that
it would have been observed had the only form of censor-
ing been administrative. Eliciting information about plausible
ranges for values of 1 − p̂j should thus proceed by first think-
ing about the subgroup of patients in the study for which
the survival event occurs before the analysis time under the
null hypothesis. Then, plausible ranges for the likelihood of
not observing the survival event in this subgroup because of
competing causes of censoring need to be decided on for each
treatment group. Referring back to ACTG 320, an interest-
ing question to ask is, “For what ranges of values for 1 − p̂0

and 1 − p̂1 would the decision to declare indinavir superior be
overturned, and, would such ranges be considered plausible?”
The reader should not be discouraged by the fact that p̂0 and
p̂1 are not uniquely identified from the observed data. Often,
precise ranges for values of these estimates are not necessary
to obtain a decision on the null hypothesis. For instance, in
ACTG 320, the range of values for 1 − p̂0 and 1 − p̂1 that are
consistent with the decision to declare indinavir superior is
given by 1 − p̂0 ≥ 1 − p̂1.

An attractive feature of this newly introduced test is that
only two scalar sensitivity parameters, representing the un-
known values p̂0 and p̂1, are required, each with range within
the unit interval. The testing methodology we propose ex-
ploits this feature by recognizing that a complete sensitivity
analysis of the test can directly proceed without having to
make unverifiable modeling assumptions to make sensitivity
analyses feasible by reducing the dimensionality of the re-
quired sensitivity parameters. For example, dimension reduc-
tion of required sensitivity parameters was necessary for the
sensitivity methodology proposed by Scharfstein, Rotnitzky,
and Robins (1999); this was because their methods concerned
estimation of the mean of a continuous variable in the pres-
ence of dependent censoring.

We also generalize the log-rank test for use in the setting
where the distribution of time to censoring depends on sur-
vival time and treatment group; in turn, this enables us to
provide conditions under which the ordinary log-rank test is
asymptotically valid, which were stated above. The asymp-
totic validity of this generalized test requires a consistent esti-
mate of an infinite-dimensional parameter within each treat-
ment group. Unfortunately, the corresponding sample-mean
estimate of this probability is not uniquely identified from
the observed data. In order for inference to proceed with this
test, unverifiable semiparametric modeling assumptions are
required whose relevant parameters are not able to be esti-
mated from the observed data; a sensitivity analysis involv-
ing these parameters is thus required. Although it is certainly
possible for a data analyst to perform such semiparametric
modeling and conduct associated sensitivity analyses, apart
from identifying some possible semiparametric models, we do
not expand this area, as it is not an aim of this article.

DiRienzo and Lagakos (2001a) propose a class of two-
sample tests that can be used when the distribution of censor-
ing depends on treatment group and survival time. However,
for these tests to be asymptotically valid, it is required that
(i) the unverifiable assumption that the times to censoring
and survival are conditionally independent given treatment
group and covariates holds, and (ii) either the conditional
distribution of time to censoring given treatment group and
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covariates or the conditional distribution of survival time
given treatment group and covariates is correctly modeled.
The test proposed in this article essentially replaces unveri-
fiable assumptions with a sensitivity analysis, where one can
directly examine the pure impact of dependent censoring on
a decision on the null hypothesis.

Some relevant literature concerns estimation of the survival
function of a continuous failure-time variable in the presence
of dependent censoring. This literature can be separated into
methods that do incorporate information from variables re-
lated to survival time and censoring, so-called auxiliary vari-
ables, and methods that do not. Estimation techniques that
make the nonidentifiable assumption that information from
all such auxiliary variables is available are given by Robins
and Rotnitzky (1992), Robins (1993), Robins and Finkelstein
(2000), and Satten, Datta, and Robins (2001). When infor-
mation from auxiliary variables is not available, nonidenti-
fiable assumptions need to be made about the dependence
structure between survival time and censoring time. Meth-
ods that vary such assumptions in a sensitivity analysis are
provided by Fisher and Kanarek (1974), Slud and Rubinstein
(1983), Klein and Moeschberger (1988), Klein et al. (1992),
Moeschberger and Klein (1995), and Zheng and Klein (1995).
Recently, Scharfstein and Robins (2002) have presented meth-
ods for estimating the survival function that assumes some
but not all auxiliary variables are available, and proposed
methods of analysis that investigate the sensitivity of infer-
ence to residual dependence between survival and censoring
due to unmeasured auxiliary variables.

This article is organized as follows. In Section 2 we define
test statistics and present methods for inference. Section 3
provides simulation results and Section 4 illustrates the
methodology on a recent AIDS clinical trial.

2. Test Statistics and Inference
2.1 Notation
Let the binary random variable R denote treatment group
and let W denote a vector of baseline covariates. Information
from covariates can be used in the methods we propose, by
defining strata within which the proposed testing procedures
can be conducted. Let the continuous random variable X de-
note time from randomization to the primary event and let
C be the potential administrative censoring time. Note that
C is observed in full for each subject at the time of analysis.
We work within the context of a randomized clinical trial with
possibly staggered entry, and thus assume that the conditions
R ⊥ W (i.e., the distribution of covariates is independent of
treatment group) and C ⊥ R |X hold throughout this arti-
cle. Note that the distribution of C is allowed to depend on
X, which would be the case when a trend in patient accrual
exists, for example, when sicker patients tend to enter the
study later than more healthy ones. Let X∗ = min(X,C) and
δC = I(X ≤C), where I(·) is the indicator function. Let D de-
note the time from randomization to an event other than time
of analysis that censors X; for example, D may be the time
from randomization to loss to follow-up. The actual censoring
time is thus C∗ = min(C, D). Denote X̃ = min(X,C,D) and
δ = I(X̃ = X). Note that δ is always observed, but when δ =
0 and X̃ < C, δC is missing. The data is assumed to consist
of n independent and identically distributed realizations of

(R,W,C, X̃, δ), denoted by (Ri,Wi, Ci, X̃i, δi), i = 1, . . . ,n.
No other assumptions about the data-generating mecha-
nism are made in this article, including the frequently made
assumption that censoring acts noninformatively, that is,
X ⊥ C∗ | (R, W ).

2.2 Test Statistic Ln(ρ)

We consider tests of the null hypothesis H0 :R⊥X, that
the survival-time distribution does not depend on treatment
group. Define the statistic

n− 1
2 Un(ρ) = n− 1

2

n∑
i=1

ρ(Ri)δi{Ri −En(R)},

where the notation En(Z) denotes the sample mean of the
random variables {Z1, . . . ,Zn} and ρ(Ri ) is defined below. It
is straightforward to show that

n− 1
2 Un(ρ) = n− 1

2

n∑
i=1

Ai(ρ) + op(1),

where

Ai(ρ) = (Ri − π)[ρ(Ri)δi −E{ρ(R)δ}], i = 1, . . . , n,

are independent and identically distributed terms. To see this,
note that

n− 1
2 Un(ρ) = n− 1

2

n∑
i=1

ρ(Ri)δi{Ri −E(R)}

−n− 1
2

n∑
i=1

ρ(Ri)δi{En(R) −E(R)}

and the second term on the right-hand side in the line above
can be written as

n− 1
2

n∑
i=1

{Ri −E(R)}E{ρ(R)δ}

+n− 1
2

n∑
i=1

{Ri −E(R)}
[
n−1

n∑
i=1

ρ(Ri)δi −E{ρ(R)δ}
]
.

By Slutzky’s theorem, the second term in the line above is
op(1).

Using the fact pr(δ = 1 |R) = pr(δ = 1, δC = 1 |R), it
follows that

E{A(ρ)} = E[{R−E(R)}pr(δC = 1 | R)ρ(R)

×pr(δ = 1 | δC = 1, R)].

Under H0 and the condition C ⊥R |X, which is satisfied in
a randomized clinical trial and is assumed to hold through-
out, pr(δC = 1 |R) = pr(δC = 1) and, with the defini-
tion ρ(R)= 1/pr(δ = 1 | δC = 1, R), results in E{A(ρ)} =
pr(δC =1)E{R − E(R)}= 0. Here it is assumed that
pr(δ= 1 | δC = 1, R) is bounded away from 0, i.e., pr(δ = 1 |
δC =1, R) ≥ ε > 0, ε arbitrary. Therefore, under H0, n

− 1
2 Un(ρ)

is asymptotically normal with mean 0 and variance σ2(ρ) =
E{A2(ρ)}. It can be shown that a consistent estimator of σ2(ρ)

is σ2
n(ρ) = (1/n)

∑
[A

(n)
i (ρ) −En{A(n)(ρ)}]2, with

A
(n)
i (ρ) = {Ri −En(R)}[ρ(Ri)δi −En{ρ(R)δ}],

i = 1, . . . , n.
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Thus, an asymptotically valid test of H0 is given by Ln(ρ) =

n− 1
2 Un(ρ)/{σ2

n(ρ)} 1
2 .

Suppose that n− 1
2 Un(ρ̂) was defined as n− 1

2 Un(ρ) except
that ρ(R = 0) and ρ(R = 1) are replaced by consistent point
estimates. Then, by using a Taylor series expansion, it is eas-
ily shown that n− 1

2 Un(ρ̂) and n− 1
2 Un(ρ) have the same asymp-

totic distribution. Similarly, if σ2
n(ρ̂) is defined as σ2

n(ρ) except
with ρ(R) being replaced by consistent estimates, it can be
shown that σ2

n(ρ̂) is also a consistent estimate of σ2(ρ). As

a result, Ln(ρ̂) = n− 1
2 Un(ρ̂)/{σ2

n(ρ̂)} 1
2 is asymptotically stan-

dard normal under H0.
The sample-mean estimate of pr(δ = 1 | δC = 1, R), say,

p̂r(δ = 1 | δC = 1, R) is not uniquely identified from the ob-
served data, since δC is missing when δ = 0 and X̃ < C. The
following diagram of the observed data for a given treatment
group illustrates this.

value of X̃ value of δC

δ = 1


X
...
X

1
...
1

δ = 0

C∗ < C


D
...
D

?
...
?

δ = 0

C∗ = C


C
...
C

0
...
0

Note that the case when δC = 0 does not play a role in esti-
mation of pr(δ = 1 | δC = 1, R).

Had δC been observed for all subjects, the set of possible
values for p̂r(δ = 1 | δC = 1, R) extends from the case corre-
sponding to when all those with δ = 0 and X̃ < C have δC =
0 to the case corresponding to when all these subjects have
δC = 1, for which the sample-mean estimate equals 1. In no-
tation, the set of possible values for p̂r(δ = 1 | δC = 1, R) is,
for Ri = 0,{ ∑

(1 −Ri)δi∑
(1 −Ri){δi + I(X̃i < Ci, δi = 0)}

,∑
(1 −Ri)δi[∑

(1 −Ri){δi + I(X̃i < Ci, δi = 0)}
]
− 1

, . . . , 1

}
and for Ri = 1, is{ ∑

Riδi∑
Ri{δi + I(X̃i < Ci, δi = 0)}

,∑
Riδi[∑

Ri{δi + I(X̃i < Ci, δi = 0)}
]
− 1

, . . . , 1

}
i=1, . . . ,n. The test Ln(.) thus needs to be calculated over
this grid of possible values for p̂r(δ = 1 | δC = 1, R) and the
rejection region identified. Plausible ranges for these proba-
bility estimates need to be obtained, if possible with aid from
subject-matter experts, and a decision on H0 made. Note that
the value of Ln(.) on the identity line within [ε, 1]× [ε, 1] makes
no correction for dependent censoring.

The test Ln(ρ̂) estimates the value of the test Ln(ρ̂), ρ̂ = 1,
that would have arisen had, contrary to fact, the only form
of censoring been administrative censoring. This is because,
when the only form of censoring is administrative, δCi is ob-
served for each subject i=1, . . . ,n, and p̂r(δ = 1 | δC = 1, R)
= 1. Given the observed data, the range of possible values
for Ln(ρ̂), ρ̂ = 1, that could have arisen had the only form
of censoring been administrative can be obtained by imput-
ing values of δCi for those subjects for which δCi is missing
in such a way that results in the corresponding largest (and
smallest) possible value that could have been observed for
Ln(ρ̂), ρ̂ = 1. This possible range is denoted by [�min

n , �max
n ].

Here, �min
n is obtained by imputing the values δCi = 1 (and δi

= 1) for those cases with Ri = 0, δi = 0, X̃i < Ci (the cases
in group Ri = 0 for which δCi is missing), and leaving the
observed values of δi unchanged for cases in group Ri = 1
(imputing δCi = 0 for those missing). Similarly, �max

n is calcu-
lated by imputing the value δCi = 1 (and δi = 1) for those
cases with Ri = 1, δi = 0, X̃i < Ci (the cases in group Ri = 1
for which δCi is missing), and leaving the observed value of δi
unchanged for cases in group Ri = 0 (imputing δCi = 0 for
those missing). Sensitivity analyses should thus only consider
values of Ln(.) in [�min

n , �max
n ].

2.3 A Generalized Log-Rank Test
A test that may be more efficient than Ln(ρ) can be con-
structed from the rank statistic

n− 1
2 Ũn(ρ, φ)

= n− 1
2

n∑
i=1

ρ(Ri)

∫ [
Ri −

En{Y (x)φ(x;R)R}
En{Y (x)φ(x;R)}

]
dNi(x),

where Yi(x) = I(x ≤ X̃i), Ni(x)= I(x≥ X̃i, δi =1), i=1, . . . ,
n and φ(x;Rj ) is defined below. Note that this statistic uses
information about the times of failure, which may lead to a
test that is more efficient than Ln(ρ), which makes no use of
the failure times. The probability limit of En{Y (x)φ(x;R)R}/
En{Y (x)φ(x;R)} is

µ(x, φ) =
E{Rpr(X∗ ≥ x | R)φ(x;R)pr(D ≥ x | X∗ ≥ x,R)}
E{pr(X∗ ≥ x | R)φ(x;R)pr(D ≥ x | X∗ ≥ x,R)} .

Under H0 and the condition C ⊥R |X, pr(X∗ ≥ x |R) =
pr(X∗ ≥ x) and, for example, with the definition φ(x;R) =
1/pr(D ≥ x |X∗ ≥ x, R), then µ(x, φ) = E(R); here,
pr(D ≥ x |X∗ ≥ x, R) is assumed to be uniformly bounded
away from 0, i.e., pr(D ≥ x |X∗ ≥ x, R) ≥ η > 0, x > 0, η
arbitrary. Note that the choice φ(x;R = 1) = 1 and
φ(x;R = 0) = α(x), with α(x) = pr(D ≥ x |X∗ ≥ x,
R = 1)/pr(D ≥ x |X∗ ≥ x,R= 0) also results in µ(x, φ) =
E(R) here. This result implies that only the ratio α(x) needs
to be estimated. To see this, note that under H0 and C ⊥
R |X, µ(x, φ) may in general be written as µ(x, φ) = E(R)/
[E(R) + {1 − E(R)}ψ(x)], where

ψ(x) = {φ(x;R = 0)pr(D ≥ x | X∗ ≥ x,R = 0)}/
{φ(x;R = 1)pr(D ≥ x | X∗ ≥ x,R = 1)}.
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It can be shown, using arguments similar to those in the
appendix of DiRienzo and Lagakos (2001a), that

n− 1
2 Ũn(ρ, φ) = n− 1

2

n∑
i=1

Bi(ρ, φ) + op(1),

where

Bi(ρ, φ) = {Ri −E(R)}

×
∫ [

ρ(Ri)dNi(x) − Yi(x)φ(x;Ri)

E{Y (x)φ(x;R)}

×E{ρ(R)dN(x)}
]
, i = 1, . . . , n,

are independent and identically distributed terms that have
mean 0 under H0 for both choices of φ(.) given above. There-

fore, under H0, n− 1
2 Ũn(ρ, φ) is asymptotically normal with

mean 0 and variance σ̃2(ρ, φ) = E{B2(ρ, φ)}. Again, using ar-
guments similar to those in the appendix of DiRienzo and
Lagakos (2001a), it can be shown that a consistent estimate of

σ̃2(ρ, φ) is σ̃2
n(ρ, φ) = (1/n)

∑
[B

(n)
i (ρ, φ) −En{B(n)(ρ, φ)}]2,

where B
(n)
i (ρ, φ) is defined as Bi (ρ, φ), except with En re-

placing E, i = 1, . . . ,n. An asymptotically valid test of H0 is
thus given by L̃n(ρ, φ) = n− 1

2 Ũn(ρ, φ)/{σ̃2
n(ρ, φ)} 1

2 .
When only administrative censoring is possible, ρ(R) = 1

and φ(x;R) = 1, for x > 0, and n− 1
2 Ũn(ρ, φ) is the numerator

of the ordinary log-rank test; this establishes the asymptotic
validity of the log-rank test in this case. Note that the nu-
merator of L̃n(ρ, φ) equals that of the log-rank test whenever
C∗ ⊥ R |X. Also note that when the distribution of C∗ de-
pends on R given X, but the condition C∗ ⊥X |R holds, it can
be shown using techniques similar to those in DiRienzo and
Lagakos (2001b) that the ordinary log-rank test is asymptot-
ically valid.

When X̃ < x, δ = 0, and C ≥ x, it is only known
that X∗ ∈ (X̃, C] and thus the sample-mean estimate of
pr(D ≥ x |X∗ ≥ x, R) is not uniquely identified from
the observed data. However, given the observed data, the
set of possible values for the sample-mean estimate of
pr(D ≥ x |X∗ ≥ x, R = 1) had X

∗
and δC been observed

for all subjects, begins with the point
∑

{RiI(X̃i ≥ x)}/∑
Ri{I(X̃i ≥ x) + I(X̃i < x, δi = 0, Ci ≥ x)} and continues

by unit decrements in the denominator to 1, i = 1, . . . ,n;
similarly for Ri = 0. Thus, there exists a set of possible val-
ues for the sample-mean estimate of α(x), say, α̂(x), for x >
0. However, it is in general difficult to enumerate all possible
values of α̂(x), for x> 0; this is unlike the case for the param-
eter ρ(R), for which all possible values for the sample-mean
estimates are a subset of the unit square. One way around
this problem is to specify a parametric model for α̂(x), e.g.,
α̂(x) = α̂ or α̂(x) = exp(α̂x), where in both cases, α̂ is not
able to be calculated from the observed data and needs to
be treated as a sensitivity parameter. If the test L̃n(ρ̂, φ̂) is
defined as L̃n(ρ, φ), except with ρ(R) replaced by the corre-
sponding sample-mean estimate and α(x) replaced by a cor-
rectly specified parametric model estimate, then under H0,
L̃n(ρ̂, φ̂) is asymptotically standard normal.

One approach to proceed with sensitivity analyses is to
condition on a choice for the pair p̂r(δ = 1 | δC = 1, R), and
vary α̂(x) over a plausible range, repeating this for a range of

choices for p̂r(δ = 1 | δC = 1, R). Also, as with the test Ln(ρ̂),
it can be shown that there is a possible range for the test
L̃n(ρ̂, φ̂) given the observed data; only this range of values
should be considered by sensitivity analyses. The details of
this calculation are omitted here, but can be obtained on re-
quest from the author.

3. Simulation Study
To evaluate the small sample properties of the proposed test
statistics, we conducted simulations of their behavior when
the distribution of censoring was dependent on treatment
group given survival time, as well as (i) dependent on survival
time given treatment group and (ii) conditionally independent
of survival time given treatment group. Case (ii) investigates
whether there is a penalty for unnecessarily using the pro-
posed tests, as, in this nonidentifiable setting, the ordinary
log-rank test is asymptotically valid.

For each of 2000 independent simulation iterations: R was
simulated via a random allocation design, with E(R) = 1/2
and W as a binary variable with pr(W =1)=1/2. The survival
time was distributed as log-normal, with logX =−0.75W +
ε, where ε ∼ N(1, 0.52). The 25th, 50th, and 75th percentiles
of this distribution of X are approximately 1, 2, and 3, respec-
tively. The administrative censoring time C was simulated as
U(2, 4); this resulted in pr(δC = 1) being approximately equal
to 3/4. For case (i), for those with R = 0, D = C, so that X
could only be censored administratively; for those with R = 1,
D ∼ U(0, 3) if W = 0 and D ∼ U(1, 4) if W = 1. This scheme
resulted in pr(δ = 1) being approximately equal to 0.62 and
pr(δ = 1 | δC = 1, R = 1) being approximately equal to 2/3.
Note that pr(δ = 1 | δC = 1, R = 0) = 1. The simulation re-
sults corresponding to this setting are shown in part (a) of
Table 1. For case (ii), all variables were generated as above
except D, which was taken as D = C for those with R = 0 and,
for those with R = 1, D ∼ U(1, 4); this resulted in pr(δ= 1)
being approximately equal to 2/3 and pr(δ = 1 | δC =1, R=1)
being approximately equal to 0.78. The corresponding sim-
ulation results are presented in part (b) of Table 1. The
average lower bound for the sample-mean estimate of
pr(δ = 1 | δC = 1, R = 1) given the observed data was ap-
proximately 0.5 for setting (i) and 0.65 for setting (ii). Finally,
φ(x;R = 1) was equal to 1 and φ(x;R = 0) = α(x) was esti-
mated from an independent sample of n = 200,000 and then
held fixed throughout.

In setting (i), the log-rank test has an empirical size well
above the nominal level and the magnitude of this bias in-
creases with sample size. However, at the true values of ρ(R)
and φ(x;R), the proposed tests reject near the nominal rate.
Note that the performance of the proposed tests becomes
worse the further values of ρ̂(R) are from ρ(R). In setting (ii),
the log-rank test rejects near the nominal rate as expected;
however, the corrected tests reject at the nominal rate only
near the true value ρ(R).

Simulations were also conducted under H0 for the
case when the distribution of censoring was condition-
ally independent of treatment group given survival time,
as well as (i) conditionally independent of survival time
given treatment group, and (ii), dependent on survival
time given treatment group. For both cases, all variables were
simulated as above except that for case (i), D ∼ U(1, 4), and
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Table 1
Empirical mean, standard error, and size of ordinary log-rank
test and proposed tests for treatment effect at the 0.05 nominal

level; pr(δ = 1 | δC = 1, R = 0) = 1

(a) C∗↔R |X, C∗↔X |R
n = 200 n = 500

Test 1/ρ̂(R = 1) Size Mean SE Size Mean SE

Log-rank – 0.165 0.97 1.00 0.304 1.45 1.01

Ln(ρ̂) 0.5 0.593 2.21 1.00 0.936 3.45 1.02

L̃n(ρ̂, φ) 0.397 1.69 1.03 0.671 2.45 1.04

Ln(ρ) 0.66 0.056 −0.08 1.01 0.057 −0.01 1.01

L̃n(ρ, φ) 0.068 0.23 1.04 0.064 0.14 1.04

Ln(ρ̂) 0.83 0.569 −2.11 1.04 0.906 −3.37 1.05

L̃n(ρ̂, φ) 0.163 −0.93 1.03 0.398 −1.68 1.03

(b) C∗↔R |X, C∗ ⊥ X |R
n = 200 n = 500

Test 1/ρ̂(R = 1) Size Mean SE Size Mean SE

Log-rank – 0.048 0.06 1.00 0.057 −0.01 1.03

Ln(ρ̂) 0.65 0.416 1.76 1.03 0.753 2.68 1.02

L̃n(ρ̂, φ) 0.199 1.11 1.00 0.377 1.64 1.02

Ln(ρ) 0.78 0.055 0.04 1.02 0.059 −0.04 1.02

L̃n(ρ, φ) 0.053 0.09 1.01 0.052 0.03 1.03

Ln(ρ̂) 0.9 0.327 −1.40 1.03 0.628 −2.31 1.03

L̃n(ρ̂, φ) 0.108 −0.72 1.01 0.239 −1.25 1.03

for case (ii), D ∼ U(0, 3) if W = 0 and D ∼ U(1, 4) if
W = 1. For n = 200, the empirical size, mean, and stan-
dard error of Ln(1) and L̃n(1, 1) were (0.059, −0.01, 1.04)
and (0.058, −0.02, 1.05), respectively, for case (i), and (0.055,
−0.01, 1.03) and (0.050, 0.03, 1.01), respectively, for case (ii).

Finally, simulations were conducted under a contiguous al-
ternative hypothesis. All variables were simulated 1000 times
exactly as for the setting in Table 1(a) except for the sur-

vival time, which was simulated as logX = (1 − R)β/n
1
2

− W0.75+ ε. Several choices of β were considered. For ex-
ample, at the true values ρ(R) and φ(x;R), for n = 200, with
β = 5.6, the empirical powers of Ln(ρ) and L̃n(ρ, φ) were 0.64
and 0.89, respectively; with β = 7.1, their empirical powers
were 0.86 and 0.98, respectively. Although it is in general more
complex to conduct sensitivity analyses of the test L̃n(ρ, φ),
it can be more efficient than Ln(ρ).

4. Example
Between January 1996 and January 1997, ACTG 320 en-
rolled patients to receive either the drug combination ZDV+
3TC+placebo, with R = 0, or ZDV+3TC+indinavir, with
R=1 (Hammer et al., 1997). We analyze the ACTG 320 data
as of February 18, 1997, the date of the interim analysis at
which it was decided to stop accrual and close the study be-
cause of a significant beneficial effect of indinavir on the end-
point defined as the time to death or AIDS, whichever comes
first. As previously mentioned, this analysis assumed that cen-
soring was noninformative. The data used in this article dif-

fers slightly from that used in Hammer et al. (1997) because
of retrospective updating; here, 581 patients were randomized
to arm R = 0 and 575 patients were randomized to arm R=1.

For groups R = 0 and R = 1, respectively, there were 19 and
11 deaths, and 57 and 29 AIDS events. For the event AIDS or
death, whichever comes first, 66 occurred in R = 0 and 38 in
R = 1. For each patient, the random variable C is defined as
the calendar date February 18, 1997, minus the calendar date
of enrollment; the median of C was 293 days for both treat-
ment groups. The number of patients who were lost to follow-
up before their respective administrative censoring time was
55 in the placebo group and 39 in the indinavir group. These
numbers do not include deaths, since death was part of the
definition of the primary event. In this case, for those patients
observed to die, C∗ is only known to lie between the time to
death and C.

It is well known that the number of HIV-RNA copies per
mm3 of plasma, so-called viral load, is negatively associated
with time to AIDS and death. The median baseline viral load
was approximately 5 log10 units in both treatment groups. Of
the 55 patients observed to prematurely discontinue follow-up
in the placebo group, for those with baseline viral load below
5 the median follow-up time was 204 days and for those above
5 was 201 days. On the other hand, of the 39 patients in the
indinavir group who prematurely discontinued follow-up, for
those with baseline viral load below 5 the median follow-up
time was 224 days and for those above 5 was 211 days. Thus,
it may be the case that dropout depends on both treatment
group and survival time.

For comparing treatment groups with respect to the time
to AIDS or death, Ln(1) = −2.8 and L̃n(1, 1) = −2.9. Figure 1
displays a sensitivity analysis of Ln(.) over [0.56, 1]× [0.51, 1];
this range for p̂r(δ = 1 | δC = 1, R) was chosen because the
smallest possible sample-mean estimates of these probabili-
ties given the observed data valued 0.56 and 0.51 for R=0
and R=1, respectively. Here we have chosen to display the
sensitivity analysis as a function of p̂r(δ = 0 | δC = 1, R) be-
cause, as stated in Section 1.2, we feel that this quantity may
be easier to interpret. If it is plausible to assume that the
probability that neither AIDS nor death is observed among
those for whom one of these events occurs before analysis time
is smaller for group R = 1 than for group R = 0, then the
null hypothesis would be rejected.

5. Discussion
When the primary event is disease only, for example in studies
where there is a negligible risk of death from relevant causes,
the censoring time, C∗ = min(C, D), is observed in full for
each subject. In this case, Lin, Robins, and Wei (1996) pro-
posed methods to test the effect of treatment group on the
distribution of survival time, after adjusting for dependent
censoring by assuming a bivariate location-shift model for the
joint distribution of survival and censoring times.

The testing methodology proposed can be conducted sep-
arately for a small number of strata defined by baseline co-
variates. Incorporation of high-dimensional covariates into the
testing methodology would require unverifiable modeling as-
sumptions regarding the joint effect of treatment and covari-
ates on the distribution of δ, and thus is not advocated in this
article.

http://biostats.bepress.com/harvardbiostat/paper1
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Figure 1. Test statistic Ln(·) as a function of possible sample-mean estimates of pr(δ = 0 | δC = 1, R); above heavy line H0

is not rejected, below heavy line H0 is rejected.

The setting considered in this article is easily extended to
the case when two randomized treatment groups are to be
compared with respect to a possibly censored longitudinal
outcome variable, measured at study time τ . For this setting,
denote the positive longitudinal outcome variable at time τ
by Xi ; the random variable Ci is assumed to be independent
of Ri and in this setting can be, for the example when Xi is
a biomarker variable, the lower limit of quantification of Xi .
Again, X∗

i denotes the observed portion of Xi , and δC = 1 if
X∗

i = Xi and δC = 0 otherwise. The nonresponse indicator
∆i assumes the value ∆i = 0 if (X∗

i , δ
C) is missing for subject

i and ∆i = 1 otherwise; also δi = ∆iδ
C
i . The observed data

consists of the n independent and identically distributed real-
izations (Ri, W i, Ci, ∆i, ∆iX

∗
i , δi), i = 1, . . . ,n. Now, with

the redefinitions ρ(Ri)= 1/pr(∆ = 1 | δC = 1,R), Y i(x)=
I(∆i = 1,x ≤ X∗

i), N i(x)= I(∆i = 1,x ≥ X∗
i , δi = 1), α(x) =

{pr(∆ = 1 |X∗ ≥ x, R = 1)}/{pr(∆ = 1| X∗ ≥ x, R = 0)},
i= 1, . . . ,n, the tests Ln(.) and L̃n(., .) directly apply.

Note that when there is no censoring, the test Ln(.) cannot
be used for testing H0.

Acknowledgements

This work was supported in part from grants R01AI28076 and
R01AI51164-01 from the U.S. National Institutes of Health.
The author is grateful to an associate editor and two refer-
ees, whose comments greatly improved the presentation of the
article.

Résumé

Quand on teste l’hypothèse nulle que les distributions des
durées de survie spécifiques de groupes de traitements sont
égales, le test du logrank est asymptotiquement valide quand
la distribution du temps de censure est conditionnellement

indépendante du groupe de traitement randomisé sachant le
temps de survie. Nous introduisons un test d’hypothèse nulle
utilisable lorsque la distribution des temps de censure dépend
du groupe de traitement et du temps de survie. Ce test ne
fait aucune supposition concernant l’indépendance du temps
de censure et de la durée de survie. La validité asympto-
tique de ce test requiert seulement un estimateur consistant
pour la probabilité conditionnelle que l’événement soit ob-
servé, sachant à la fois le groupe de traitement et le fait
que l’événement se soit produit avant le temps de l’analyse.
Cependant, si l’on ne fait pas de supposition (invérifiable) con-
cernant le mécanisme de génération des données pour chaque
groupe de traitement, il existe un ensemble de valeurs pos-
sibles pour les estimations correspondantes de la moyenne
de ces probabilités qui sont compatibles avec les données
observées. Sur ce sous-ensemble du carré unité, le test pro-
posé peut être calculé, et une région de rejet identifiée. Une
décision concernant l’hypothèse nulle, qui prend en compte
l’incertitude due au fait que la censure peut dépendre du
groupe de traitement et de la durée de survie, peut être
prise directement. Nous présentons également un test du lo-
grank généralisé qui nous permet de fournir les conditions sous
lesquelles le test du logrank ordinaire est asymptotiquement
valide. Le test généralisé peut être aussi utilisé pour tester
l’hypothèse nulle quand la distribution de la censure dépend
du groupe de traitement et de la durée de survie. Cependant
l’usage de ce test nécessite des suppositions de modélisation
semi-paramétrique. Une étude par simulation, et un exemple
utilisant un essai clinique récent sur le SIDA sont fournis.
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