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A Bayesian Chi-Squared Test for Goodness of
Fit

Valen Johnson

Abstract

This article describes an extension of classical x 2 goodness-of-fit tests to Bayesian
model assessment. The extension, which essentially involvesevaluating Pearson’s
goodness-of-fit statistic at a parameter value drawn from its posterior distribution,
has the important property that it is asymptoti-cally distributed as a x2 random
variable on K-1 degrees of freedom, indepen-dently of the dimension of the un-
derlying parameter vector. By averaging over the posterior distribution of this
statistic, a global goodness-of-fit diagnostic is obtained. Advantages of this diag-
nostic{which may be interpreted as the area under an ROC curve{include ease
of interpretation, computational conve-nience, and favorable power properties.
The proposed diagnostic can be used to assess the adequacy of a broad class
of Bayesian models, essentially requir- ing only a finite-dimensional parameter
vector and conditionally independent observations.



A BAYESIAN χ2 TEST FOR GOODNESS-OF-FIT

VALEN E. JOHNSON

Abstract. This article describes an extension of classical χ
2 goodness-of-fit

tests to Bayesian model assessment. The extension, which essentially involves

evaluating Pearson’s goodness-of-fit statistic at a parameter value drawn from

its posterior distribution, has the important property that it is asymptoti-

cally distributed as a χ
2 random variable on K-1 degrees of freedom, indepen-

dently of the dimension of the underlying parameter vector. By examining

the posterior distribution of this statistic, global goodness-of-fit diagnostics

are obtained. Advantages of these diagnostics include ease of interpretation,

computational convenience, and favorable power properties. The proposed

diagnostics can be used to assess the adequacy of a broad class of Bayesian

models, essentially requiring only a finite-dimensional parameter vector and

conditionally independent observations.

1. Introduction

Model assessment presents a challenge to Bayesian statisticians, one that has

become an increasingly serious problem as computational advances have made it

possible to entertain models of a complexity not considered even a decade ago.

Because diagnostic methods have not kept pace with these computational advances,

practitioners are often faced with the prospect of interpreting results from a model

that has not been adequately validated.
1
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2 VALEN E. JOHNSON

Numerous solutions to this problem have been considered. The most orthodox

of these depend on the specification of alternative models and the use of Bayes fac-

tors for model selection. This approach is reasonable when both a relatively broad

class of models can be specified as alternatives, and when implied Bayes factors

can be readily computed. Unfortunately, it often happens in practice that neither

requirement is satisfied, making this approach impractical for routine application.

Complicating the situation still further is the fact that Bayes factors are not de-

fined when improper priors are used in model specification, although this difficulty

may be partially circumvented through the use of intrinsic Bayes factors or related

devices (e.g., Berger and Pericchi (1996), O’Hagan (1995)).

A second strategy for assessing model adequacy centers on the use of posterior-

predictive model checks. This approach was initially proposed by Guttman (1967)

and Rubin (1984), and was extended to more general discrepancy functions by

Gelman, Meng, and Stern (1996) (Gelfand (1996) has advocated related techniques

based on cross-validatory predictive densities). The primary advantage of posterior-

predictive model assessment is its relative ease of implementation. In many models,

the output from numerical algorithms used to generate samples from the posterior

distribution can be used to generate observations from the predictive model, which

in turn can be used to compute p values for the discrepancy function of inter-

est. Posterior-predictive model assessment also facilitates case-diagnostics, which,

in many circumstances, are more telling in examining model fit than are global

goodness-of-fit statistics. However, such approaches also have an important disad-

vantage. As Bayarri and Berger (2000) and Robins, van der Vaart, and Ventura

http://biostats.bepress.com/umichbiostat/paper1



A BAYESIAN χ2 TEST FOR GOODNESS-OF-FIT 3

(2000) and others have noted, they do not produce p values that have (even asymp-

totically) a uniform distribution. Because output from predictive posterior model

checks is not calibrated, using p values based on them for model assessment is

problematic.

Bayarri and Berger (2000) and Robins, van der Vaart, and Ventura (2000) pro-

pose alternative distributions under which p values, and thus model diagnostics, can

be calculated. These include partial posterior predictive p values and conditional

predictive p values (Bayarri and Berger), and modifications to posterior predictive

and “plug-in” p values (Robins, van der Vaart and Ventura). The attractive feature

of each of these variations on more standard definitions of p values is that these

statistics are distributed either as U(0, 1) random variables, or approach U(0, 1)

random variables as sample sizes become large. Their drawback is that they can

seldom be defined and calculated in realistically complex models.

The goal of this article is to present a goodness-of-fit diagnostic that bridges

the gap between diagnostics that are easy to compute but whose null distributions

are unknown, and diagnostics whose null distributions are known but that cannot

generally be computed. The proposed diagnostic is closely related to the classical

χ2 goodness-of-fit statistic, whose properties are now briefly reviewed.

In the case of a point null hypothesis, the standard χ2 statistic may be defined

as

R0 =

K∑

k=1

(mk − npk)2

npk

,

where mk represents the number of observations observed within the kth partition-

ing element, pk the probability assigned by the null model to this interval, K the

number of partitions or intervals specified over the sample space, and n the sample
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4 VALEN E. JOHNSON

size. For independent and identically distributed data satisfying certain regularity

requirements, Pearson (1900) demonstrated that the asymptotic distribution of R0

was χ2 on K − 1 degrees of freedom.

The situation for composite hypotheses is more complicated. Assuming that

bins are determined a priori, Cramér (1946, pages 426-434) demonstrated that the

distribution of

Rg =

K∑

k=1

(mk − npg
k)2

npg
k

is that of a χ2 random variable on K−s−1 degrees of freedom, where s denotes the

dimension of the underlying parameter vector θ and {pg
k} denote estimates of the bin

probabilities based on either maximize likelihood estimation for the grouped data

or on the minimum χ2 method. Maximum likelihood estimation for the grouped

data implies maximization of the function

∏

k

pk(θ)mk

with respect to θ, while minimum χ2 estimation involves the determination of a

value of θ that minimizes a function related to Rg.

The statistic Rg is the form of the χ2 test most often used in statistics, where

it is routinely used to test independence in contingency tables (see, for example,

Fienberg (1980)). In that context, grouped maximum likelihood estimation is natu-

ral. Although the Bayesian χ2 statistic proposed below can be extended for testing

independence in contingency tables, this is not its intended purpose. Instead, it is

intended primarily for use as a goodness-of-fit test. In this regard, the aspect of

model fit assessed is similar to that examined using the classical χ2 goodness-of-fit

test; namely, the proportion of counts observed in predefined parcels of the sample

http://biostats.bepress.com/umichbiostat/paper1



A BAYESIAN χ2 TEST FOR GOODNESS-OF-FIT 5

space is compared to the proportion of counts that are expected in these parcels

under a specified probability model.

Chernoff and Lehmann (1954) considered the distribution of the χ2 statistic in

the more typical situation in which values of the bin probabilities are based on

maximum likelihood estimates obtained using the raw (ungrouped) data. Denote

these values by p̂k. In this case, the distribution of the goodness-of-fit statistic is

generally not one of a χ2 distribution, but instead produces a value R̂ that has

a distribution that falls stochastically between R0 and Rg. For models containing

many parameters, the gap between the degrees of freedom associated with these two

statistics is large, and, as a result, the χ2 goodness-of-fit test based on the maximum

likelihood estimate is usually not useful for assessing model fit in high-dimensional

settings.

The goodness-of-fit statistic proposed here represents a modification of the χ2

statistics considered above. The modification, denoted by RB(θ̃) (or more simply,

by RB when no confusion arises), is obtained by fixing the values of pk and instead

considering the bin counts mk as random quantities. Allocation of observations

to bins is made according to the value of each observation’s conditional distribu-

tion function, conditionally on a single parameter value θ̃ sampled either from the

posterior distribution or the asymptotic distribution of the maximum likelihood

estimator. (The statistic obtained in this way has some resemblance to the χ2

statistics considered by, for example, Moore and Spruill (1975), although emphasis

there focuses on randomized cells rather than on posterior sampling of parameter

vectors.) The distinguishing feature of RB(θ̃) is that, for many statistical models,
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6 VALEN E. JOHNSON

its asymptotic distribution is χ2 on K− 1 degrees of freedom, independently of the

dimension of the parameter vector θ.

Because it is the sampling distribution of RB that has a χ2 distribution, one

might argue that this procedure does not really represent a Bayesian goodness-

of-fit diagnostic. However, sampling parameter values from a distribution for the

purpose of inference occurs more naturally within the Bayesian paradigm, and for

this reason it is likely that the proposed diagnostic will find more application there.

In addition, the formal test statistics proposed below are based on the posterior

distribution of RB . For this reason, values of θ̃ used in the definition of RB are

assumed to represent samples from the posterior distribution on the parameter

vector, rather than samples generated from the asymptotic normal distribution of

the maximum likelihood estimator. However, either interpretation is valid.

The remainder of the paper is organized as follows. In the next section, the

Bayesian χ2 statistic RB is defined and its asymptotic properties are described.

Corollaries extending these properties from i.i.d. observations to conditionally in-

dependent observations and to fixed-bin applications are presented, and strategies

for combining information contained in dependent samples of RB values generated

from the same posterior distribution are described. Following this, several examples

that illustrate the application of this statistic and summaries from its posterior are

presented. Discussion and concluding remarks appear in Section 4. Proofs to the

theorem and corollaries of Section 2 appear in the Appendix.

2. A Bayesian χ2 Statistic

To begin, let y1, . . . , yn (= y) denote scalar-valued, continuous, identically dis-

tributed, conditionally independent observations drawn from probability density

http://biostats.bepress.com/umichbiostat/paper1



A BAYESIAN χ2 TEST FOR GOODNESS-OF-FIT 7

function f(y |θ) defined with respect to Lebesgue measure and indexed by a s-

dimensional parameter vector θ ∈ Θ ⊂ Rs. Denote by F (· |θ) and F−1(· |θ) the

(non-degenerate) cumulative distribution and inverse distribution functions corre-

sponding to f(· |θ). To construct a sampled value θ̃ from the posterior, augment the

observed sample y with an i.i.d. sample v1, . . . , vs from a U(0, 1) distribution. Let

p(θ |y) denote the posterior density of θ based on y, and let p(θj |θ1, . . . , θj−1,y)

denote the marginal conditional posterior density of θj given (θ1, . . . , θj−1,y). De-

fine θ̃ implicitly by

(1) v1 =

∫ θ̃1

−∞
p(θ1 |y)dθ1, . . . vs =

∫ θ̃s

−∞
p(θs | θ̃1, . . . , θ̃s−1,y)dθs.

Thus, θ̃ denotes a value of θ sampled from the posterior distribution based on y.

Let θ0 denote the true but unknown value of θ. The maximum likelihood estimate

of θ is denoted by θ̂.

To construct the Bayesian goodness-of-fit statistic proposed here, choose quan-

tiles 0 ≡ a0 < a1, · · · < aK−1 < aK ≡ 1, with pk = ak − ak−1, k = 1, . . . , K. Define

zj(θ̃) to be a vector of length K whose kth element is 0 unless

(2) F (yj | θ̃) ∈ (ak−1, ak] ,

in which case it is 1. Finally, define

m(θ̃) =

n∑

j=1

zj(θ̃).

It follows that the kth component of m(θ̃), mk(θ̃), represents the number of ob-

servations that fell into the kth bin, where bins are determined by the quantiles of
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8 VALEN E. JOHNSON

the inverse distribution function evaluated at θ̃. Finally, define

(3) RB(θ̃) =

K∑

k=1

[

(mk(θ̃)− npk)√
npk

]2

.

The asymptotic distribution of RB is provided in the following theorem.

Theorem 1. Assuming that the regularity conditions specified in the appendix ap-

ply, RB converges to a χ2 distribution on K − 1 degrees of freedom as n →∞.

The simplicity of Theorem 1 is somewhat remarkable given the complexity of the

corresponding distribution on R̂. As mentioned above, the asymptotic distribution

of R̂ does not, in general, follow a χ2 distribution. Instead, it has the distribution

of the sum of a χ2 random variable on K − s − 1 degrees of freedom and the

weighted sum of s additional squared normal deviates with weights ranging from 0

to 1. In contrast, the asymptotic distribution of RB follows a χ2
K−1 distribution,

independently of the dimension of the parameter vector θ.

Heuristically, the idea underlying Theorem 1 is that the degrees of freedom lost by

substituting the grouped MLE for θ in Pearson’s χ2 statistic are exactly recovered

by replacing the MLE with a sampled value from the posterior in RB. That is, the

s degrees of freedom lost by maximizing over the grouped likelihood function to

obtain Rg are exactly recovered by sampling from the s dimensional posterior on

θ.

As a corollary, Theorem 1 can be extended to the more general case in which

the functional form of the density f(y |θ) varies from observation to observation.

http://biostats.bepress.com/umichbiostat/paper1



A BAYESIAN χ2 TEST FOR GOODNESS-OF-FIT 9

Specifically, if the density of the jth observation is denoted by fj(y |θ), with dis-

tribution and inverse distribution functions Fj and F−1
j , respectively, then the

following corollary also applies.

Corollary 1. Assume the conditions referenced in Theorem 1 are extended so as to

provide also for the asymptotic normality of both the posterior distribution on θ and

of the maximum likelihood estimator when the likelihood function is proportional to

n∏

j=1

fj(yj |θ).

Assume also that the functions fj(· |θ) satisfy the same conditions implied in The-

orem 1 for f(· |θ). Define the kth component of zj(θ) to be 1 or 0 depending on

whether or not

(4) Fj(yj | θ̃) ∈ (ak−1, ak] ,

with a fixed. Then the asymptotic distribution of RB based on this revised definition

of zj(θ) is χ2 on K − 1 degrees of freedom.

Outlines of the proof of Theorem 1 and the corollary appear in the Appendix.

From a practical perspective, the corollary is important because it extends the

definition of RB to essentially all models in which observations are continuous and

conditionally independent given the value of a finite-dimensional parameter vector.

The results cited above for continuous-valued random variables can be extended

to discrete random variables in one of two ways. The most direct extension is to

simply proceed as in the continuous case, using a randomization procedure to allo-

cate counts to bins when the mass assigned to an observation spans the boundaries
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10 VALEN E. JOHNSON

defining the bins. The second is to define fixed bins in the standard way based on

the possible outcomes of the random variable, and to then evaluate the bin prob-

abilities at sampled values of θ from the posterior distribution. That is, if f(y |θ)

denotes the probability mass function of a discrete random variable y and

(5) pk(θ̃) =
1

n

n∑

j=1

∑

y∈bin k

fj(y | θ̃),

then the χ2 statistic RB may be redefined as

(6) RB(θ̃) =

K∑

k=1




(mk − npk(θ̃))
√

npk(θ̃)





2

.

In this case, the asymptotic distribution of RB(θ̃) is similar to that described above

in the continuous case and is detailed in the following corollary.

Corollary 2. If the regularity conditions specified in Theorem 1 apply to the dis-

crete probability mass function f(y |θ), then, using predefined bins and the defini-

tion of the bin probabilities given in (5), the distribution of RB(θ̃) as defined in (6)

converges to a χ2 distribution on K − 1 degrees of freedom as n →∞.

The asymptotic χ2 distribution of RB(θ̃) described in the theorem and corollaries

above is achieved when a large sample of independent observations is drawn from

a sampling density, and a value of θ̃ is drawn from the posterior induced by this

observation. However, when two values of θ̃ are drawn from the same posterior

distribution (i.e., based on the same observation), the values of RB that result are

correlated. This correlation complicates the interpretation of test statistics defined

with respect to posterior distribution on RB values.

http://biostats.bepress.com/umichbiostat/paper1



A BAYESIAN χ2 TEST FOR GOODNESS-OF-FIT 11

Combining information across a posterior sample of RB values might be accom-

plished in a variety of ways, including modifications of the methodologies proposed

in Verdinelli and Wasserman (1998) or Robert and Rousseau (2002). Another pos-

sibility is to simply report the proportion of RB values drawn from the posterior

distribution that exceed a specified critical value from their nominal χ2
K−1 distribu-

tion. For a given data vector and probability model, such a procedure might lead to

a statement that, say, 90% of RB values generated from the posterior distribution

exceeded the 95th percentile of the reference χ2 distribution.

Though decidedly non-Bayesian, such a report is convenient from several per-

spectives. By reporting the proportion of RB values that exceed the critical value

of the test, the unpalatable aspect of basing a goodness-of-fit test on a randomly-

selected value of RB is avoided. It is also straightforward to compare the proportion

of RB values that exceed the critical value of the test to the size of the test; if the

RB values did represent independent draws from their nominal χ2 distribution, the

proportion of values falling in the critical region of the test would exactly equal

the size of the test. Any excess in this proportion must therefore be attributed

either to dependence between the sampled values of RB from the given posterior

or lack of fit. Finally, and perhaps most importantly, this strategy requires almost

no computational effort. In most practical Bayesian models, values of RB can be

computed almost as an afterthought within the MCMC schemes used to sample

from the posterior distribution on the parameter vector.

In the event that formal significance tests must be performed to assess model

adequacy, they can be based on a comparison of the observed value of a summary

statistic based on the posterior distribution of RB values to an approximation of

Hosted by The Berkeley Electronic Press



12 VALEN E. JOHNSON

the sampling distribution of the summary statistic induced by repeated sampling of

the data vector. The summary statistic considered here is defined as the posterior

probability that a value of RB drawn from the posterior distribution (based on a

single value of y) exceeds the value of a χ2
K−1 random variable. This probability,

denoted by A, is related to a commonly used quantity in signal detection theory

and represents the area under the ROC curve (e.g., Hanley and McNeil 1982) for

comparing the joint posterior distribution of RB values to a χ2
K−1 random variable.

The expected value of A, if taken with respect to the joint sampling distribution

of y and the posterior distribution of θ given y, would be 0.5. Large deviations in

the expected value of A from 0.5, when the expectation is taken with respect to the

posterior distribution on θ for a fixed value of y, indicate model lack of fit.

Unfortunately, approximating the sampling distribution of A is a numerically

burdensome endeavor, and calculating it obviates many of the advantages that

are gained by using a test statistic with a known reference distribution. To a

large extent, the computations required to approximate A’s sampling distribution

are as complicated, or even more complicated, than similar techniques used to

approximate the sampling distribution of discrepancy functions used in posterior-

predictive model checks (e.g., Sinharay and Stern 2003). However, knowing the

nominal value of A makes this computation unnecessary when the observed value

of A falls within several hundredths of 0.5 or is smaller than 0.5. Procedures for

approximating the sampling distribution of A for the purpose of determining the

significance of departures of the observed value of A from 0.5 are described in

the examples using methodology delineated by Gelfand, Swartz, Dey and Vlachos

(1998) .

http://biostats.bepress.com/umichbiostat/paper1



A BAYESIAN χ2 TEST FOR GOODNESS-OF-FIT 13

As an aside, it is interesting to compare the test statistic RB and its reference

distribution to the χ2 discrepancy function and its reference distribution as pro-

posed in Gelman, Meng and Stern (1996). The reference distribution of RB(θ̃) is

obtained by sampling y from its ”true” distribution F (· |θ0), and then sampling

a single value of θ̃ from the posterior distribution on θ given y. The resulting

distribution is asymptotically χ2
K−1; this result is unrelated to posterior-predictive

distributions or samples drawn from them. In contrast, the reference distribution

of the χ2 discrepancy function proposed by Gelman, Meng and Stern is obtained

as the distribution of the statistic

(7)

n∑

i=1

(ypp
i −E(ypp

i |θ))2

V ar(ypp
i |θ)

induced by repeatedly drawing values ypp = (ypp
1 , . . . , ypp

n ) from the posterior-

predictive density based on the observed data vector y. As Gelman, Meng and

Stern point out, this statistic does not have a χ2 distribution.

The power characteristics of the Bayesian χ2 statistics defined above, like their

classical counterparts, depend on the selection of the bin probabilities pk. Clearly,

consistency of derived tests against general alternatives requires that K → ∞ as

n →∞. On the other hand, as many authors have noted (see, for example, Koehler

and Gan (1990) for a review of this topic), using too many cells can result in a

significant loss of power.

A general criterion for choosing cell probabilities was proposed by Mann and

Wald (1942), who suggested the use of 3.8(n− 1)0.4 equiprobable cells. Subsequent

authors (e.g., Williams (1950), Watson (1957), Hamdan (1963), Dahiya and Gur-

land (1973), Granceladze and Chibisov (1979), Best and Raymar (1981), Quine and
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14 VALEN E. JOHNSON

Robinson (1985) and Koehler and Gan (1990)) found that the Mann-Wald criteria

often results in too many bins and loss of power. Based on numerical simulations of

seven classes of alternative probability models, Koehler and Gan (1990) noted that

near-optimal power against a Gaussian null model was obtained when the Mann-

Wald criterion was divided by 4. Such a rule also finds approximate agreement

with simulation results reported by Kallenberg, Oosterhoff, and Schriever (1985)

(although they also recommend the use of non-equiprobable cells against certain

types of alternative hypothesis). This rule-of-thumb, which may be approximately

reformulated as taking n0.4 equiprobable cells, was found to yield nearly optimal

results in the examples described below.

3. Examples

3.1. Goodness-of-fit tests under a normal model with unknown mean

and variance. In this example, the distribution of RB under a normal model is

investigated and compared with the distribution of R̂ and Rg. Posterior samples of

RB generated from a single data vector are used in ROC-type analyses to generate

a summary model diagnostic. The power of this test statistic is investigated and

compared to the power of the test statistic Rg when data are generated under

non-normal alternatives.

Let y = (y1, . . . , y50) denote a random sample from a standard normal distri-

bution. For purposes of illustration, assume that the mean µ and variance σ2 of

the data are unknown and that the joint prior assumed for (µ, σ) is proportional to

1/σ. Let (µ̃, σ̃) denote a sampled value from the posterior distribution based on y.

For a given data vector y and posterior sample (µ̃, σ̃), bin counts mk(µ̃, σ̃) are

determined by counting the number of observations yi that fall into the interval

http://biostats.bepress.com/umichbiostat/paper1
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Figure 1. Quantile-quantile plot of RB values for i.i.d. normal
data. Values of RB displayed in this plot were determined from
independent samples of 50 standard normal deviates, and are plot-
ted against the expected order statistics from a χ2

4 distribution.
Posterior samples of the mean and variance were estimated using
reference priors and observations were binned into 5 bins of equal
probability (i.e., a = (0, .2, .4, .6, .8, 1)).

(σ̃Φ−1(ak−1)+µ̃, σ̃Φ−1(ak)+µ̃), where Φ−1(·) denotes the standard normal quantile

function. Based on these counts, RB(µ̃, σ̃) is calculated according to (3).

Figure 1 depicts a quantile-quantile plot of RB values calculated for 10,000 inde-

pendent samples of y. Each value of RB depicted in this plot corresponds to a single

draw of (µ, σ) from the posterior distribution based on a single observation vector

y. In accordance with the rule-of-thumb discussed in Section 2, five equiprobable

bins were used in the definition of RB . As expected, the distribution of RB closely

mimics that of a χ2
4 random variable.

Hosted by The Berkeley Electronic Press



16 VALEN E. JOHNSON

The normal deviates used in the construction of Figure 1 were also used to

compute the classical χ2 statistic based on the maximum likelihood estimates of

µ and σ (i.e., using the ungrouped data). The quantile-quantile plot of 10,000 R̂

values obtained from these data is displayed in Figure 2. In this plot, the R̂ values

have been plotted against the expected order statistics from a χ2
2 random variable.

Five equal probability bins based on the standard normal distribution were also

used to define these R̂ values. As might be expected, the plotted χ2 values display

some deviation from their approximate χ2
2 distribution.

Grouped maximum likelihood estimates were also used to calculate Rg values us-

ing these normal samples. The corresponding quantile-quantile plot for the 10,000

Rg values is displayed in Figure 3; as expected, these values demonstrate substan-

tially better agreement with a χ2
2 random variable than do the values depicted in

Figure 2.

Returning to the investigation of the properties of RB , Figure 1 demonstrates

excellent agreement between this statistic and its asymptotic distribution. To illus-

trate its power in detecting departures from the normal model, suppose now that

the experiment above is repeated with independent Student t variates substituted

for the normal deviates. That is, the actual observation vectors used in the simula-

tion represent Student t variates, but the statistical model used to calculate values

of RB is still based on the assumption that the data are normally distributed. The

degrees of freedom of the t variates used in this experiment range from 1 to 10, and

for each value within this range, 10,000 independent samples of size 50 were drawn.

To study the power of the statistic RB in detecting departures from normality

in this experiment, formal significance tests were performed using the statistic A

http://biostats.bepress.com/umichbiostat/paper1
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Figure 2. Quantile-quantile plot of R̂ values for i.i.d. normal data.
Values of R̂ displayed in this plot were each determined from a
separate sample of 50 standard normal deviates, and are plotted
against the expected order statistics from a χ2

2 distribution. For
comparison, the top curve depicts values of expected order statis-
tics from a χ2

4 distribution.

described in Section 2. This statistic may be defined formally as

(8) A = Pr
θ̃ |y(RB(θ̃) > X), X ∼ χ2

K−1,

and, in repeated sampling of both y and θ given y, has a nominal value of 0.5.

Numerically, the value of A, for a fixed data vector y, can be approximated in a

straightforward way using Monte Carlo integration.

Formal model assessment using the statistic A can be based on approximating

the sampling distribution of A using “posterior-predictive-posterior” model checks
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Figure 3. Quantile-quantile plot of Rg values for i.i.d. normal
data. Values of Rg displayed in this plot were each determined
from a separate sample of 50 standard normal deviates, and are
plotted against the expected order statistics from their asymptotic
χ2

2 distribution.

(e.g., Gelfand, Swartz, Dey and Vlachos 1998). That is, sampled values θ̃ from the

posterior can be used to generate posterior-predictive observations ypp according

to f(· | θ̃). In large samples, values of θ̃ will be close to θ0, and so the distribution

of ypp will be close to the distribution of y. Posterior-predictive-posterior values of

App can be generated for each value of ypp by averaging RB , computed from ypp,

over the posterior distribution on θ induced by ypp. Values of App obtained from

this procedure approximate the sampling variability of the summary test statistic

A that can be attributed to computing the probability in (8) using the posterior

distribution on θ for a given value of y, without averaging over the distribution of
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y. The value of A obtained for the original data vector can then be compared to the

empirical distribution of the values of App obtained from the posterior distribution

on the posterior-predictive data.

In principle, exactly this procedure can be implemented to calculate the proba-

bility that the test statistic A, based on a random sample of t variates, falls into

the critical region of a test based on the empirical distribution of sampled values

App. In this case, however, it is not necessary to generate values of App for each

sample of t variates. Under the normal model, values of RB are invariant to shifts

in location and scale of the data, so the sampling distribution of A, for any future

draw of 50 i.i.d. normal deviates, can be approximated by the empirical distribu-

tion of A values obtained under the normal sampling scheme used at the beginning

of this example. It follows that critical regions for significance tests based on A are

exact under this model, save for the Monte Carlo error encountered in the empirical

approximation of their distribution.

Figure 4 displays the proportion of times in 10,000 draws of t samples that the

value of the test statistic A was larger than the .95 quantile of the sampled values

of App. For comparison, the observed power of the test based on the grouped-

maximum-likelihood χ2 statistic Rg at the 5% level is also shown, as is the observed

power obtained using a randomized test based on only single value of RB . To

facilitate comparison with the distribution of RB , five equiprobable bins from a

standard normal distribution were used in the definition of Rg.

From Figure 4, it is clear that the test statistic A offers substantially better

power than Rg against this class of alternative models. Part of this advantage

stems from the symmetry and unimodality of the alternative hypotheses, which
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Figure 4. Power of test statistics A, RB and Rg in detecting de-
partures from normality when data are distributed according to t
distributions. The uppermost curve depicts the power of the test
statistic A against t alternatives with degrees of freedom displayed
on the horizontal axis. The curve in the middle depicts the cor-
responding power of a single value of RB when compared to a χ2

4

distribution. The curve at the bottom of the plot represents the
power of Rg against the t alternatives. All values of the power refer
to the power of the test statistics in rejecting the null hypothesis
of normality in significance tests of size 0.05 and samples of size of
50.

Rg is ill-equipped to accommodate, and part from the fact that the bins used in

the definition of Rg were fixed according to the null hypothesis. Substantially

better power could be obtained by using the test statistic R̂ with bins based on

the particular y vector observed, but such tests do not achieve their nominal levels

of significance. Perhaps surprisingly, the power of a randomized test based on a
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single value of RB is comparable to the power of A based on the complete posterior

distribution of RB values.

3.2. Lip Cancer Data. Spiegelhalter, Best, Carlin, and van der Linde (2002)

describe a re-analysis of lip cancer incidence data originally considered by Clayton

and Kaldor (1987). Their purpose in examining these data was to illustrate the

use of the deviance information criterion (DIC) to select from among five potential

models for the number of lip cancer cases, yi, observed in 56 Scottish districts

as a function of available age and sex adjusted expected rates Ei. These data

and models are reconsidered here for the related purpose of assessing which of the

models provides an adequate probabilistic description of the data.

Following the Spiegelhalter et al analysis of these data, begin by assuming that

yi is Poisson with mean µi = exp(θi)Ei. Five models for θi are considered:

(1) θi = α0, α0 a constant,

(2) θi = α0 + γi, γi exchangeable random effects,

(3) θi = α0 + δi, δi spatial random effects with a conditional autoregressive

prior (e.g., Besag 1974),

(4) θi = α0 + δi + γi, δi and γi as above, and

(5) θi = αi, αi uniform on (−∞,∞).

Five thousand, thinned posterior samples of µ = {µi} were generated for each of

these models using WinBUGS code (Spiegelhalter, Thomas and Best 2000) kindly

provided by Dr. Best. For each sampled value of µi, the Poisson counts yi were

assigned to one of five equiprobable bins defined according to the Poisson distribu-

tion function evaluated at yi for the given value of µi. In those cases for which the

probability mass function assigned to yi spanned more than one bin, allocation to
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Model A Proportion of DIC
RB > 9.49

1 0.999 1.000 382.7
2 0.517 0.055 104.0
3 0.538 0.076 89.9
4 0.537 0.075 89.7
5 0.677 0.198 111.7

Table 1. Values of the goodness-of-fit statistic A and the propor-
tion of critical RB values for models of lip cancer incidence data.
The second column provides the value of the summary statistic A
achieved for each model. The third column lists the proportion
of posterior samples of RB that exceeded the 95th quantile of a
χ2

4 distribution for each model. DIC values obtained under the
“mean” parameterization are listed for comparison.

a single bin was performed randomly according to the proportion of mass assigned

to the bins. Averaging over all posterior samples of µ for a given model yielded the

values of A depicted in Table 1. Because 56 data points were available, five bins

were again used in the definition of the individual values of RB . The proportion of

RB values exceeding the 95th quantile from a χ2
4 distribution was computed using

the posterior sample µ. No posterior-predictive or posterior-predictive-posterior

computations were performed to obtain these values.

In Table 1, both the large value of A and the large proportion of RB values

exceeding the 95th quantile of the χ2
4 distribution provide a clear indication of lack

of fit for the first model. Lack of fit in this instance can be attributed to the failure

of the model to adjust for district effects; the posterior mean of the number of

counts assigned to the five bins was (16.0, 4.9, 5.2, 7.1, 22.8).

The values of A and proportions of extreme values of RB reported in rows 2–4

do not suggest lack of fit of the aspect of these models being tested by the χ2 test.

The most interesting row in Table 1 is the last, which corresponds to fitting a

separate Poisson model for each observation. The value of A for this model is 0.68,
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and nearly 20% of RB values generated from its posterior–nearly four times the

number expected–exceeded the 5% critical value from the χ2
4 distribution.

At first glance, one might suspect that these suspicious values arise from overfit-

ting. However, the last model generates the most dispersed posterior distribution of

any of the models considered, since only one observation figures into the marginal

posterior of each µi. Instead, the difficulty with this model arises from the prior

assumptions made on µ. The assumption of a uniform prior on θi implies a prior

for the mean of each Poisson observation proportional to 1/µi; this prior shrinks

the estimate of every µi toward 0. This results in an overabundance of counts in

the higher bins and larger than expected values of RB . The posterior mean of the

bin counts for this model was (8.4, 9.8, 10.9, 12.1, 14.8). Refitting the fifth model

with noninformative priors proportional to 1/
√

µi yielded a value of A = 0.501 and

only 4.7% of RB values exceeding 9.49.

It is also interesting to compare the values in the second and third columns of

this table with those provided for the DIC. All statistics suggest inadequacy of the

first model, though for different reasons. For the first model, the high values of A

and RB suggest that the data do not follow Poisson distributions with a common

scaling of adjusted expected rates. The value of the DIC statistic suggests either

that the model does not fit the data or is not as precise in predicting the data as

the other models considered. An advantage of the χ2 statistics in this case is that

their values are interpretable without fitting alternative models.

The comparatively large value of the DIC statistic for the second model can be

attributed to greater dispersion in its posterior as compared to posterior dispersion

of the third and fourth models, even though the exchangeable model appears to
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adequately represent variation in the observed data. The comparatively large value

of DIC reported for the fifth model reflects some combination of lack of fit and a

posterior that is more dispersed than others considered.

4. Extensions

In addition to providing a convenient mechanism for assessing model adequacy,

values of RB generated from a posterior distribution may prove useful as both a

convergence diagnostic for MCMC algorithms and for detecting errors written in

computer code to implement these algorithms.

Monitoring values of RB generated within a MCMC algorithm provides a rudi-

mentary convergence diagnostic for slow-mixing chains. In fact, exceedances of RB

over a pre-specified quantile from its null distribution can be incorporated formally

into the convergence diagnostics proposed in Raftery and Lewis (1992). To the ex-

tent that such exceedances are adequately described by a two-state Markov chain,

the use of RB in this context eliminates the requirement to assess convergence on a

parameter-by-parameter basis, as is normally done in Raftery and Lewis’s diagnos-

tic scheme. It also provides a natural mechanism for determining whether burn-in

has occurred.

A less obvious, but perhaps equally important use of the RB statistic involves

code verification. Many practitioners currently fit models using customized code

written for their specific application, a practice that frequently results in coding

errors that are difficult to detect. This problem can be largely overcome by sim-

ply monitoring the distribution of RB , which, in my experience, tends to deviate

substantially from its null distribution when a model has been misspecified or mis-

coded.
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5. Discussion

Goodness-of-tests based on the statistic RB provide a simple way of assessing the

adequacy of model fit in many Bayesian models. Essentially, the only requirement

for their use is that observations be conditionally independent. From a computa-

tional perspective, such statistics can be calculated in a straightforward way using

output from existing MCMC algorithms.

Approximating the sampling distribution of A, though conceptually straightfor-

ward, does introduce an additional computational burden, but is necessary only

when the achieved value of A is “significantly” larger than 0.5. Significance of A

in this context has a natural interpretation in terms of the posterior probability

that a sampled value of RB exceeds a random variable drawn from its nominal χ2

distribution. In this regard, values of A that are close to 0.5 may indicate adequate

model fit for the purposes of a given analysis even when the sampling distribution

of App would permit rejection of the model in a significance test.

Aside from applications in Bayesian model assessment, the χ2 statistic proposed

here can be extended, albeit somewhat awkwardly, to models estimated using max-

imum likelihood. In that setting, parameter values can be sampled from their

asymptotic normal distribution and used as if they were sampled from a posterior

distribution. Although not entirely palatable from a classical perspective, such a

procedure does provide a mechanism for conducting a (sub-optimal) goodness-of-fit

test for complicated models in which alternative tests may be difficult to perform.
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Appendix: Outlines of Proofs of Theorems and Corollaries

The proof of Theorem 1 and Corollary 1 are based largely on the proof given in

Chernoff and Lehman (1954) in establishing the asymptotic distribution of R̂.

Assume that conditions specified in Cramér (1946, pages 426-427) and Chen

(1995) apply. Cramér specifies conditions that are sufficient for establishing the

distribution of the χ2 goodness-of-fit statistic when evaluated at the parameter

vector maximizing the likelihood estimate based on the grouped data, whereas

Chen’s conditions are sufficient for establishing the asymptotic normality of the

posterior distribution. Essentially, these conditions require that the likelihood be a

smooth function of the parameter vector θ in an open interval containing θ0 (the

true value of θ), that the posterior distribution concentrates around a point in this

interval, that the information contained in the observations increases with sample

size, and that the prior assign non-negligible mass to the interval containing θ. In

addition, assume that all third-order partial derivatives of f(y |θ) (or, in the case of

the corollary, fj(y |θ)) with respect to the components of θ exist and are bounded

in an open interval containing θ0. This condition is sufficient for guaranteeing (16)

below. Finally, note that all expectations and statements regarding probabilistic

orders of magnitude described below are computed under the sampling distribution

of y given θ0.

The following lemmas are needed.

Lemma 1. Under the conditions stated above, if θ̂ refers to the maximum likelihood

estimate of θ, θ̃ refers to a value of θ sampled from the posterior distribution, and

mk(·) refers to the number of counts assigned to the kth bin at a specified value of
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θ, then

1√
n

(

mk(θ̃)−mk(θ̂)
)

=
1√
n

(

m∗
k(θ̃)−m∗

k(θ̂)
)

+ op(1)(9)

=
1√
n

s∑

i=1

∂m∗
k(θ̂)

∂θi

(θ̃i − θ̂i) + op(1),(10)

where

m∗
k(θ) = n E

[
Ind

(
y ∈ [F−1(ak−1 |θ), F−1(ak |θ)]

)]
.

Proof of Lemma 1:

Expanding m∗
k(θ̃) in a Taylor series expansion about m∗

k(θ̂) yields

(11) m∗
k(θ̃)−m∗

k(θ̂) =

s∑

i=1

∂m∗
k(θ̂)

∂θi

(θ̃i − θ̂i) + Op(1/n).

Define

∆zk,j = zk,j(θ̃)− zk,j(θ̂).

Then

|∆zk,j | ≤ Ind
(

yj ∈
[

min(F−1(ak−1 | θ̃), F−1(ak−1 | θ̂)), max(F−1(ak−1 | θ̃), F−1(ak−1 | θ̂))
])

+Ind
(

yj ∈
[

min(F−1(ak | θ̃), F−1(ak | θ̂)), max(F−1(ak | θ̃), F−1(ak | θ̂))
])

.

Hosted by The Berkeley Electronic Press



28 VALEN E. JOHNSON

Because (θ̂ − θ̃) is Op(1/
√

n),
√

n∆zk,j = Op(1). By application of Chebychev’s

inequality,

√
n
∑

j

∆zk,j/n =

(

mk(θ̃)−mk(θ̂)
)

√
n

=

(

m∗
k(θ̃)−m∗

k(θ̂)
)

√
n

+ op(1).

Substituting this expression into (11) yields (10).

Corollary 3. The previous lemma also applies if θ0 is substituted for θ̃. That is,

1√
n

(

mk(θ0)−mk(θ̂)
)

=
1√
n

(

m∗
k(θ0)−m∗

k(θ̂)
)

+ op(1)

=
1√
n

s∑

i=1

∂m∗
k(θ̂)

∂θi

(θ0,i − θ̂i) + op(1).

Lemma 2. Define

(12) p̂k = F
[

F−1(ak |θ0) | θ̂
]

− F
[

F−1(ak−1 |θ0) | θ̂
]

=

∫ F−1(ak |θ0)

F−1(ak−1 |θ0)

f(y | θ̂)dy.

Then under the conditions stated above,

(13) p̂k − pk =
1

n

(

m∗
k(θ0)−m∗

k(θ̂)
)

+ Op

(
1

n

)

Proof of Lemma 2:

For notational simplicity, define

G(γ, δ; c) = F
[
F−1(c | γ) | δ

]
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and

Hi(γ; c) =
∂G(γ, δ; c)

∂δi

|δ=γ .

Then, noting that m∗
k(θ0) = npk = G(θ0, θ0, ak)−G(θ0, θ0, ak−1),

(p̂k − pk)− 1

n

(

m∗
k(θ0)−m∗

k(θ̂)
)

=
[

G(θ0, θ̂; ak)−G(θ0, θ̂; ak−1)
]

+
[

G(θ̂, θ0; ak)−G(θ̂, θ0; ak−1)
]

− 2pk

=

[
∑

i

Hi(θ0; ak)(θ̂i − θ0,i)

−
∑

i

Hi(θ0; ak−1)(θ̂i − θ0,i)

]

+

[
∑

i

Hi(θ̂; ak)(θ0,i − θ̂i)

−
∑

i

Hi(θ̂; ak−1)(θ0,i − θ̂i)

]

+ Op

(
1

n

)

=
∑

i

[

Hi(θ0; ak)−Hi(θ̂; ak)
]

(θ̂i − θ0,i)

−
∑

i

[

Hi(θ0; ak−1)−Hi(θ̂; ak−1)
]

(θ̂i − θ0,i) + Op

(
1

n

)

=
∑

h

∑

i

[
∂Hi(θ0; ak)

∂θ0,h

− ∂Hi(θ0; ak−1)

∂θ0,h

]

(θ̂h − θ0,h)(θ̂i − θ0,i)

+Op

(
1

n

)

= Op

(
1

n

)

Corollary 4.

√
n(p̂k − pk) =

1√
n

(

mk(θ0)−mk(θ̂)
)

+ Op(
1√
n

)
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Proof of Theorem 1:

Decompose the terms appearing in (3) as follows:

(14)
mk(θ̃)− npk√

npk

=
mk(θ̃)−mk(θ̂)√

npk

− mk(θ0)−mk(θ̂)√
npk

+
mk(θ0)− npk√

npk

.

From the first lemma and corollary, the first two terms on the right side of (14) are

asymptotically equivalent to

(15)

∑

i
∂m∗

k(θ̂)
∂θi

(θ̃i − θ̂i)
√

npk

and

∑

i
∂m∗

k(θ̂)
∂θi

(θ0,i − θ̂i)
√

npk

.

Also, (θ̃ − θ̂) is asymptotically normal with mean 0 and covariance matrix equal

to the negative inverse of the information matrix (Chen 1985). So, too, is (θ̂−θ0),

and

(16) E[(θ̃ − θ̂)(θ̂ − θ0)] = o(1/n2)

(e.g., Olver 1974, Cox 1974).

Following Chernoff and Lehmann (1954), define ε to be a K × 1 vector with

components

εk =
mk(θ0)− npk√

npk

,

and let ν̂ be the vector with components

ν̂k =
√

n(p̂k − pk)/
√

pk.
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It follows from their results that

(17) ν̂ = D(J̃ + J∗)−1(D′ε +
√

nA∗) + op(1),

where J∗ is the matrix whose (i, j)th component is

E

[
∂ log g(y | z, θ)

∂θi

∂ log g(y | z, θ)

∂θj

]

,

g(y | z, θ) is the conditional distribution of y given z and θ, J̃ ≡ D′D is the matrix

with elements
K∑

k=1

1

pk

∂pk

∂θa

∂pk

∂θb

,

and A∗ is the vector whose ath component is

1

n

n∑

j=1

∂ log g(y | zj , θ)

∂θa

.

From the second corollary, the right-hand side of (17) also describes the large

sample distribution of (mk(θ0)−mk(θ̂))/
√

npk.

Taking η =
√

nA∗ and invoking the central limit theorem, Chernoff and Lehman

note that the asymptotic distribution of (ε, η) is

(18) N







0,







I− qq′ 0

0 J∗













,

where q is the vector with components
√

pk. Letting ε denote a variable having the

same distribution as ε, and τ a variable having the same distribution as η, with all

four variables distributed independently, it follows that the RB has the asymptotic
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distribution

(Tε + Sτ −Tε− Sη + ε)
′
(Tε + Sτ −Tε− Sη + ε) ,

where S = D(J̃ + J∗)−1 and T = SD′. Noting that D′q = 0, the asymptotic

distribution of (Tε + Sτ −Tε− Sη + ε)
′
is N(0, I− qq′). The result follows.

Proof of Corollary 1:

Because the proof of this corollary is similar to Theorem 1, only an outline is

presented here.

To begin, note that Lemma 1 and Corollary 3 extend to this setting if m∗
k(θ) is

redefined as

m∗
k(θ) =

n∑

j=1

E
[
Ind

(
yj ∈ (F−1

j (ak−1 |θ), F−1
j (ak |θ)]

)]
.

Next, Lemma 2 applies if (12) is modified so that

(19)

p̂j,k = Fj

[

F−1
j (ak |θ0) | θ̂

]

− Fj

[

F−1
j (ak−1 |θ0) | θ̂

]

=

∫ F
−1

j
(ak |θ0)

F
−1

j
(ak−1 |θ0)

fj(y | θ̂)dy,

where pj,k and related estimates refer to the probability that the jth observation

falls into the kth bin. Then

(20) p̂j,k − pj,k =
(

z∗j,k(θ0)− z∗j,k(θ̂)
)

+ Op(
1

n
)

where

z∗j,k(θ) = E
[
Ind

(
yj ∈ [F−1

j (ak−1 |θ), F−1
j (ak |θ)]

)]
.
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Corollary 4 generalizes to

1√
n

n∑

j=1

(p̂j,k − pj,k) =
1√
n

n∑

j=1

(

zk,j(θ)− zk,j(θ̂)
)

+ Op

(
1√
n

)

.

Extending Chernoff and Lehman’s (1954) result to the case of non-identically

distributed random variables requires the following modifications of the definitions

of variables used in the i.i.d. case. Let

εj =

(
zj,1 − pj,1√

npj,1
, . . . ,

zj,K − pj,K√
npj,K

)′
ε = (ε′1, . . . , ε

′
n)′,

J̃ =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

α=1

K∑

r=1

1

pα,r

∂pα,r

∂θi

∂pα,r

∂θj

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
,

D =























1√
p1,1

∂p1,1

∂θ1

. . . 1√
p1,1

∂p1,1

∂θs

...
...

1√
p1,K

∂p1,K

∂θ1

. . . 1√
p1,K

∂p1,K

∂θs

1√
p2,1

∂p2,1

∂θ1

. . . 1√
p2,1

∂p2,1

∂θs

...
...

1√
pn,K

∂pn,K

∂θ1

. . . 1√
pn,K

∂pn,K

∂θs























,

P =




Ik| . . . |Ik
︸ ︷︷ ︸

n times




 ,

J∗ =

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

E





(
n∑

α=1

∂ log gα(y | z, θ)

∂θi

)

·





n∑

β=1

∂ log gβ(y | z, θ)

∂θj









∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

,

A∗
i =

1

n

n∑

j=1

∂ log gj(y | z, θ)

∂θi

, and ν̂j,r =
p̂j,r − pj,r√

npj,r

.

Then

ν̂ = D(J̃ + J∗)−1(D′ε +
√

nA∗) + op(1).
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The covariance matrix of ε may be written

1

n
In×K − 1

n











q1q1
′ 0 . . . 0

...
...

...
...

0 . . . 0 qnqn
′











,

where qi is the vector whose jth component is
√

pi,j . Denote the rightmost matrix

in this equation by Q. Similarly, define η =
√

nA. Then the asymptotic distribu-

tion of η has mean 0 and covariance matrix equal to J∗, and is uncorrelated with

ε.

Letting r̂ denote the vector with components (zk,j(θ) − zk,j(θ̂))/(
√

npj,k), it

follows from the generalization of Corollary 4 that the distribution of Pr̂ is asymp-

totically the same as Pν̂. Letting r̃ denote the vector with components (zk,j(θ̃) −

zk,j(θ̂))/(
√

npj,k), then Pr̃ and Pr̂ are, for large n, uncorrelated and identically

distributed. Noting that

RB = (ε− r̂ + r̃)′P′P(ε− r̂ + r̃)

and that D′Q = 0, some algebra and application of the central limit theorem yields

the desired result.

Proof of Corollary 2:

Expanding the components of RB(θ̃) yields

(21)
mk − npk(θ̃)√

n
=

mk − npk(θ0)√
n

− pk(θ̂)− pk(θ0)√
n

− pk(θ0)− pk(θ̂)√
n

.
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Asymptotically, Taylor series expansions show that the second term on the right

side of this equation has the distribution of Tε + Sη described in the proof of

Theorem 1, while the third term has the distribution of Tε+Sτ . The result follows

using methodology in the proof of Theorem 1.
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