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On Asymptotically Optimal Tests Under Loss
of Identifiability in Semiparametric Models

Rui Song, Michael R. Kosorok, and Jason P. Fine

Abstract

We consider tests of hypotheses when the parameters are not identifiable under
the null in semiparametric models, where regularity conditions for profile likeli-
hood theory fail. Exponential average tests based on integrated profile likelihood
are constructed and shown to be asymptotically optimal under a weighted average
power criterion with respect to a prior on the nonidentifiable aspect of the model.
These results extend existing results for parametric models, which involve more
restrictive assumptions on the form of the alternative than do our results. More-
over, the proposed tests accomodate models with infinite dimensional nuisance
parameters which either may not be identifiable or may not be estimable at the
usual parametric rate. Examples include tests of the presence of a change-point in
the Cox model under current status data, tests of regression parameters in odds-
rate models and tests of the number of mixture components in two-component
mixture models. Optimal tests have not prevously been studied for these scenar-
ios. We study the asymptotic distribution of the proposed tests under the null,
fixed contiguous alternatives and random contiguous alternatives. We also pro-
pose a weighted bootstrap procedure for computing the critical values of the test
statistics.
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ON ASYMPTOTICALLY OPTIMAL TESTS UNDER LOSS

OF IDENTIFIABILITY IN SEMIPARAMETRIC MODELS

By Rui Song, Michael R. Kosorok∗ and Jason P. Fine†
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We consider tests of hypotheses when the parameters are not
identifiable under the null in semiparametric models, where regularity
conditions for profile likelihood theory fail. Exponential average tests
based on integrated profile likelihood are constructed and shown to
be asymptotically optimal under a weighted average power criterion
with respect to a prior on the nonidentifiable aspect of the model.
These results extend existing results for parametric models, which
involve more restrictive assumptions on the form of the alternative
than do our results. Moreover, the proposed tests accommodate mod-
els with infinite dimensional nuisance parameters which either may
not be identifiable or may not be estimable at the usual paramet-
ric rate. Examples include tests of the presence of a change-point in
the Cox model under current status data, tests of regression param-
eters in odds-rate models and tests of the number of mixture com-
ponents in two-component mixture models. Optimal tests have not
previously been studied for these scenarios. We study the asymptotic
distribution of the proposed tests under the null, fixed contiguous
alternatives and random contiguous alternatives. We also propose a
weighted bootstrap procedure for computing the critical values of the
test statistics.

1. Introduction. In this paper we investigate nonstandard testing prob-
lems involving a family of probability distributions {Pθ, θ ∈ Θ}, known up
to a parameter θ, in a parameter space Θ. The parameter space Θ is as-
sumed to be a subset of an infinite-dimensional metric space. The null and
alternative hypotheses are:

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ\Θ0,

where Θ0 is a subset of Θ and contains at least two elements. In the usual
testing framework, the parameters are unique under the null, so that iden-
tifiability is not an issue. While we allow multiple values of θ satisfying the
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2 R. SONG, M. R. KOSOROK AND J. P. FINE

null, we assume that the null distribution, denoted by P0, is unique, where
Θ0 = {θ ∈ Θ : Pθ = P0}.

Under this set-up, the true value of θ is not identifiable under the null,
since for any θ 6= θ′ in Θ0, Pθ = Pθ′ = P0. Such loss of identifiability occurs
in diverse applications in the social, biological, physical and medical sciences.
We consider three examples in detail; see Section 2 for an overview of work
on these special cases of the general paradigm described above.

The statistical literature contains numerous precedents on the noniden-
tifiability problem in parametric models, see Chernoff (1954), Chernoff and
Lander (1995), Dacunha-Castelle and Gassiat (1999), Liu and Shao (2003).
Among others, Dacunha-Castelle and Gassiat (1999) proposed a locally conic
parametrization approach to enable asymptotic expansions of the likelihood
ratio test under loss of identifiability under the null. Liu and Shao (2003) de-
rived a quadratic approximation of the loglikelihood ratio function by using
Hellinger distance. Most authors directly study the approximation of the
log-likelihood ratio function in some neighborhood and obtain its asymp-
totic null distribution. However, the asymptotic optimality properties of the
classical likelihood ratio tests (LRT) do not hold anymore (Lindsay, 1995)
and Wald and score tests are not even well defined in these nonstandard
problems. To our knowledge, all results for testing nonidentifiable P0 using
likelihood based tests are for parametric models. In this paper, we investi-
gate the construction of optimal likelihood based tests for semiparametric
models.

A key question which arises in the nonidentifiable context (Dacunha-
Castelle and Gassiat, 1999) is: since the parameter is not identifiable, around
which point can an expansion be made? To address this question, we assume
the existence of a “full rank” reparameterization which contains all the in-
formation of the null model and in which all parameters are identifiable.
To be specific, we partition θ ≡ (ψ, ζ) and ψ ≡ (β, η), where β ∈ Rp is
a parameter of interest, ζ ∈ R

q and η is a parameter defined on an arbi-
trary parametric space, Hη. We assume that the information in the null
model can be absorbed into the parameter space of η, through this full rank
reparameterization. This is made precise in Section 3.

When the models involved are parametric, a special case when η does not
depend on ζ under the null, that is, ζ is only present under the alterna-
tive, has been studied extensively by Andrews and Ploberger (1994); Davies
(1977, 1987); Hansen (1996); King and Shively (1993), and others. Davies
(1977) showed that the likelihood ratio test is optimal in the sense that as
the significance level of the test tends to zero, its power function approaches
that of the optimum test when ζ is given. These optimality results are very
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OPTIMAL TESTS UNDER LOSS OF IDENTIFIABILITY 3

weak and do not provide any guidance regarding the performance of the
test in practical applications, where the significance level is fixed, eg. at
level .05 (Andrews, 1999). Andrews and Ploberger (1994) studied optimal
tests for parametric models using the weighted average power criterion orig-
inally introduced by Wald (1943) when studying the likelihood ratio test
under regularity conditions, where the model is identifiable under the null.
Under loss of identifiability, the likelihood ratio test is generally less power-
ful than the optimal test in Andrews and Ploberger (1994). These optimal
tests possess a Bayesian interpretation, where the weight corresponds to a
prior on the nonidentifiable parameter, and are asymptotically equivalent to
a Bayesian posterior odds ratio.

In this paper we adapt the weighted average power criterion (Andrews and
Ploberger, 1994; Wald 1943) to construct optimal tests in semiparametric
models under loss of identifiability. We extend the results of Andrews and
Ploberger (1994) in at least four directions.

First, Andrews and Ploberger (1994) address only parametric models, as
is the case for most literature on testing problems with nonidentifiabil-
ity under the null. Our optimality results are available for semiparamet-
ric models, where η may be infinite dimensional and ζ may not be es-
timable at the usual parametric rate under both the null and the alter-
native. A semiparametric profile likelihood is adopted to reduce the infinite-
dimensional model to a finite-dimensional uniformly least-favorable sub-
model; see Murphy and van der Vaart (2000) for a discussion of profile like-
lihood in regular settings. We note that, however, uniformly least favorable
submodel is a new concept, which is not discussed in Murphy and van der
Vaart (2000). The development of this concept is both nontrivial and critical
to establishing an appropriate optimality criterion for general semiparamet-
ric models under loss of identifiability.

Second, the results of Andrews and Ploberger (1994) are applicable for
tests where a nuisance parameter (namely ζ) is present only under the al-
ternative. This may not be true in our situation, where a nondegenerate
reparameterization may be needed to make ζ vanish under the null. Fur-
thermore, our tests and the optimality results do not depend on the repa-
rameterization.

Third, Andrews and Ploberger (1994) establish that their test is optimal
with respect to local alternatives for ψ involving a multivariate normal prior
with singular covariance matrix. In our approach, it is only necessary to
specify the prior in the direction of β, the parameter of interest, and no
prior is needed on the remaining parameter η. This enables us to avoid the
singular covariance issue in Andrews and Ploberger (1994).
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4 R. SONG, M. R. KOSOROK AND J. P. FINE

Fourth, we develop a simple and effective Monte Carlo method of inference
for the proposed test statistics.

Adopting a profile likelihood approach has several advantages. First, un-
der the identifiable submodel, the MLE for η may converge at a slower rate
than the usual

√
n rate, such as the change-point Cox model with current

status data. This makes the theoretical justification based on Taylor expan-
sion of the full likelihood fail. Second, even if the MLE of the nonparameric
component converges at the

√
n rate, semiparametric likelihoods may not

be suitably “differentiable,” in particular, when such a likelihood contains
certain empirical terms, as with, for example, the odds-rate model. Third,
handling the remainder terms in a Taylor type expansion is challenging, ow-
ing to the presence of the infinite dimensional parameters, and a delicate
Banach space analysis is required. Employing the profile likelihood enables
us to address these issues rigorously.

The remainder of the paper is organized as follows. In section 2, we present
three rather different examples for which loss of identifiability occurs under
the null. The examples include a two-component mixture model, an odds-
rate model with right censored data and a change-point Cox model with
current status data. In section 3, we present the generic testing problem and
the model and data assumptions. The optimality results are given in Section
4. We verify that the results hold for the three examples in Section 5. The
detailed proofs are given in Section 6.

2. Examples. This section contains three examples. For each example,
we discuss how loss of identifiability arises under the null. We also present
previous work on testing under such nonidentifiability in order to clarify the
potential contributions of the results in this paper.

2.1. A two-component mixture model. Finite mixture models arise in
many applications. For simplicity, we consider the simplest case of a two-
component mixture with density g(ρ, µ1, µ2, η) = ρf(µ1, η)+(1−ρ)f(µ2, η),
where f(µ, η) is a parametric p.d.f. with parameters µ ∈ R

p, η ∈ R
q, such

as a location-scale family. Let β = µ2 − µ1, θ = (ρ, β′, µ′1, η
′)′, and the hy-

pothesis of interest is β = 0; that is, there is only a single component in the
mixture. For convenience, we assume the mixing proportion ρ ∈ (0, 1] and
µ1 = µ2 = µ0 under the null.

Under the null, the lack of identifiability of ρ, µ1, and µ2 complicates
statistical inference. The difficulties have been widely studied in the context
of testing for homogeneity in finite mixture models (Chen and Chen, 2003;
Chen et al., 2004; Chernoff and Lander, 1995; Dacunha-Castelle and Gassiat,
1999; Lindsay, 1995; Liu and Shao, 2003; Zhu and Zhang, 2004). To our
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OPTIMAL TESTS UNDER LOSS OF IDENTIFIABILITY 5

knowledge, all existing results focus on the limiting distribution of the like-
lihood ratio tests (and other associated likelihood based tests) under the
null. These properties are rather complicated and may require that nuisance
parameters are known under the null, where a reparameterization is often
used (Liu and Shao, 2003; Zhu and Zhang, 2004). When the nuisance pa-
rameters are unknown under both H0 and H1, limited results have been
developed. Furthermore, using such reparameterizations may yield models
with unbounded second derivatives and usual first order Taylor approxima-
tion may not be possible, as in Dacunha-Castelle and Gassiat (1999), where
a 5th order expansion was required.

In this paper, we address the test of homogeneity for mixture models with
general parametric densities and do not assume that nuisance parameters are
known under the null. To our knowledge, optimality issues for homogeneity
testing in mixtures has not been addressed in the statistical literature.

2.2. An odds-rate model with right censored data. We consider right cen-
sored survival data generated from an odds-rate model. Let T be a non-
negative random variable representing the failure time, C be the indepen-
dent censoring time, V ≡ min(T,C) and Z ≡ Z(·) be a corresponding
p-dimensional covariate process. The observed data {Xi = (Vi,∆i, Zi), i =
1, ..., n} consists of n i.i.d. realizations of X = (V,∆, Z), where ∆ ≡ 1{T ≤
V }, 1{·} is the indicator function. In this model, the hazard function of the
survival time T given covariates Z is

λ{t;Z(t),W} = η(t)W exp{βTZ(t)},(1)

where t is the time index, W is an unobserved gamma frailty with mean
1 and variance ζ, β is a p−dimensional regression parameter and η(·) is a
completely unspecified baseline hazard function.

When β is not zero, the odds-rate model has been treated extensively;
see Kosorok et al. (2004); Murphy et al. (1997); Murphy and van der Vaart
(1997, 2000); Parner (1998), among others. Scharfstein et al. (1998) consid-
ered semiparametric efficient estimation in the setting where the covariates
are time-independent, ζ is assumed known and η(·) is assumed to be abso-
lutely continuous. Bagdonavičius and Nikulin (1999) considered estimation
for a class of proportional hazards model, which includes the odds-rate model
with ζ unspecified, based on a modified partial likelihood. Kosorok et al.
(2004) considered robust inference for odds-rate models when the frailty dis-
tribution and regression covariates may be misspecified. To our knowledge,
problems associated with testing the null β = 0 when the frailty parameter
is unknown have not been previously considered in the statistical literature.

imsart-aos ver. 2007/09/18 file: idensemi16.tex date: October 1, 2007

Hosted by The Berkeley Electronic Press



6 R. SONG, M. R. KOSOROK AND J. P. FINE

It has been shown that ζ and η(·) are not identifiable under the null
(Kosorok et al., 2004). Intuitively, when β = 0, the covariate process Z
provides no information for the failure time process. The frailty W and the
baseline hazard η(·) are not distinguishable from each other, hence ζ and η(·)
are not identifiable. Thus, the testing problem described above is nonregular
and standard asymptotic results are not applicable. In this paper, we propose
an optimal test of β = 0.

2.3. A change-point Cox model with current status data. Change-point
models have been studied extensively and have proven to be popular in clin-
ical research. In many settings, a change-point effect is realistic and can be
much easier to interpret than a quadratic or more complex nonlinear ef-
fect (Chappell, 1989). Change-point Cox models have been widely used in
survival applications, as in Luo and Boyett (1997); Luo et al. (1997); Pons
(2003), where likelihood ratio tests were investigated. However, to our knowl-
edge, the issue of optimal testing has not been explored for such models.

Under current status censoring, a subject is examined once at a random
observation time V and at that time it is observed whether the event time
T ≤ V or not. The observed data {Xi = (Vi,∆i, Zi), i = 1, ..., n} consists
of n i.i.d. realizations of X = (V,∆, Z), where ∆ ≡ 1{T ≤ V } and Z is a
d−dimensional covariate. Here we let d = 1 for simplicity. In this example,
we assume that the time to event T satisfies a change-point Cox model
conditionally on the covariate Z. That is, the density of X is given by:

pθ(x) =
(

1 − e−e
rγ (z)Λ(v)

)∆ (

e−e
rγ (z)Λ(v)

)1−∆
fV,Z(v, z),(2)

with rγ(z) = αz + (β1 + β2z)1{z > ζ}, where α, β1 and β2 are scalar
regression parameters, ζ is the change-point parameter and Λ(·) is the cu-
mulative baseline hazard function. We also define the collected parameters
β ≡ (β1, β2), ξ ≡ (β, α), γ ≡ (ξ, ζ) and η ≡ (α,Λ). We are particularly inter-
ested in the hypothesis test of the existence of change-points for regression
parameters in Cox models based on the above current status data, that is,
H0 : β = 0.

Although Cox regression with current status data was discussed by Huang
(1996) and others, change-point Cox regression has not been studied with
current status data. The development of optimal tests in the current status
setting is further complicated by the fact that the nuisance parameter Λ
cannot be estimated at the parametric rate, unlike with right censored data.

In model (2), the change-point parameter is present only under the al-
ternative. The theoretical results presented in the sequel will yield optimal
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OPTIMAL TESTS UNDER LOSS OF IDENTIFIABILITY 7

tests with both right censored data, where the nuisance parameter is root-n
estimable, and current status data, where it is not root-n estimable.

3. The hypotheses tests and assumptions.

3.1. The optimal tests. In this subsection we formulate the tests of hy-
potheses when the parameters are not identifiable under the null. Let Pθ de-
note the probability measure, based on observed data X̃n ≡ (X1, X2, ...Xn),
where θ ∈ Θ and the subscript n is the sample size. As mentioned previ-
ously, the parameters θ ∈ Θ0 under the null hypothesis are not identifiable.
We assume that θ can be partitioned as (ψ, ζ), with ζ q-dimensional and
ψ of arbitrary dimension. We further assume that ψ can be partitioned as
(β, η) so that the null hypothesis can be stated in terms of β, with the nui-
sance parameter η having arbitrary dimension. The likelihood function of
the data is given by ln(θ) and the profile likelihood for β and ζ is defined
as pln(β, ζ) = supη ln(β, η, ζ). For the semiparametric model {P(β,η,ζ)} on
a sample space X , we assume β ∈ R

p, ζ ∈ Ξ, a compact subset of R
q and

η ∈ Hη, which is a subset of a Banach space.
The hypotheses to be tested are:

H0 : β = β0 vs. H1 : β 6= β0.(3)

When β = β0, the null distribution P0 is unique and the likelihood for a
single observation under the null is abbreviated as l0. Let π ≡ (η, ζ). The
null set of π is Π0 and its cardinality is the same as that of Ξ. Θ0 = {β0}×Π0.
For each ζ ∈ Ξ, η0(ζ) ≡ {t ∈ Hη : (t, ζ) ∈ Π0} is an interior point of Hη. Let
ψ0(ζ) ≡ (β0, η0(ζ)), and θ0(ζ) ≡ (ψ0(ζ), ζ). Thus, Θ0 can be represented as
Θ0 = {θ0(ζ) : ζ ∈ Ξ}.

We denote l̇β ∈ L0
2(Pθ) as the derivative of log l1(θ) with respect to β and

l̈β is the second derivative of log l1(θ) with respect to β. L0
2(Pθ) refers to the

class of square integrable functions under the measure Pθ with mean 0. The
score operator for η is defined as l̇η, which is a bounded linear map from Hη

to L0
2(Pθ) with adjoint operator l̇?η: L

0
2(Pθ) 7→ Hη, where Hη is the closed

linear span of Hη. The information operator is l̇?η l̇η : L0
2(Pθ) 7→ L0

2(Pθ). The

efficient score for β is the ordinary score function l̇β minus its orthogonal
projection onto the closed linear span of the score operator l̇η. The efficient
information for β is Ĩβ =

∫

l̃β l̃
′
βdPθ, which is the asymptotic variance of the

efficient score function.
We use the notations Pn and Gn for the empirical distribution and the

empirical process of the observations. That is, for every measurable function
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8 R. SONG, M. R. KOSOROK AND J. P. FINE

f and probability measure P ,

Pnf =
1

n

n
∑

i=1

f(Xi), P f =

∫

fdP, Gnf =
1√
n

n
∑

i=1

(f(Xi) − P (f)).

We note that although simultaneous estimation of β and ζ fails under the
null due to nonidentifiability, estimation results for β̂n(ζ), the MLE of β at
a fixed value of ζ, are usually valid under the null. This suggests making
inference about β using β̂n(ζ), which is the approach taken in the previous
literature on testing with nonidentifiable models. For fixed ζ ∈ Ξ, the score,
Wald and likelihood ratio test statistics for testing H0 against H1 are given
by

Rn(ζ) = Pnl̇β(θ̂0(ζ))
′
{

Pnl̇β l̇
′
β(θ̂0(ζ))

}−1
Pnl̇β(θ̂0(ζ)),

Wn(ζ) = (β̂n(ζ) − β0)
′

Pn

{

l̇β l̇
′
β(θ̂n(ζ))

}

(β̂n(ζ) − β0), and

LRn(ζ) = −2
{

ln(θ̂0(ζ)) − ln(θ̂n(ζ))
}

,

where θ̂n(ζ) ≡ (β̂n(ζ), η̂n(ζ), ζ) is the unrestricted MLE of θ at a fixed
value of ζ and θ̂0(ζ) ≡ (β0, η̂0(ζ), ζ) is the restricted MLE of θ for a fixed
value of ζ under the null. Pnl̇β(θ̂0(ζ)) = Pnl̇β(β0, η̂0(ζ), ζ) is the empirical

score function of β evaluated at the restricted MLE θ̂0(ζ). Pnl̇β(θ̂n(ζ)) =

Pnl̇β(β̂n(ζ), η̂n(ζ), ζ) is the empirical score function of β evaluated at the

unrestricted MLE θ̂n(ζ). The inverse matrix of Pn

{

l̇β l̇
′
β(θ̂n(ζ))

}

estimates

the covariance matrix of β̂n(ζ).
The optimal tests we propose take the form:

ERn = (1 + c)−
p
2

∫

exp

(

1

2

c

1 + c
Rn(ζ)

)

dJ(ζ),

EWn = (1 + c)−
p
2

∫

exp

(

1

2

c

1 + c
Wn(ζ)

)

dJ(ζ), and

ELRn = (1 + c)−
p
2

∫

exp

(

1

2

c

1 + c
LRn(ζ)

)

dJ(ζ),

where c > 0 is a known constant and J(·) is a pre-selected integrable prior on
ζ. Their optimality will be discussed in section 4. We note that, in semipara-
metric settings, the computation of the score and the information may in-
volve high dimensional maximization and nonparametric smoothing (Huang,
1996). The tests ERn and EWn may be computationally harder than ELRn.
Thus the likelihood ratio based test ELRn appears more attractive in these
situations.
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OPTIMAL TESTS UNDER LOSS OF IDENTIFIABILITY 9

3.2. The assumptions. To derive asymptotically optimal tests of H0, we
consider local alternatives to H0 of the form ln(β0 +h/

√
n, η, ζ) with ζ and η

unspecified. The optimality criterion will involve a weighted average power
criterion, where the averaging is with respect to an integrable prior Qc

ζ(h) on
the values of h in R

p defining local alternatives and an integrable prior J(ζ)
on ζ. Before formally stating the optimality criterion, we give assumptions
on the data and the parameter spaces. The first two assumptions postulate
the existence of the prior on local alternatives, Qc

ζ(h).

A1 For ζ ∈ Ξ, the efficient information function of β evaluated at θ0(ζ),
Ĩβ(θ0(ζ)), is uniformly continuous in β and ζ over B0 ×Ξ, where B0 is
some neighborhood of β0. Furthermore, Ĩβ(θ0(ζ)) is uniformly positive

definite over ζ ∈ Ξ, that is infζ∈Ξ λmin

{

Ĩβ(θ0(ζ))
}

> 0, where λmin(C)

is the smallest eigenvalue of the matrix C.
A2 Qc

ζ is a normal measure with mean β0 and variance cĨ−1
β (θ0(ζ)) for

ζ ∈ Ξ, where c > 0 is a scalar constant.

Assumptions A1 and A2 are analogous to assumptions 1(e), 1(f) and 4 of
Andrews and Ploberger (1994), although there are fundamental differences.
Andrews and Ploberger (1994) work directly by building on the full para-
metric likelihood and their assumptions refer to the information matrix for
all parameters. Furthermore, their optimality results are defined in terms
of local alternatives for ψ, where the prior is a multivariate normal with
singular covariance matrix. Our assumptions A1 and A2 are only for the pa-
rameter of interest, β, with no prior assumptions needed for η under either
the null or the alternative.

The next assumption posits the existence of a full rank reparameteriza-
tion.

B There exists a map φζ : Hη 7→ Hη, which is one-to-one and uniformly
Hadamard-differentiable at η tangentially to Hη over ζ ∈ Ξ, i.e.,

sup
(η+tnhn(ζ),ζ)∈Π0

∥

∥

∥

∥

φζ(η + tnhn(ζ)) − φζ(η)

tn
− φ̇ζ(η)(h(ζ))

∥

∥

∥

∥

→ 0,

as supζ∈Ξ ‖hn(ζ)−h(ζ)‖ → 0, and tn → 0, where h(ζ) is in the tangent
space of Hη for all ζ ∈ Ξ and ‖·‖ denotes the norm of Hη. Its derivative
φ̇ζ is one-to-one and continuously invertible uniformly over ζ ∈ Ξ. That
is, there exists a positive constant k such that ‖φ̇ζ(η1(ζ) − η2(ζ))‖ ≥
k‖η1(ζ)− η2(ζ)‖ for every η1(ζ) and η2(ζ) in Hη for all ζ ∈ Ξ. Let η ≡
φζ(η), `1(β0, η, ζ)(x) ≡ l1(β0, φ

−1
ζ (η), ζ)(x) = l0(x), where ζ vanishes

under the null, for all elements x in X .
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10 R. SONG, M. R. KOSOROK AND J. P. FINE

This reparameterization does not change the likelihood, that is, the equal-
ity l1(β, η(ζ), ζ)(x) = `1(β, η, ζ)(x) holds both under the null and the alter-
native. Under the null, the likelihood l1(β0, η0(ζ), ζ) = `1(β0, η0, ζ) for a
specific η0, which does not depend on ζ, and ζ disappears in the null like-
lihood. We thus reduce the parameter dimension of the null space from Π0

to Hη.
The reason we assume the existence of such a full rank reparameteriza-

tion is to eliminate the dependence between parameters η and ζ. The issue
is that the results are with respect to a perturbation of the parameter η,
which is not well defined in the original space, due to the dependence be-
tween parameters η and ζ. Subsequent assumptions are built on the new
parameterization θ ≡ (β, η, ζ). However, we note that the results still hold
for the original parameterization, since the efficient score and efficient infor-
mation are invariant under such reparameterization, as summarized in the
following lemma:

Lemma 1. Under assumption B, l̃β(θ) = ˜̀
β(θ), where ˜̀

β(θ) is the
efficient score of β under the new reparameterization. The efficient infor-
mation matrix is also invariant to these reparameterizations.

Remark 1. The full rank reparameterization in assumption B may
not be unique. We will show later in the proof of theorem 2 that the opti-
mal tests proposed in this paper are invariant to the choice of the full rank
reparameterization.

The next set of conditions assumes the existence of a uniformly least-
favorable submodel. This submodel can be viewed as a “uniform” version of
the least favorable submodel discussed in Murphy and van der Vaart (2000):
the convergence rate of the nuisance parameter now is in the “uniform”
sense, and the efficient score and the efficient information possess Donsker
and Glivenko-Cantelli properties with “larger” index sets, respectively. When
the set of ζ, Ξ, is a singleton, this new submodel concept reduces to the ordi-
nary least favorable submodel. The development of this concept is critical to
establishing an appropriate optimality criterion for general semiparametric
models under loss of identifiability. Here are the needed assumptions:

C1 There exists a map t 7→ ηt from a fixed neighborhood of β0 into
Hη, such that the map t 7→ `(t, θ) defined by `(t, θ) ≡ `1(t, ηt, ζ) is
twice continuous differentiable. Let ˙̀(t, θ) and ῭(t, θ) denote the deriva-
tives with respect to t. The submodel with parameters (t, η t, ζ) passes
through η at t = β, that is, ηβ(β, η, ζ) = η for all ζ ∈ Ξ.
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OPTIMAL TESTS UNDER LOSS OF IDENTIFIABILITY 11

C2 The submodel is uniformly least-favorable at ψ0 ≡ (β0, η0) and ζ for
estimating β0 in the sense that ˙̀(β0, ψ0, ζ) = ˜̀

β(ψ0, ζ). As (t, β, η) →
(β0, β0, η0), we assume that supζ∈Ξ ‖ ˙̀(t, ψ, ζ) − ˜̀

β(ψ0, ζ)‖ = oP0(1)

and supζ∈Ξ ‖῭(t, ψ, ζ)− ῭(β0, ψ0, ζ)‖ = oP0(1). In the sequel, we let oΞ
P

denote a quantity going to zero in probability, under P , uniformly over
the set Ξ.

C3 We assume that ψ̂0, the restricted MLE of ψ under the null, satisfies

ψ̂0 = ψ0 + oP0(1). The unrestricted MLE ψ̂n(ζ) = ψ0 + oΞP0
(1). More-

over, let η̂β(ζ) ≡ argmaxη`n(β, η, ζ), that is p`n(β, ζ) = `n(β, η̂β(ζ), ζ).

Assume that for any random sequences β̃n →P0 β0, we have η̂β̃n
(ζ) =

η0 + oΞP0
(1) and the uniform “no-bias” condition:

P0
˙̀(β0, β̃n, η̂β̃n

(ζ), ζ) = oΞ
P0

(‖β̃n − β0‖ + n−1/2).(4)

C4 There exist neighborhoods U of β0 and V of ψ0, such that the class of
functions { ˙̀(t, ψ, ζ) : t ∈ U,ψ ∈ V, ζ ∈ Ξ} is P0-Donsker with square
integrable envelope function and the class of functions { ῭(t, ψ, ζ) : t ∈
U,ψ ∈ V, ζ ∈ Ξ} is P0-Glivenko-Cantelli and is bounded in L1(P0),
where L1(Pθ) refers to the class of integrable functions under Pθ.

Assumptions C1–C4 set the stage for the quadratic expansion of the pro-
file likelihood and the derivation of the optimality properties of the pro-
posed tests. Note that these assumptions can also be built on the original
parameterization, but we use the new parameterization for ease of presen-
tation. Since our formulation includes parametric models as special cases,
the existence of a uniformly least-favorable submodel in our set-up covers
all situations considered by Andrews and Ploberger (1994).

Compared with Andrews and Ploberger (1994), we have a stronger form
of the unbiasedness condition and stronger requirements on the consistency
of the estimators for the expansion of the profile likelihood. This is partly due
to the more general structure of the semiparametric model. As in assumption
C3, we require that if β̃n is any sequence of estimators consistent for β0,
η̂ζ(β̃n) must be consistent for η0, the true value of the nuisance parameter
η, uniformly over Ξ. In Andrews and Ploberger (1994), consistency is only
needed for the unconstrained MLE (assumption 2) and the constrained MLE
under the null hypothesis (assumption 3).

To evaluate the local asymptotic distribution of the proposed tests, we
require differentiability in quadratic mean (DQM) of the parameters ψ, as
stated in the following assumption D, which is commonly used to evaluate
the local power. It will be verified for the three examples presented in Sec-
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12 R. SONG, M. R. KOSOROK AND J. P. FINE

tion 2. Unlike in assumptions C1–C4, the full rank reparameterization is
indispensable in assumption D:

D Differentiability in quadratic mean of the parameter ψ. A perturbation
of ψ in its domain is ψt = ψ0 + th+ o(1), where h ≡ (hβ, hη), hβ ∈ R

p

and hη ∈ Hη. The DQM condition for ψ0 with respect to the collection
of paths {ψt} is :

∫





(dPψt,ζ
)1/2 − (dP0)

1/2

t
− 1

2
(Aζh)dP

1/2
0





2

→ 0, as t→ 0,

for all ζ ∈ Ξ, where Aζ is a bounded linear operator defined on R
p×Hη

and takes values in L0
2(Pθ).

Differentiability in quadratic mean implies that the range of Aζ is con-
tained in L0

2(Pθ). Note that Aζh = ∂/∂t`1(ψt, ζ)|t=0, following similar ar-
guments as in Kosorok and Song (2007), where h = (hβ , hη). We define
Aζ to be given by Aζ(hβ , hη) = ˙̀′

β(ψ, ζ)hβ + ˙̀
η(ψ, ζ)hη , where ˙̀

β and ˙̀
η

are the score operators for β and η respectively. Moreover, R
p × Hη is a

Hilbert space with ‖ · ‖ denoting its norm and 〈·, ·〉 denoting its inner prod-
uct. Since in parametric settings, twice continuously differentiability implies
DQM (Pollard, 1995), this assumption is weaker than Assumption 1(c) in
Andrews and Ploberger (1994).

4. Main results. This section includes several main results. The first
one is about the asymptotic null distribution of the proposed tests.

4.1. The distributions of the test statistics under the null. To establish
the asymptotic null distribution of the test statistics, a key result about the
uniform profile likelihood expansion is summarized in the following lemma.

Lemma 2. Under assumptions A–C, for any random sequence β̃n →P0

β0,

log pln(β̃n, ζ) = log pln(β0, ζ) + n(β̃n − β0)
′
Pnl̃β(θ0(ζ))(5)

−1

2
n(β̃n − β0)

′Ĩβ(θ0(ζ))(β̃n − β0) + oΞ
P0

(
√
n‖β̃n − β0‖ + 1)2.

Lemma 2 enables us to establish the asymptotic equivalence of these test
statistics and their asymptotic distributions:
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OPTIMAL TESTS UNDER LOSS OF IDENTIFIABILITY 13

Theorem 1. Under assumptions A–C and H0 : β = β0, ELRn =
EWn + oP0(1) = ERn + oP0(1) →d eχ(c), where

eχ(c) = (1 + c)−
p
2

∫

exp

(

1

2

c

1 + c
G

′(θ0(ζ))Ĩ
−1
β (θ0(ζ))G(θ0(ζ))

)

dJ(ζ),

and G(θ0(ζ)) is the limiting process of Gnl̃β(θ0(ζ)), which is a mean zero
Gaussian process with variance function σ2(ζ) = Ĩβ(θ0(ζ)) indexed by ζ and

with covariance function σ2(ζ1, ζ2) = P0

{

l̃β(θ0(ζ1))l̃β(θ0(ζ2))
′
}

, indexed by

ζ1 and ζ2, ζ, ζ1 and ζ2 ∈ Ξ.

Remark 2. We note that when J(·) does not equal a prior on ζ,
corresponding rather to a weight function, the results in Theorem 1 will gen-
erally hold, although the test may no longer possess the optimality discussed
in the sequel. Theorem 1 should also hold if Qc

ζ(h) is not a prior distribu-
tion, corresponding rather to a weight function on local alternatives for β.
This robustness indicates that the tests are generally valid for testing the
null under loss of identifiability, yielding a large class of test statistics, with
the optimal test being a member of this class.

We also note that the optimal tests depend on the weight function Qc
ζ(·)

only through the scalar c. The larger c is, the more weight is given to al-
ternatives for which β is large. For example, for a test of the change-point
model, larger values of c correspond to greater weight being given to larger
changes. In the special case where J(ζ) is a pointmass at a single value ζ0,
the optimal test rejects if and only if LR(ζ0) exceeds some constant (i.e., the
optimal test equals the standard score test for fixed ζ0) and the optimal test
is independent of c. When J(ζ) is not a pointmass distribution, however, the
optimal test ELRn depends on c. The larger c is, the more power is directed
at alternatives for which β is large.

The limit as c→ 0 of the 2(ELRn−1)/c statistic is equal to the “average
score” statistic

∫

LRn(ζ)dJ(ζ), which is the limit of the ELR statistics that
are designed for alternatives that are very close to the null hypothesis. At
the other extreme, the limit as c → ∞ is log

∫

exp(LRn(ζ)/2)dJ(ζ). Thus
for testing against more distant alternatives the optimal test statistic is still
of an average exponential form.

If the constant c/(1 + c) which appears in the definition of ELRn is
replaced by a constant r > 0, then the limit as r → ∞ of ELRn is
the likelihood ratio test, equivalently, the “sup score” statistic studied in
Kosorok and Song (2007). Hence, the sup score test is designed for distant
alternatives, but is of a more extreme form than the optimal exponential
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14 R. SONG, M. R. KOSOROK AND J. P. FINE

test, since the latter requires r < 1. It can be easily shown as a corollary
to theorem 1 that the usual likelihood ratio, Wald and score tests have the
following distribution:

Corollary 1. Under the null hypotheses and assumptions A-D,
supζ LRn(ζ) = supζWn(ζ) + oP0(1) = supζ Rn(ζ) + oP0(1) →d χ, with

χ = supζ G
′(θ0(ζ))Ĩ

−1
β (θ0(ζ))G(θ0(ζ)).

4.2. Optimality of the proposed tests. The second main result of this pa-
per is the optimality property of the proposed tests. Following assumptions
in section 3, we consider local alternatives β = β0 + hβ/

√
n + o(n−1/2) for

hβ ∈ R
p with prior distribution Qc

ζ(hβ) on the local alternative direction hβ
and prior distribution J(ζ) on the nonidentifiable parameter ζ. The opti-
mality result is as follows:

Theorem 2. Under assumptions A–D, the test statistics in theorem 1
are asymptotically uniformly most powerful for testing H0 : β = β0 against
the contiguous alternative

∫

dP n
ψ0+h/

√
n+o(n−1/2),ζ

dQcζ(hβ)dJ(ζ),

where h ≡ (hβ , hη(ζ)), hη(ζ) ≡ q̃′ζhβ and where q̃ζ ≡ −( ˙̀?
η
˙̀
η)

− ˙̀?
η
˙̀
β(ψ, ζ) is

the uniformly least-favorable direction indexed by ζ. Moreover, this optimal-
ity result is invariant under the choice of φζ in assumption B.

Theorem 2 also implies that the proposed tests have the greatest weighted
average power asymptotically in the class of all tests of asymptotic signif-
icance level α, against the alternative P n

ψ0+h/
√
n+o(n−1/2),ζ

. That is, they

maximize

lim
n→∞

∫

P (φn rejects|ψ0 + h/
√
n+ o(n−1/2), ζ)dQc

ζ(hβ)dJ(ζ)

over all tests φn of asymptotic level α.
Our optimality results are under alternatives β0 +hβ/

√
n+o(n−1/2), with

nonsingular normal weights on hβ . Our weights on hβ are precisely Andrews
and Ploberger’s [2] weights projected onto the parameter space that is of
interest. Thus our results and Andrews and Ploberger’s are consistent.

We now discuss the choice of the direction qζ , the priorsQc
ζ(·) and J(·). By

the Neyman-Pearson lemma, for any appropriate prior distributions Qc
ζ(·)

and J(·) and any known directions qζ , a UMP test for testing H0 : β =
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OPTIMAL TESTS UNDER LOSS OF IDENTIFIABILITY 15

β0 against the contiguous alternative
∫

dP n
ψ0+h/

√
n+o(n−1/2),ζ

dQcζ(hβ)dJ(ζ),

where h ≡ (hβ , hη(ζ)), hη(ζ) = q′ζhβ is defined by

γn =











1, if QLRn > kαn,
λn, if QLRn = kαn,
0, if QLRn < kαn,

where kαn > 0, λn ∈ [0, 1] are constants such that the rejection probability
is α under the null and

QLRn =

∫

ln
(

ψ0 + h/
√
n+ o(n−1/2), ζ

)

dQcζ(hβ)dJ(ζ)

l0n
.

We have the following result:

Corollary 2. Under assumptions A–D, the null hypothesis and the
contiguous alternatives,

QLRn = (1 + c)−
p
2

∫

exp

(

1

2

c

1 + c
LRn(ζ)

)

W (qζ , ζ)dJ(ζ) + op(1),

where W (qζ , ζ) ≤ 1 is defined in (17). When qζ = q̃ζ, W (q̃ζ , ζ) = 1 and
QLRn = ELRn + oP0(1).

As the alternatives we consider are contiguous to the null, in each direction
qζ , which indexes QLRn, there exists a consistent estimator η̃n(qζ) of η0(ζ)
by the convolution theorem, provided certain conditions hold. The optimal
tests can thus be built on η̃n(qζ).

In applications with composite hypotheses where qζ is unknown, there
may not exist a direction which can maximize the power over all directions
(Bickel et al., 2006). In a regular testing problem where all parameters are
identifiable, it can be shown that the likelihood ratio test, which is built on
the uniformly least-favorable direction, will maximize the minimum power
of all directions of the alternatives, over all the test based directions. In our
nonregular testing problem, the situation is further complicated, since the
power depends on the covariance structure of G(θ0(ζ)). It is not clear if the
maxmin property still holds in our problem. We note that, however, our
tests can be interpreted as the “maximum direction” test. Moreover, since
the power of the test is not affected by multiplying by a constant in QLRn,
we can standardize W (qζ , ζ)dJ(ζ) to obtain dJ̃(ζ), which is a probability
measure on ζ. Then the question of the optimal choice of both qζ and J(ζ)
reduces to the question of the optimal choice of J̃(ζ). Hence, without loss
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16 R. SONG, M. R. KOSOROK AND J. P. FINE

of generality we can replace qζ with q̃ζ . For this reason, we should choose
qζ = q̃ζ and focus on the choice of Qc

ζ(·) and J̃(·) for optimization.
The main reason we use the normal weight for Qc

ζ in this paper is to
facilitate a comparison with Andrews and Ploberger (1994). Using the nor-
mal prior with covariance matrix proportional to the efficient information
matrix also leads to a significant simplification of the representation of the
test statistics, since many terms cancel in the proof of theorem 1. However
we note that the choice of Qc

ζ(·) is not limited to the normal weight studied
in this paper, as indicated in the proof of theorem 2. More general choices
of the priors Qc

ζ(·) and J(·) merit future consideration, but this is beyond
the scope of the current paper.

The optimality of the likelihood ratio statistics with loss of identifiability
under the null for semiparametric models is of potential interest. Similar to
the likelihood ratio test under loss of identifiability with parametric models
(Andrews and Ploberger, 1994), in the semiparametric setting, the profile
likelihood ratio statistic is not of the optimal average exponential form.
It can be shown to be a limit of an average exponential test, but only if
one considers the limit as a parameter being pushed beyond an admissible
boundary, similar to Andrews and Ploberger (1995).

4.3. The distributions of the test statistics under local alternatives. To
gain insight into the power of the optimal tests in practice, it is worthwhile to
study their asymptotic distributions under local alternatives. In the follow-
ing two theorems, theorem 3 gives the asymptotic distribution for fixed local
alternatives P n

ψ0+h/
√
n+o(n−1/2),ζ1

, while theorem 4 gives the asymptotic dis-

tribution for random local alternatives
∫

dP n
ψ0+h/

√
n+o(n−1/2),ζ

dQcζ(hβ)dJ(ζ).

As shown in the theorems, the distributions depend on the form of the alter-
native, which will depend in part on the specifics of the application. These
results also usually depend on the prior distributions J(·) andQc

ζ(·), for both
fixed alternatives and random alternatives, in different manners though.

Theorem 3. Under local alternatives P n
ψ0+h/

√
n+o(n−1/2),ζ1

and as-

sumptions A–D, ELRn = EWn + op(1) = ERn + op(1) →d fχ(c), with

fχ(c) = (1 + c)−
p
2

∫

exp

[

1

2

c

1 + c
{G(θ0(ζ)) + ν?(hβ , ζ, ζ1)}′

Ĩ−1
β (θ0(ζ)) {G(θ0(ζ)) + ν?(hβ , ζ, ζ1)}

]

dJ(ζ),

where ν?(hβ , ζ, ζ1) ≡ P0 l̃β(θ0(ζ))l̃β(θ0(ζ1))
′hβ.
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OPTIMAL TESTS UNDER LOSS OF IDENTIFIABILITY 17

Now we establish the asymptotic distribution of the test statistics under
the alternative

∫

dP n
ψ0+h/

√
n+o(n−1/2),ζ

dQc1ζ (hβ)dJ(ζ):

Theorem 4. Under assumptions A–D and the local alternative
∫

dP n
ψ0+h/

√
n+o(n−1/2),ζ

dQc1ζ (hβ)dJ(ζ), ELRn = EWn+op(1) = ERn+op(1) →d

rχ(c, c1), where rχ(c, c1) is a real random variable such that its cumula-
tive distribution function Pr(rχ(c, c1) ≤ t) = P0 [1{eχ(c) ≤ t}eχ(c1)], where
eχ(·) is as defined in theorem 1, and both eχ(c) and eχ(c1) are computed
from the same realization of the process G(θ0(·)).

4.4. Monte Carlo computation and inference. Although we have obtained
the asymptotic distributions of the test statistics, these distributions gener-
ally have complicated analytic forms which depend on the values of unknown
nuisance parameters. We now introduce a weighted bootstrap method to ob-
tain the asymptotically valid critical values of eχ(c). This method does not
require explicit evaluation of the limit distribution, thereby avoiding the
numerical difficulties inherent to such evaluation.

We first generate n i.i.d. positive random variables κ1, . . . , κn, with mean
0 < µκ <∞, variance 0 < σ2

κ <∞ and with
∫∞
0

√

P (κ1 > u)du <∞. Next,
we divide each weight by the sample average of the weights κ̄, to obtain
“standardized weights” κ◦1, . . . , κ

◦
n which sum to n. For a real, measurable

function f , define the weighted empirical measure P
◦
nf ≡ n−1∑n

i=1 κ
◦
i f(Xi).

Let ψ̂◦
n(ζ) = (β̂◦n(ζ), η̂

◦
n(ζ)) denote the maximizer of l◦n(ψ, ζ) over ψ ∈ Ψ

at fixed ζ ∈ Ξ, where l◦n is obtained by replacing Pn with P
◦
n in the defi-

nition of ln. Similarly, let ψ̂◦
0(ζ) = (β̂◦0(ζ), η̂◦0(ζ)) denote the maximizer of

(l0n)
◦(ψ, ζ) over ψ ∈ Ψ at fixed ζ ∈ Ξ, where (l0n)

◦ is obtained by replac-
ing Pn with P

◦
n in the definition of l0n, the log likelihood under the null.

Now repeat the bootstrap procedure a large number of times M̃n and com-
pute the differences of the bootstrapped unrestricted MLE and restricted
MLE of β: dβ̂◦k(ζ) = β̂◦n,k(ζ) − β̂◦0,k(ζ), k = 1, ...,Mn, as processes of ζ.
Note that we are allowing the number of bootstraps to depend on n. Define

ζ 7→ µ̂n(ζ) ≡ M̃−1
n

∑M̃n
k=1 dβ̂

◦
k(ζ) and let

ζ 7→ V̂n(ζ) = M̃−1
n

M̃n
∑

k=1

(

dβ̂◦1,k(ζ) − µ̂n(ζ)
) (

dβ̂◦1,k(ζ) − µ̂n(ζ)
)′
.

To estimate critical values, we compute the standardized bootstrap test
statistics T ◦

n,k ≡ (1 + c)−
p
2×

∫

exp

[

1

2

c

1 + c

{

(

dβ̂◦1,k(ζ) − µ̂n(ζ)
)′
V̂ −1
n (ζ)

(

dβ̂◦1,k(ζ) − µ̂n(ζ)
)

}]

dJ(ζ),
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18 R. SONG, M. R. KOSOROK AND J. P. FINE

for 1 ≤ k ≤ M̃n. For a test of size α, we compare the observed test statistics
with the (1−α)th quantile of the corresponding M̃n standardized bootstrap
statistics. The reason we subtract off the mean is to ensure that we obtain a
valid approximation to the null distribution when the null hypothesis may
not be true. If not, then there may be loss of power, although the type I error
rate will still be controlled when the null is true. The proof of the bootstrap
validity can be built upon the proof of theorems 7–8 in Kosorok and Song
(2007). We omit the details.

5. Examples, continued. In this section, we study the examples intro-
duced in Section 2 to illustrate the variation in nonidentifiability settings, to
show the different ways that the full rank reparameterizations and uniformly
least-favorable submodels can be defined.

5.1. A two-component mixture model. We begin by noting that Andrews
and Ploberger (1994) is not applicable to this example since their assumption
1(f) is violated here. To be concrete, the information I(θ) for β and µ1

evaluated at the null is:

I(θ)|(β,µ1)=(0,µ0) = P





∂ log g2(θ)

∂(β, µ1)2

∣

∣

∣

∣

∣

(0,µ0)



 =

(

ρ2C11(µ0, η) ρC11(µ0, η)
ρC11(µ0, η) C11(µ0, η)

)

,

with

C11(µ0, η) = P

[

∂2 log f(µ, η)

∂µ2

∣

∣

∣

∣

∣

µ=µ0



 .

Thus I(θ) is not positive definite at any value of ρ, which is due to the fact
that µ1 and µ2 are mutually indistinguishable under the null. To account
for this, we choose ζ = (µ′

1, ρ)
′ and ψ = (β, η). In this example, ζ disappears

under the null and we may take φ(u) = u, the identity map. In contrast
with Andrews and Ploberger (1994), we are able to enlarge the “nuisance”
parameter space under the null such that the parameters in their orthogonal
space are identifiable. The identifiability of this full rank submodel permits
the use of conventional techniques for deriving optimality results, such as
Taylor expansion.

Assumption C is easily satisfied since the existence of the least favorable
submodel is self-evident for parametric models. Assumption A is true if the
information of µ and η in f(µ, η) is positive definite and continuous in µ and

η, since the efficient information Ĩβ(θ0(ζ)) = ρ2
[

C11 − C12C
−1
22 C21

]

(θ0(ζ)),
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OPTIMAL TESTS UNDER LOSS OF IDENTIFIABILITY 19

where

C11 =
∂2 log f(µ, η)

∂µ2
, C21 = C ′

12 =
∂2 log f(µ, η)

∂µ∂η
, and C22 =

∂2 log f(µ, η)

∂η2
.

The continuous differentiability of g with respect to ψ will imply the DQM
of ψ = (β′, η′)′. The proof is similar to that in Liu and Shao (2003).

5.2. An odds-rate model with right censored data. The odds-rate model
we consider in this paper posits that the hazard function has the form (1). We
define gζ(s) ≡ (1 + ζs)−1/ζ , for ζ > 0, and g0(s) ≡ limζ↓0 gζ(s) = exp(−s).
Let SZ(·) denote the survival function of T given Z, after integrating over W ,

SZ(t) becomes gζ
(

∫ t
0 e

β′Z(u)dη(u)
)

, where the cumulative baseline hazard

function η(·) is a non-negative, monotone increasing cadlag (right-continuous
with left-hand limits) function. We will argue later that assumptions A–
D can be checked under the following assumptions. The true null survival
function is unique and denoted S0. The censoring time C is independent of
T given Z and uninformative of ζ and β. Moreover, for a finite time point
τ , P01{C ≥ τ} = P01{C = τ} > 0 almost surely. ζ ∈ Ξ ≡ [0,K0] for some
known K0 < ∞. The null value β0 = 0 is an interior point of a known
compact set B0 ∈ R

p. The parameter space for η, Hη, is a Banach space
consisting of continuous and monotone increasing functions on the interval
[0, τ ] equipped with the total variation norm ‖ · ‖v. Its closed linear span is
denoted as Hη. The function η(·) ∈ Hη satisfies η(0) = 0 and η(τ) < ∞.
The covariate process Z(·) is uniformly bounded in total variation on [0, τ ]
and var[Z(0+)] is positive definite.

The true values of π ≡ (η, ζ) are not unique under the null, since the null

set Π0 contains all pairs of (η, ζ) satisfying, for t ∈ [0, τ ], (1 + ζη(t))−1/ζ =
S0(t), when ζ ∈ (0,K0]; and exp(−η(t)) = S0(t), when ζ = 0. In this
example, ζ appears both under the null and the alternative. Equivalently, for

any fixed ζ ∈ (0,K0], η0(t)(ζ) =
(

S0(t)
−ζ − 1

)

/ζ and for ζ = 0, η0(t)(ζ) =

− log(S0(t)), t ∈ [0, τ ]. Hence Π0 = {(ζ, η0(ζ)) : ζ ∈ Ξ}. Let η = φζ(η) ≡
(1 + ηζ)1/ζ − 1, for ζ > 0; and η = limζ→0 φζ(η) = exp(η) − 1. It can be
easily checked that η ∈ Hη. The following arguments reveal that the map
φζ(η) : Hη 7→ Hη satisfies assumption B.

The log likelihood function with the new parameter θ = (β, η, ζ) is

`n(θ) = Pn
[

δ {log a1(v) + (ζ − 1) log(η(v) + 1)} + β ′z(v)(6)

+(1 + δζ) log gζ

{∫ v

0
eβ

′z(s)(η(s) + 1)ζ−1dη(s)

}]

,
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20 R. SONG, M. R. KOSOROK AND J. P. FINE

where a1(·) is the derivative of η(·). We will replace a1(·) with n∆η(·) in the
sequel, since this form of the empirical log-likelihood function is asymptot-
ically equal to the true log-likelihood function.When β = 0, it is clear that
ζ vanishes since (6)=Pn{δ log ∆η(v) − (δ + 1) log(1 + η(v))}. The odds-rate
model with new parameterization ψ ≡ (β, η) is identifiable under the null,
since the null survival function S0(t|z) = (1 + η)−1 is a strictly monotone
function of η and unique.

The Gâteaux derivative of φζ(η) at η ∈ Hη exists and is obtained by
differentiating φζ(η) along the submodels t 7→ η + th. This derivative is
φ̇ζ(η)(h) ≡ ∂/∂tφζ(η + th)|t=0 = (1 + ζη)1/ζ−1h for ζ > 0 and exp(η)h for
ζ = 0.

The Gâteaux differentiability of φζ(η) pointwisely in ζ can be strength-
ened to uniform Fréchet differentiability by noticing that

lim
t↓0

sup
ζ∈Ξ

sup
‖h‖v≤r,h∈Hη

∣

∣

∣

∣

∫ 1

0

{

φ̇ζ(η + sth(ζ)) − φ̇ζ(η)
}

ds

∣

∣

∣

∣

= 0,

for any r > 0. Thus

supζ∈Ξ sup‖h‖v≤r,h∈Hη

∥

∥

∥φζ(η + h(ζ)) − φζ(η) − φ̇ζ(η)(h(ζ))
∥

∥

∥

v
/‖h(ζ)‖v = o(1),

as ‖h(ζ)‖v → 0 uniformly over ζ ∈ Ξ, which we will hereafter refer to as
“uniform Fréchet differentiability.” Since φ̇ζ(η)(h) is uniformly bounded and
Lipschitz in h, by checking the definition, we can show that φ̇ζ is one-to-one
and continuously invertible uniformly over ζ ∈ Ξ.

To define a uniformly least-favorable submodel, we calculate scores for β
and η. Let H denote the space of elements h = (h1, h2) such that h1 ∈ R

p

and h2 ∈ Hη. Consider the one-dimensional submodel defined by the map

t 7→ ψt ≡ ψ + t(h1,
∫ (·)
0 h2(u)dη(u)), h ∈ H. The derivative of log `n(ψt, ζ)

with respect to t evaluated at t = 0 yields score operators ˙̀
n(ψ, ζ)(h) ≡

( ˙̀
nβ(h1), ˙̀

nη(h2)), where

˙̀
nβ(ψ, ζ)(h1) = Pn

˙̀
β(h1)

= Pn

{

δh′1Z(X) − (1 + δζ)

∫ τ
0 h

′
1Z(u)Y (u)eβ

′Z(u)(η(u) + 1)ζ−1dη(u)

1 + ζ
∫ τ
0 h

′
1Z(u)Y (u)eβ′Z(u)(η(u) + 1)ζ−1dη(u)

}

,

and

˙̀
nη(ψ, ζ)(h2) = Pn

˙̀
η(h2)

= Pn

{∫ τ

0

(

h2(u) +
(ζ − 1)

∫ u
0 h2(s)dη(s)

η(u) + 1

)

dN(u) − (1 + δζ)×
∫ τ
0 Y (u)eβ

′Z(u)(η(u) + 1)ζ−2 [(ζ − 1)
∫ u
0 h2(s)dη(s) + h2(u)(1 + η(u))] dη(u)

1 + ζ
∫ τ
0 Y (u)eβ′Z(u)(η(u) + 1)ζ−1dη(u)

}

,
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OPTIMAL TESTS UNDER LOSS OF IDENTIFIABILITY 21

with Y (u) ≡ 1{V ≥ u}.
To obtain the information operator, we consider the two-dimensional

submodel defined by the map (s, t) 7→ ψst ≡ ψ + s(h1,
∫ (·)
0 h2(u)dη(u)) +

t(h̃1,
∫ (·)
0 h̃2(u)dη(u)), where h, h̃ ∈ H. Define H∞ = {h ∈ H : ‖h‖H < ∞}.

The information operator σθ(h) : H∞ 7→ H∞ is given by

−P0∂/∂s∂t`1(ψst)
∣

∣

∣

s,t=0
= ψ(σθ(h)). We will show σθ is one-to-one, contin-

uously invertible and onto uniformly over ζ ∈ Ξ, via part (1) of lemma 3
below for which it suffices to show that the information operator for the
original parameterization σθ is one-to-one, continuously invertible and onto
uniformly over ζ ∈ Ξ:

Lemma 3. (1) Assume φζ : Dφ ⊂ D 7→ Eψ ⊂ E is one-to-one, contin-
uously invertible and onto and ψζ : Eψ ⊂ E 7→ F is one-to-one, continuously
invertible and onto, then ψζ ◦ φζ : Dφζ

7→ F is one-to-one, continuously in-
vertible and onto. (2). Assume φζ : Dφ ⊂ D 7→ Eψ ⊂ E is uniformly Fréchet
differentiable at θ ∈ Dψ and ψζ : Eψ ⊂ E 7→ F is uniformly Fréchet differ-
entiable at φζ(θ) over ζ ∈ Ξ. Then ψζ ◦ φζ : Dφ 7→ F is uniformly Fréchet
differentiable at θ with derivative ψ ′

ζ(φζ(θ)) ◦ φ′ζ(θ).

With the same derivation of σθ, σθ : H∞ 7→ H∞ takes the form

σθ(h) =

(

σ11
θ σ12

θ

σ21
θ σ22

θ

)(

h1

h2

)

,

where

σ11
θ (h1) = −P0S(θ)

∫ τ

0
h′1Z(u)Y (u)eβ

′Z(u)dη0(u),

σ12
θ (h2) = −P0S(θ)

∫ τ

0
h2(u)Z(u)Y (u)eβ

′Z(u)dη0(u),

σ21
θ (h1) = −P0S(θ)(1 + ζη(T ∧ τ)(ζ))h′1Z(u)Y (u)eβ

′Z(u)

−ζP0S(θ)Y (u)

∫ τ

0
h′1Z(u)Y (u)eβ

′Z(u)dη0(u),

σ22
θ (h2) = −P0S(θ)(1 + ζη(T ∧ τ)(ζ))h2(u)Y (u)eβ

′Z(u)

−ζP0S(θ)Y (u)

∫ τ

0
h2(u)Y (u)eβ

′Z(u)dη0(u),

with S(θ) = −(1 + δζ)/(1 + ζη(τ))2.
All of the operators σijθ , 1 ≤ i, j ≤ 2 are uniformly compact and bounded

over ζ ∈ Ξ. With a similar argument as in Kosorok et al. (2004), the linear
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22 R. SONG, M. R. KOSOROK AND J. P. FINE

operator σθ : H∞ 7→ H∞ is one-to-one, continuously invertible and onto uni-
formly over ζ ∈ Ξ by verifying the conditions of lemma 4 below. Thus a uni-
formly least-favorable submodel for estimating β in the presence of η and ζ
is ηt(β, η, ζ) =

(

1 + (β − t)′νθ
)

dη, where νθ : R 7→ R
p is the uniformly least-

favorable direction at (β0, η, ζ) defined by h′νθ = (σ22
θ

)−1σ21
θ
h, h ∈ R

p. This
leads to `(t, β, η, ζ) = `1(β, ηt(θ), ζ). Because ηβ(β, η, ζ) = η, C1 is satis-

fied. Since ∂/∂t|t=β0`(t, β0, η0, ζ) = ˙̀
β(β0, ψ0, ζ) = ˜̀

β(ψ0, ζ), where ˜̀
β(x) =

˙̀
β− ˙̀

ηνθ is the efficient score for β, C2 is satisfied due to the continuity of the
involved functions with respect to ψ and the fact that Ξ is compact. The effi-
cient information for β is Ĩβ = P0

˜̀
β
˜̀′
β. That { ˙̀(t, ψ, ζ) : t ∈ U,ψ ∈ V, ζ ∈ Ξ}

is P0-Donsker and { ῭(t, ψ, ζ) : t ∈ U,ψ ∈ V, ζ ∈ Ξ} is P0-Glivenko-Cantelli
for some neighborhoods U and V follows from standard empirical process
arguments.

Lemma 4. Let Aζ = Tζ +Kζ : D 7→ E be a linear operator between
Banach spaces, where Tζ is onto and there exists c1 > 0, such that ‖Tζh‖ ≥
c1‖h‖ for all h ∈ D and ζ ∈ Ξ, and Kζ is uniformly compact, i.e., {ζ ∈
Ξ, ‖h‖ ≤ 1 : ∪‖h‖≤1Kζh} is compact. Then if N(Aζ) = {0} for all ζ ∈ Ξ,
then Aζ is onto and there exists c2 > 0 : ‖Aζh‖ ≥ c2‖h‖, ∀ζ ∈ Ξ and all
h ∈ D.

It follows from corollary 8.1.3 in Golub and Van Loan (1983) that the set
of eigenvalues is a continuous function of the elements of Ĩβ(θ), which are
continuous functions of ζ. The set of eigenvalues is therefore a continuous
function of ζ. Thus infζ λmin{Ĩβ(θ0(ζ))} > 0 by the compactness of Ξ, and
assumption A1 is satisfied.

To show the consistency of the restricted MLE ψ̂0 and the unrestricted

MLE ψ̂n(ζ), let θ̂β(ζ) ≡ (β, η̂β(ζ), ζ). The score function ˙̀
η(h2) is equal to

zero when evaluated at θ̂β(ζ). Since h2 in ˙̀
η(h2) is arbitrary, we can choose

h2(u) = 1{u ≤ t} and equate the resulting expression to zero, which yields

Pn

{∫ (

ζ +
1 − ζ

η(u) + 1

)

dN(u)

}

= Pn

{

(1 + δζ)
∫ τ
0 Y (u) expβ

′Z(u)(η + 1)ζ−2(ζη(u) + 1)dη

1 + ζ
∫ v
0 expβ′z(u)(η + 1)ζ−1dη

}

.

Let Q̃n,ζ ≡ Pn

{

∫

(

ζ + 1−ζ
η(u)+1

)

dN(u)
}

and define

W (u; θ) ≡ (1 + δζ)
∫ τ
0 Y (u) expβ

′Z(u)(η + 1)ζ−2(ζη(u) + 1)dη

1 + ζ
∫ v
0 expβ′z(u)(η + 1)ζ−1dη

.
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From the above arguments, η̂β(ζ) satisfies the following equation:

η̂β(ζ)(t) =

∫ t

0
{PnW (u; θ̂β(ζ))}−1dQ̃n,ζ(u).

Noting that Q̃n,ζ(·) is a monotone counting process at every fixed ζ, the
consistency of η̂0 follows from arguments similar to the proof of theorem
3 in Kosorok et al. (2004). The uniform consistency of η̂n over ζ ∈ Ξ also
follows from the continuity of `n(θ) in ζ and the fact that ( ˙̀

ψ(θ) : t ∈
[0, τ ], ψ ∈ Ψ0, ζ ∈ Ξ) is P0−Donsker, where ˙̀

ψ ≡ ( ˙̀
β , ˙̀

η) and Ψ0 is some

neighborhood of ψ0.
To verify the uniform no-bias condition (4), it suffices to show that

supζ∈Ξ ‖η̂β̃n
(ζ)−η0‖∞ = O?P0

(‖β̃n−β0‖+n−1/2), for any sequence β̃n → β0,
and ? denotes the outer expectation. By verifying conditions in lemma 5
below, we have

sup
ζ∈Ξ

(Pn − P0)
{

˙̀
ψ(β̃n, η̂β̃n

(ζ), ζ) − ˙̀
ψ(β0, η0, ζ)

}

= o?P0
(n−1/2).

Together with the fact that Pn
˙̀
ψ(β̃n, η̂β̃n

(ζ), ζ) = P0
˙̀
ψ(β0, η0, ζ) = 0, we

obtain P0

{

˙̀
ψ(β̃n, η̂β̃n

(ζ), ζ) − ˙̀
ψ(β0, η0, ζ)

}

=

P0
˙̀
ψ(β̃n, η̂β̃n

(ζ), ζ) − Pn
˙̀
ψ(β̃n, η̂β̃n

(ζ), ζ) = −(Pn − P0) ˙̀
ψ(β0, η0, ζ) + o?P0

(n−1/2),

uniformly over ζ ∈ Ξ.
Let l̇ψ(h) ≡ (l̇β(h1), l̇η(h2)) denote the score operator of ψ with the origi-

nal parameterization. It was shown in Kosorok et al. (2004) that the opera-
tor ψ 7→ l̇ψ is Fréchet differentiable with derivative ψ(σθ(h)), and it can be
strengthened to uniform Fréchet differentiablity due to the smoothness of the
involved functions. Since φζ is uniformly Fréchet differentiable, by part (2)
of lemma 3, the chain rule for uniform Fréchet differentiability, ˙̀

ψ ≡ ( ˙̀
β , ˙̀

η)

is uniformly Fréchet differentiable with derivative σφ−1
ζ

(θ) ◦ φ̇
−1
ζ (θ).

By the uniform Fréchet differentiability of ˙̀
ψ, σθ(β̃n, η̂β̃n

(ζ) − η0) =

P0

{

˙̀
ψ(β̃n, η̂β̃n

(ζ), ζ) − ˙̀
ψ(β0, η0, ζ)

}

+ oΞP0
(‖β̃n − β0‖ + ‖η̂β̃n

(ζ) − η0‖∞).

Since σθ is linear, the first term on the right-hand side is of the order

OP0(n
−1/2). It follows that supζ∈Ξ ‖η̂β̃n

(ζ)−η0‖∞ = O?P0
(‖β̃n−β0‖+n−1/2),

since σθ is uniformly continuous invertible over ζ ∈ Ξ.
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Lemma 5. Suppose that Un(ψ, ζ)(h) = Pnν(ψ, ζ)(h) and U(ψ, ζ)(h) =
Pν(ψ, ζ)(h) for given P -measurable functions ν(ψ, ζ)(h) indexed by Ψ × Ξ
and an arbitrary index set Hη. Provided ψ = ψ0, ν(ψ0, ζ)(h) = ν(ψ0)(h). If

ψ̂n(ζ) = ψ0+o
Ξ
P (1), the class of functions {ν(ψ, ζ)(h)−ν(ψ0)(h) : ‖ψ−ψ0‖ <

δ, h ∈ Hη, ζ ∈ Ξ} is P−Donsker for some δ > 0 and supζ∈Ξ,h∈Hη
P0(ν(ψ, ζ)(h)−

ν(ψ0)(h))
2 → 0, as ψ → ψ0, then supζ∈Ξ ‖√n(Un−U)(ψ̂n(ζ), ζ)−

√
n(Un−

U)(ψ0, ζ)‖ = o?P (1 +
√
n‖ψ̂n(ζ) − ψ0‖).

5.3. A change-point Cox model with current status data. In the change-
point Cox model with current status data, a test of the existence of a thresh-
old effect corresponds to a test of the null H0 : β = 0. The change-point
parameter ζ is present only under the alternative. Hence it suffices to take
φζ as the identity map.

We make the following assumptions and will argue that the assumptions
A, C and D in Section 3 can be checked under these assumptions. Given
Z, T and V are independent. Z belongs to a compact subset of R. The
change-point parameter ζ ∈ [a, b], for some known −∞ < a < b < ∞ with
Pr(Z < a) > 0 and Pr(Z > b) > 0. P (Var(Z|V )) > 0, which guarantees
that, as we will show later, the efficient information Ĩβ(θ0(ζ)) is positive
definite uniformly over ζ ∈ Ξ. The Lebesgue density of V is positive and
continuous on its support [σ, τ ] with 0 < σ < τ < ∞. The baseline hazard
function Λ is continuously differentiable at [σ, τ ], with derivative that is
bounded away from 0 and satisfies Λ0(σ) > 0, Λ0(τ) < M , for some known
M . We let HΛ denote a set of non-decreasing cadlag functions Λ on [σ, τ ]
with Λ(τ) ≤M .

The likelihood function equals (2) with fV,Z(v, z) removed, because it
can be absorbed into the underlying measure on the sample space. The
log-likelihood for a single observation log l1(θ) takes the form log l1(θ) =
δ log[1 − exp{−Λ(v) exp(rγ(z))}] − (1 − δ) exp(rγ(z))Λ(v). Define Z(ζ) ≡
(1{Z > ζ}, Z1{Z > ζ}, Z) and note that with such a data representation we
can adopt much material in the literature and hence simplify our arguments.

To define a uniformly least-favorable submodel in β, we take two steps.
For step 1, we calculate scores for ξ and Λ. The score function for ξ is
l̇ξ(x) = z(ζ)Λ(v)Q(x; θ) with

Q(x; θ) = erγ(z)

[

δ
e−e

rγ (z)Λ(v)

1 − e−e
rγ(z)Λ(v)

− (1 − δ)

]

.

The score operator for Λ along Λt = Λ+th with t ≥ 0 and h a non-decreasing

imsart-aos ver. 2007/09/18 file: idensemi16.tex date: October 1, 2007

http://biostats.bepress.com/uncbiostat/art1



OPTIMAL TESTS UNDER LOSS OF IDENTIFIABILITY 25

non-negative right continuous function, is given by

l̇Λ(h)(x) =
∂

∂t
log p(x; γ,Λt)

∣

∣

∣

∣

t=0
= h(v)Q(x; θ).

We project l̇ξ(X) onto the space generated by l̇Λ. That is, we need to find a
function h?ζ(V ) ∈ HΛ such that l̇ξ − l̇Λ(h?ζ) ⊥ l̇Λ(h), for all h ∈ HΛ, which is

equivalent to solving the least square problem Pθ‖l̇ξ − l̇Λh‖2. The solution
under the null is h?ζ(V ) ≡ Λ0(V )h??ζ (V ), where

h??ζ = P (Z(ζ)Q2(X;ψ))/P (Q2(X; θ)), which is assumed to possess a version
that is differentiable componentwise with the derivatives being bounded on
[σ, τ ] uniformly over ζ ∈ Ξ. It can be shown that Λt(θ) is indeed a hazard
function when t is sufficiently close to ξ.

The uniformly least-favorable direction for ξ is Λt(θ) = Λ+(ξ−t)′ϕ(Λ)h??ζ ◦
Λ−1

0 ◦Λ. Here ϕ is a function mapping [0,M ] into [0,∞) such that ϕ(y) = y
on [Λ0(σ),Λ0(τ)] and the function y 7→ ϕ(y)/y is Lipschitz and ϕ(y) ≤
c(min(y,M − y)) for a sufficiently large constant c. The efficient score for ξ
for this uniformly least-favorable submodel is given by:

l̃ξ(x; t, θ) =

[

z − ϕ(Λ)(v)

Λt(θ)(v)
h??ζ ◦ Λ−1

0 ◦ Λ(v)

]

Λt(θ)(v)Q(x; t,Λt(θ)).

Λ−1
0 may be extended to [0,∞) by setting Λ−1

0 (u) = σ for u ≤ Λ0(σ) and
Λ−1

0 (u) = τ for u > Λ0(τ).
For step 2, we next project l̇β(x) onto the space generated by l̃ξ. The

efficient score function for β, l̃β, is the first two coordinates of l̃ξ minus
its projection on the remaining coordinates of l̃ξ. Since l̃ξ lies in a finite-
dimensional space, the projection path has a matrix representation. The
efficient information for ξ, Ĩξ can be partitioned as a two-by-two block ma-
trix, with Ĩ11

ξ (θ) denote its first two-by-two principle submatrix, and so on.

We define ν ′θ = (1,−(Ĩ22
ξ )−1Ĩ21

ξ ), and ξt(θ) = ξ − (β − t)νθ. We also refine

Λt(θ) = Λ + (ξt(θ) − t)′ϕ(Λ)h??ζ ◦ Λ−1
0 ◦ Λ.

Now we use the uniformly least-favorable path t 7→ (ξt(θ),Λt(θ)) in the pa-
rameter space for the nuisance parameter η ≡ (α,Λ). This leads to l(t, β, α,Λ) =
log l(ξt(θ),Λt(θ)). This submodel is least favorable at (ξ0,Λ0) uniformly over

ζ ∈ Ξ since ∂/∂t
∣

∣

∣t=β0 l(t, β0, α,Λ) = ν ′θ l̃ξ, whereas ν ′θ l̃ξ = l̃β. The efficient

information matrix for β, Ĩβ = Ĩ11
ξ − Ĩ11

ξ

(

Ĩ22
ξ

)−1
Ĩ21
ξ (θ). The remainder of

assumption C4 can be verified by standard empirical process arguments.
To verify assumption A1 in section 3, it suffices to show that Ĩξ is uni-

formly positive definite over ζ ∈ Ξ, which can be achieved by checking that
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infζ∈Ξ λmin{P0(Cov(Z(ζ)|V ))} > 0. We first show that the random vector
(Z, 1{Z > ζ}, Z1{Z > ζ}) is linearly independent given V pointwisely in
ζ ∈ Ξ. Suppose that given V ,

aZ + b1{Z > ζ} + cZ1{Z > ζ} = 0,(7)

for some constants a, b and c. Our aim is to show a = b = c = 0. When Z ≤ ζ,
(7) becomes aZ1{Z ≤ ζ} = 0. Since Var(Z|V ) > 0 and P (Z ≤ ζ|V ) > 0, for
every ζ ∈ Ξ, Var(Z|Z ≤ ζ, V ) > 0, and therefore a = 0. When Z > ζ, (7)
becomes (b + cZ)1{Z > ζ} = 0. If c 6= 0, Z = −b/c, which is contradicted
with the fact that Var(Z|Z > ζ, V ) > 0. Thus we conclude that c = 0 and
b = 0 as a consequence. That P (Cov(Z(ζ)|V )) is uniformly positive definite
over ζ ∈ Ξ follows since P (Cov(Z(ζ)|V )) is a continuous function of ζ and
Ξ is compact.

The profile likelihood estimator ψ̂n(ζ) can be shown to be consistent for
(β0,Λ0) by a similar proof as used for the full maximum likelihood estimator
in Huang (1996). The following lemma shows the uniform consistency of
ψ̂n(ζ) under the null.

Lemma 6. ψ̂n(ζ) − ψ0 = oΞP0
(1).

To verify the uniform no-bias condition (4), we need the following result
about the uniform rate of convergence:

Lemma 7. Suppose that d(η, η1) : η, η1 ∈ Hη is the metric defined on
Hη, and C1, C2 and C3 are positive constants,

P0(mβ,η,ζ −mβ,η0,ζ) ≤ −C1d
2(η, η0) + C2‖β − β0‖2,(8)

P ?0 sup
β∈B,η∈Hη ,‖β−β0‖<δ,d(η,η0)<δ,ζ∈Ξ

|Gn(mβ,η,ζ −mβ,η0,ζ)| ≤ C3φn(δ),(9)

for functions φn such that δ 7→ φn(δ)/δ
α is decreasing for some α < 2 and

sets B×Hη×Ξ such that under the null Pr(β̃n ∈ B, η̂β̃n
(ζ) ∈ Hη, ζ ∈ Ξ) → 1.

Then supζ∈Ξ rnd(η̂β̃n
(ζ), η0) ≤ O?

P0
(1 + rn‖β̃n − β0‖) for any sequence of

positive numbers rn such that r2
nφn(1/rn) ≤

√
n for every n.

We apply lemma 7 with η = (α,Λ), Hη = R×HΛ, where HΛ is the closed
linear span of HΛ, d(η, η1) = ‖α− α1‖ + ‖Λ − Λ1‖2 and

mβ,η,ζ =







log
pβ,η,ζ

pβ0,η0
, if η = η0,

2 log
pβ,η,ζ+pβ0,η0

pβ0,η0
, otherwise.
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Condition (8) can be established by the Taylor expansion and the uni-
form boundedness on the derivatives of the loglikelihood. Condition (9)
can be verified using lemma 3.3 of Murphy and van der Vaart (1999), with

the choice φn(δ) = δ1/2
(

1 +Mδ−3/2/
√
n
)

, where M ≥ ‖mβ,η,ζ‖∞ is a

constant. These conditions imply that ‖α̂β̃n
(ζ) − α0‖ + ‖Λ̂β̃n

(ζ) − Λ0‖2 =

OΞ
p (‖β̃n−β0‖+n−1/3), for any sequence β̃n → 0. Now we only need to verify

P0
˙̀(β0, β0, η̂β̃n

(ζ), ζ) = oΞ
P0

(‖β̃n − β0‖ + n−1/2),(10)

which is equivalent to (4) under regularity conditions. We further decompose
(10) as (17) in Murphy and van der Vaart (2000), which could be easily
verified by the Taylor expansion and the uniform boundedness on the first
and second derivatives of the loglikelihood.

It is not difficult to see that {pξ,Λ(ζ)} is differentiable in quadratic mean
at (ψ0, ζ) with respect to the set of directions {ξ0 + th1,Λ0 + th2}, where
h1 ∈ R

3, and h2 is a non-decreasing non-negative right continuous function.

Remark 3. In the Cox model with current status data, the cumula-
tive hazard function Λ is estimable at the n1/3 rate. In the Cox model with
threshold covariates for right censored data, the MLE of the change-point
parameter converges with rate n. It can be shown that the MLE of the pa-
rameters in the change-point Cox model with current status data have three
different convergence rates. While this interesting phenomenon merits future
research, we note that it does not restrict the optimality results here, since
estimation of ζ is unnecessary under the null. The key condition for the op-
timality results to hold is that the convergence rate of the baseline cumulative
hazard function as a process in ζ under the null is sufficiently fast to permit
the expansion of the profile likelihood, uniformly in ζ.

6. Proofs. Proof of lemma 1. Since φ̇ζ is linear, continuously invert-
ible and one-to-one, the tangent set for η and η are identical. By the chain
rule, ˙̀

η(γ) = l̇ηφ̇
−1
ζ (γ) for any γ in the tangent set of η. The efficient score

for β with the parameter (β, η, ζ) is: l̃β(β, η, ζ) = (I − l̇η(l̇
?
ηlη)

−1 l̇?η)l̇β(ψ, ζ)

and with the parameter (β, η, ζ) is: (I − ˙̀
η( ˙̀?

η`η)
−1 ˙̀?

η)
˙̀
β(ψ, ζ). The efficient

score function is invariant under such reparameterizations since

I − ˙̀
η( ˙̀?

η`η)
−1 ˙̀?

η(ψ, ζ) = I − l̇ηφ̇
−1
ζ (φ̇−1?

ζ l̇?η l̇ηφ̇
−1
ζ )−1φ̇?ζ l̇

?
η(ψ, ζ)

= I − l̇ηφ̇
−1
ζ φ̇ζ(l̇

?
η l̇η)

−1φ̇?ζ(φ̇
?
ζ)

−1 l̇?η(ψ, ζ) = I − l̇η(l̇
?
ηlη)

−1 l̇?η(ψ, ζ),

and ˙̀
β(ψ, ζ) = l̇β(ψ, ζ). That the efficient information matrix is invariant

under reparameterizations thus follows from its definition. �
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Proof of lemma 2. It suffices to show that under the full rank repa-
rameterization, for any random sequence β̃n →P0 β0,

log p`n(β̃n, ζ) = log p`n(β0, ζ) + n(β̃n − β0)
′
Pn

˜̀
β(ψ0, ζ)(11)

−1

2
n(β̃n − β0)

′Ĩβ(ψ0, ζ)(β̂n − β0) + oΞ
P0

(
√
n‖β̃n − β0‖ + 1)2.

By assumption C2, C4 and the dominated convergence theorem, for every
(t̃, β̃, η̃) − (β0, β0, η0) → 0, we have P0( ˙̀(t̃, β̃, η̃, ζ) − ˜̀

β(ψ0, ζ))
2 = oΞ(1).

Similarly, we have P0
῭(t̃, β̃, η̃, ζ) − P0

῭(β0, β0, η0, ζ) = oΞ(1). The derivative
of the function t 7→ log `(t, ψ0, ζ) satisfies P0

῭(β0, ψ0, ζ) = −Ĩβ(ψ0, ζ). These
facts, together with the empirical process conditions, imply that for every
random sequence (t̃, β̃, η̃) → (β0, β0, η0), Gn

˙̀(t̃, β̃, η̃)−Gn
˜̀
β(ψ0, ζ) = oΞ

P0
(1)

and Pn
῭(t̃, β̃, η̃, ζ)+Ĩβ(ψ0, ζ) = oΞ

P0
(1). The subsequent steps of the proof are

similar to those used in the proof of theorem 1 in Murphy and van der Vaart
(2000). �

Proof of theorem 1. The proof takes several steps. We first show the
asymptotic equivalence of these statistics, which is summarized in lemma 8
below. With a small abuse of notation, let PLRn ≡
∫

pln(β + h/
√
n, ζ)dQc

ζ(h)dJ(ζ)/pln(β0, ζ). It is the profile likelihood ratio
of the alternative over the null and it can be approximated by

PLRn ≡
∫

exp

{

1

2
βn(θ0(ζ))

′Ĩβ(θ0(ζ))βn(θ0(ζ))
}

×
∫

exp

{

−1

2
(βn(θ0(ζ)) − h)′Ĩβ(θ0(ζ))(βn(θ0(ζ)) − h)

}

dQcζ(h)dJ(ζ),

with the linear statistic βn(θ0(ζ)) ≡
√
nĨ−1

β (θ0(ζ))Pnl̃β(θ0(ζ)). An approxi-

mate exponential Wald statistic EW n is defined as

EWn = (1 + c)−
p
2

∫

exp

(

1

2

c

1 + c
Wn(ζ)

)

dJ(ζ),

where W n(ζ) = βn(θ0(ζ))
′Ĩβ(θ0(ζ))βn(θ0(ζ)).

Now we show the asymptotic distribution of these tests under the null hy-

pothesis. Assume without loss of generality that β̂n and ψ̂n take their values
in U and V as defined in assumption C4, respectively. Following lemma 3.2 in

Murphy and van der Vaart (1997), we have Gn( ˙̀(β̂n, ψ̂n, ζ)− ˜̀
β(ψ0, ζ)) →P0

0. Thus ˜̀
β(ψ0, ζ) = l̃β(θ0(ζ)) is P0−Donsker as a class indexed by ζ ∈ Ξ and

EW n →d eχ(c) by the continuous mapping theorem. Lemma 8 below then
gives the desired results of theorem 1. �
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Lemma 8. Under the null hypothesis and assumptions A–D, (1) PLRn−
PLRn →P0 0, (2) PLRn = EWn, (3) EWn − EWn →P0 0, (4) EWn −
ERn →P0 0 and (5) ERn −ELRn →P0 0.

Proof of lemma 8. For notational simplicity, let βn = βn(θ0(ζ)) and
Ĩ0 = Ĩβ(θ0(ζ)).

We first show (1). For 0 < M <∞, define

PLRn(M) =

∫

ζ∈Ξ

∫

‖h‖≤M
pln

(

β0 + h/
√
n, ζ

)

dQcζ(h)dJ(ζ)/pln(β0, ζ),

and

PLRn(M) =

∫

ζ∈Ξ
exp

(

1

2
β
′
nĨββn

)

×
∫

‖h‖≤M
exp

(

−1

2
(βn − h)′Ĩ0(βn − h)

)

dQcζ(h)dJ(ζ).

Note that for any M > 0,

|PLRn − PLRn| ≤ |PLRn − PLRn(M)| + |PLRn(M) − PLRn(M)|
+|PLRn − PLRn(M)|.

Hence it suffices to show that (i) |PLRn − PLRn(M)| →P0 0, (ii) |PLRn −
PLRn(M)| →P0 0 and (iii) |PLRn(M) − PLRn(M)| →P0 0, as n→ ∞ and
∀M : 0 < M <∞. To show (i), for any ε > 0,

Pr(|PLRn − PLRn(M)| > ε) ≤ ε−1P0|PLRn − PLRn(M)|

= ε−1P

∫

ζ∈Ξ

∫

‖h‖>M

pln(β0 + h/
√
n, ζ)

pln(β0, ζ)
dQcζ(h)dJ(ζ)(12)

≤ ε−1P

∫

ζ∈Ξ

∫

‖h‖>M

pln(β̂n(ζ), ζ)

pln(β0, ζ)
dQcζ(h)dJ(ζ)(13)

→ ε−1P

∫

ζ∈Ξ

∫

‖h‖>M
(1 + op(1))dQ

c
ζ (h)dJ(ζ)(14)

= ε−1
∫

ζ∈Ξ

∫

‖h‖>M
dQcζ(h)dJ(ζ) + o(1),(15)

where (12) uses assumption C and (13) holds by definition of the profile
likelihood. (14) holds by assumption C3 and lemma 2. (15) holds by Fubini’s
theorem. The right hand side of (15) can be made arbitrarily small for all n
by taking M large enough, since Qc

ζ is a uniformly tight measure.
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For (ii), we have

∣

∣

∣PLRn − PLRn(M)
∣

∣

∣(16)

=

∫

ζ∈Ξ
exp

(

1

2
Pnl̃β(θ0(ζ))

′Ĩ−1
0 Pnl̃β(θ0(ζ))

)

×
∫

‖h‖>M
exp

(

−1

2
(βn − h)′Ĩ0(βn − h)

)

dQcζ(h)dJ(ζ)

≤ exp

(

1

2
sup
ζ∈Ξ

‖Pnl̃β(θ0(ζ))‖2 sup
ζ∈Ξ

‖Ĩ−1
0 ‖

)

×
∫

ζ∈Ξ

∫

‖h‖>M
dQcζ(h)dJ(ζ).

In the inequality, ‖Pnl̃β(θ0(ζ))‖2 = OΞ
P0

(1) follows from assumption C4.

The fact that ‖Ĩ−1
0 ‖ = OΞ

P0
(1) follows from assumption A. The last term

∫

ζ∈Ξ

∫

‖h‖>M dQcζ(h)dJ(ζ) → 0, as M → ∞. Hence (16)=op(1), as M → ∞.

Now we show (iii). For contiguous sequences β0 + h/
√
n →P0 β0 and

‖h‖ ≤ M , lemma 2 yields the following expansion of the profile likelihood
under the null:

log pln(β0 + h/
√
n, ζ) = log pln(β0, ζ) +

√
nh′Pnl̃β(θ0(ζ)) −

1

2
h′Ĩ0h+ oΞ

P0
(1)

=
1

2
β
′
nĨ0βn −

1

2
(βn − h)′Ĩ0(βn − h) + oΞ

P0
(1),

therefore,

PLRn(M) =

∫∫

‖h‖≤M

(

pln(β0 + h/
√
n, ζ) − pln(β0, ζ)

)

dQcζ(h)dJ(ζ)

=

∫∫

‖h‖≤M
exp

(

1

2
β
′
nĨ0βn −

1

2
(βn − h)′Ĩ0(βn − h) + oΞ

p (1)

)

dQcζ(h)dJ(ζ)

= PLRn(M) + op(1),

where the last equality follows from PLRn(M) = Op(1), by arguments anal-
ogous to those used in (16) above. The proof for part (1) is now completed.

For part (2), since h ∼ Qc
ζ = N(0, cĨ−1

0 ),

PLRn =

∫

ζ∈Ξ
ξn(ζ)dJ(ζ),
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with

ξn(ζ) =

∫

exp

(

1

2
β
′
nĨ0βn −

1

2
(βn − h)′Ĩ0(βn − h)

)

dQcζ(h)

= (2π)−p/2det1/2(Ĩ0/c)

×
∫

exp

[

1

2

{

β
′
nĨ0βn − (h− βn)

′Ĩ0(h− βn) −
h′Ĩ0h
c

}]

dh

= (2π)−p/2det1/2(Ĩ0/c)

×
∫

exp

[

1

2

{

c

1 + c
β
′
nĨ0βn − (h− c

1 + c
βn)

′ 1 + c

c
Ĩ0(h− c

1 + c
βn)

}]

dh

= (1 + c)−p/2 exp

(

1

2

c

1 + c
β
′
nĨ0βn

)

,

where the last equality holds by integrating out a normal density.
For part (3), it follows from lemma 2 and assumption C3 that

√
n‖β̂n(ζ)−

β0‖ = OΞ
P0

(1), and reapplication of lemma 2 and the argmax theorem yields√
n(β̂n(ζ)−β0) = Ĩβ(θ0(ζ))

−1√nPnĨβ(θ0(ζ))+ oΞ
P0

(1). Part (3) now follows.
For the proof of part (4) and part (5), it suffices to show that Wn(ζ) −

Rn(ζ) = oΞ
P0

(1) and Rn(ζ) − LRn(ζ) = oΞ
P0

(1). These results follow from
Donsker properties and standard arguments. We omit the details. The proof
of lemma 8 is thus completed. �

Proof of corollary 1. The proof is similar to the proof of theorem 1.
We omit the details. �

Proof of corollary 2. The proof follows the same lines as the proof
of part (2)(iii) of lemma 8, with

(17)

W (qζ , ζ) = (2π)−p/2det1/2
(

1 + c

c
Ĩ0

)

×
∫

exp

[

−1 + c

2c
(λ− c

1 + c
βn)

′Ĩ0(λ− c

1 + c
βn) − λ′〈qζ − q̃ζ , P l̇

?
η l̇η(qζ − q̃ζ)

′〉ηλ
]

dλ,

where 〈·, ·〉η is the inner product defined on Hη, and W (qζ , ζ) ≤ 1 since
〈qζ − q̃ζ , P l̇

?
η l̇η(qζ − q̃ζ)

′〉η is nonnegative definite. �
Before giving the proof of theorem 2, we need the following lemma:

Lemma 9. Under assumptions A–D, for any 0 < c < ∞ and any
ζ ∈ Ξ, the densities `n(ψ0+h/

√
n, ζ) and

∫

`n(ψ0+h/
√
n, ζ)dQc

ζ(h)dJ(ζ) are

contiguous to the densities l0n. As a consequence, the results of lemma 8 still
hold under local alternatives {Pψ0+h/

√
n,ζ} and {

∫

Pψ0+h/
√
n,ζdQ

c
ζ(h)dJ(ζ)}.

imsart-aos ver. 2007/09/18 file: idensemi16.tex date: October 1, 2007

Hosted by The Berkeley Electronic Press



32 R. SONG, M. R. KOSOROK AND J. P. FINE

Proof of lemma 9. Assumption D implies that a LAN (local asymptotic
normal) expansion for the log-likelihood ratio holds immediately by lemma
3.10.11 of van der Vaart and Wellner (1996):

Λnζ ≡ log

(

dP n
ψ0+h/

√
n,ζ

dP nψ0,ζ

)

=
1√
n

n
∑

i=1

Aζh(Xi) −
1

2
‖Aζh‖2 + oP0(1).

It follows from LAN that Λnζ →d Wζ , whereWζ ∼ N(−1/2‖Aζh‖2, ‖Aζh‖2),
under P0. Therefore, under P0,

exp(Λnζ) ≡
dP n

ψ0+h/
√
n,ζ

dP n0
→d expWζ .

P0(exp(Wζ)) = 1, using the formula for the moment generating function of
the normal distribution. By Le Cam’s first lemma (van der Vaart, 1996, page
88), we conclude that the sequences of probability measures {Pψ0+h/

√
n,ζ}

and {P0} are contiguous, for every ζ ∈ Ξ. Consequently the convergence
in probability that hold under P0 also hold under {Pψ0+h/

√
n,ζ} and vice-

versa. Similarly, since P (eχ) = 1 using the formula for the moment gen-
erating function of the χ2 distribution, we conclude that the sequences
{
∫

P n
ψ0+h/

√
n,ζ
dQcζ(h)dJ(ζ)} and P n0 are contiguous. �

Proof of Theorem 2. We define a
√
n-neighborhood of β0 as a col-

lection of sequences βn(hβ) = β0 + hβ/
√
n + o(n−1/2), for hβ ∈ R

p. A
√
n

neighborhood of η is similarly defined as ηn(hη) = η + hη/
√
n + o(n−1/2),

for hη ∈ Hη. With a small abuse of notation, a local form of the hypotheses
can be written as:

H0 : ψ = ψ0 vs. H1 : ψ = ψ0 + h1/
√
n,(18)

where h1 ∈ R
p ×Hη which takes the value (hβ1, hη1), with hη1 = q̃′ζhβ1. We

note that the least favorable direction q̃ζ is invariant under the choice of φζ
in assumption B, and thus the contiguous alternative H1 is also invariant
under the choice of φζ .

Define

LRn ≡
∫

`n
(

ψ0 + h1/
√
n, ζ

)

dQcζ(hβ1)dJ(ζ)

`0n
.(19)

A test defined by LRn is

γ̃n =











1, if LRn > k̃αn,

λ̃n, if LRn = k̃αn,

0, if LRn < k̃αn,
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where k̃αn > 0, λ̃n ∈ [0, 1] are constants such that the rejection probability is
α under the null. For notational simplicity, let P n

1 =
∫

P n
ψ0+h1/

√
n,ζ
dQcζ(hβ1)dJ(ζ).

By the Neyman-Pearson lemma, for all n ≥ 1 and any test φn with level α,
with a small abuse of notation,

lim
n→∞

∫

φn

{∫

`n(ψ0 + h1/
√
n, ζ)dQc

ζ(hβ1)dJ(ζ)

}

dP n1(20)

≤ lim
n→∞

∫

γ̃n

{
∫

`n(ψ0 + h1/
√
n, ζ)dQc

ζ(hβ1)dJ(ζ)

}

dP n1

= lim
n→∞

∫

I(LRn > k̃αn)

{∫

`n(ψ0 + h1/
√
n, ζ)dQc

ζ(hβ1)dJ(ζ)

}

dP n1(21)

= lim
n→∞

∫ {∫

I(LRn > k̃αn)dP
n
ψ0+h1/

√
n,ζ

}

dQcζ(hβ1)dJ(ζ)(22)

= lim
n→∞

∫ {∫

I(PLRn > k̃αn)dP
n
ψ0+h1/

√
n,ζ

}

dQcζ(hβ1)dJ(ζ)(23)

= lim
n→∞

∫ {∫

I(EWn > k̃αn)dP
n
ψ0+h1/

√
n,ζ

}

dQcζ(hβ1)dJ(ζ),(24)

where (21) follows since LRn has an absolutely continuous asymptotic dis-
tribution under the contiguous alternative H1 and (22) follows by Fubini’s
theorem. (23) follows since PLRn − LRn = oP (1) under H1, which can be
established at the end of the proof. (24) follows from lemma 9. The results
for ERn and ELRn also follow from lemma 9. By Fubini’s theorem, we ob-

tain lim supn→∞
∫

{

φn(P
n
ψ0+h1/

√
n,ζ

)
}

dQcζ(hβ1)dJ(ζ) ≤
limn→∞

∫

{

∫

I(EWn > k̃αn)dP n
ψ0+h1/

√
n,ζ

}

dQcζ(hβ1)dJ(ζ), which implies that

the proposed tests have the greatest weighted average power asymptotically
in the class of all tests of asymptotic significance level α, against the alter-
native P n

ψ0+h/
√
n,ζ

.

To show PLRn − LRn = oP (1) under H1, it suffices to show PLRn −
LRn = oP (1) under the null by lemma 9. Define LRn(M) ≡
∫

ζ∈Ξ

∫

‖h‖≤M `n
(

ψ0 + h1/
√
n, ζ

)

dQcζ(h)dJ(ζ)/`n(ψ0, ζ), note that ∀M : 0 <

M <∞, |PLRn−LRn| ≤ |PLRn−PLRn(M)|+ |PLRn(M)−LRn(M)|+
|LRn−LRn(M)|. Hence it suffices to show that (i) |PLRn−PLRn(M)| →P0

0, (ii) |LRn − LRn(M)| →P0 0 and (iii) |PLRn(M) − LRn(M)| →P0 0,
as n → ∞. Part (i) was shown in lemma (8). Part (ii) can be similarly
established by taking M large enough and applying assumption A.

To show part (iii), we take a Taylor expansion of log `n
(

ψ0 + h1/
√
n, ζ

)

at

(ψ0, ζ) with respect to hβ along the direction q̃ζ , which leads to the following
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expansion in the least favorable submodel:

log `n(ψ0 +
h1√
n
, ζ) = log `n(ψ0, ζ) +

√
nh′β1Pn

˙̀(β0, ψ0, ζ) +
1

2
h′β1Pn

῭(β̃, ψ̃, ζ)hβ1.

On the right-hand side, we can replace Pn
˙̀(β0, ψ0, ζ) by Pn

˙̀
β(ψ0, ζ)+o

Ξ
P0

(1),

and Pn
῭(β̃, ψ̃, ζ) by −Ĩβ(ψ0, ζ)+ oΞ

P0
(1), according assumption C2. Compar-

ing the above display and lemma 2 with β̃n ≡ hβ1/
√
n, we obtain part (iii).

�

Proof of theorem 3. The equivalence of the three tests under local
alternatives is shown in lemma 9. To show their asymptotic distribution,
a key step is to establish that βn converges under P n

ψ0+h/
√
n,ζ1

in distri-

bution to the process ζ 7→ G(θ0(ζ)) + ν?(hβ , ζ, ζ1), where ν?(hβ , ζ, ζ1) ≡
P0 l̃β(θ0(ζ))l̃β(θ0(ζ1))

′hβ, by theorem 3.10.12 in van der Vaart and Wellner
(1996). The result follows by lemma 9 and the continuous mapping theo-
rem. �

Proof of theorem 4. The equivalence of the three tests under local
alternatives is shown in lemma 9. Since the sequences of densities

∫

`n(ψ0 +
h/

√
n, ζ)dQc1

ζ (h)dJ(ζ) are contiguous to the density l0n, we have



ELRn,

∫

dP n
ψ0+h/

√
n,ζ
dQc1ζ (h)dJ(ζ)

dP n0



 d (eχ(c), eχ(c1)) ,

under P0. Then ELRn →d rχ(c, c1) under
∫

dP n
ψ0+h/

√
n,ζ
dQc1ζ (h)dJ(ζ), by

Le Cam’s third lemma. �
Proof of lemma 3. For part (1), it suffices to note that

‖ψ̇ζ(φζ(θ))(φ̇ζ(θ)(h))‖ ≥ c1‖φ̇ζ(θ)(h)‖ ≥ c1c2‖h‖. For part (2), we note
that, ψζ ◦ φζ(θ + th) − ψζ ◦ φζ(θ) = ψζ(φζ(θ) + tkt) − ψζ(φζ(θ)), where
kt = {φζ(θ+ th)−φζ(θ)}/t. So we rewrite the uniform Fréchet difference as
ψζ(φζ(θ+h))(·)−ψζ(φζ(θ))(·) = ψ̇ζ(φζ(θ))(φζ(θ+h)−φζ(θ)) + oΞ(‖φζ(θ+
h) − φζ(θ)‖) = ψ̇ζ(φζ(θ))ψ̇ζ(θ)(h) + oΞ(‖h‖). �

Proof of lemma 4. Since for an arbitrary random sequence ζn, T
−1
ζn

is

continuous, the operator T−1
ζn
K : E 7→ D is compact. Hence I + T−1

ζn
Kζn is

one-to-one and therefore also onto be a result of Riesz for compact operators.
Thus Tζn +Kζn is also onto. We will be done if we can show that I+T −1

ζn
Kζn

is continuously invertible, since that would imply that (Tζn + Kζn)−1 =
(I + T−1

ζn
Kζn)−1T−1

ζn
is bounded. The remainder of the proof follows the

proof of lemma 6.17 in Kosorok (To appear). �
Proof of lemma 5. This is a “uniform” version of lemma 3.3.5 in van

der Vaart and Wellner (1996). Let Ψδ ≡ {ψ : ‖ψ − ψ0‖ < δ} and define an
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extraction function f : `∞(Ψδ×Ξ×Hη)×Ψδ 7→ `∞(Hη×Ξ) as f(z, ψ, ζ)(h) ≡
z(ψ, ζ, h), where z ∈ `∞(Ψδ ×Hη ×Ξ). Since f is continuous at every point
(z, ψ1, ζ), we have suph∈Hη,ζ∈Ξ |z(ψ, ζ, h)−z(ψ1 , ζ, h)| → 0 as ψ → ψ1. Define
the stochastic process Zn(ψ, ζ, h) ≡ Gn(ν(ψ, ζ)(h)−ν(ψ0, ζ)(h)) indexed by
Ψδ × Ξ × Hη. By assumption, Zn converges weakly in `∞(Ψδ × Ξ × Hη)
to a tight Gaussian process Z0 with continuous sample paths with respect
to the metric ρζ defined by ρ2

ζ((ψ1, ζ, h1), (ψ2, ζ, h2)) = P (ν(ψ1, ζ)(h1) −
ν(ψ0, ζ)(h1) − ν(ψ2, ζ)(h2) + ν(θ0, ζ)(h2))

2, at fixed ζ. Since as assumed,
suph∈Hη ,ζ∈Ξ ρζ((ψ, h), (ψ0 , h)) → 0, we have that f is continuous at almost
all sample paths of Z0 uniformly over ζ ∈ Ξ. The result now follows by
Slutksy’s theorem and the continuous mapping theorem. �

Proof of lemma 6. Let F = exp(−Λ) denote the survival probability
function. The likelihood as a function of (γ, F ) can be formed as pζ(ξ, F ;x) =
p11{z ≤ ζ} + p21{z > ζ}, where

p1 = δ(1 − F (v)exp(αz)) + (1 − δ)F (v)exp(αz),

and

p2 = δ(1 − F (v)exp(β1+(α+β2)z)) + (1 − δ)F (v)exp(β1+(α+β2)z).

Let 0 < α < 1 be a fixed constant. If (ξ, F ) 6= (ξ0, F0), then by concavity of
the function u→ log u, and by Jensen’s inequality,

P

{

log

[

1 + α

(

pζ(ξ, F ;X)

p0(ξ, F ;X)
− 1

)]}

< 0.

It follows from the continuity of the left-hand-side quantity in ζ and the
compactness of Ξ that

sup
ζ∈Ξ

P

{

log

[

1 + α

(

pζ(ξ, F ;X)

p0(ξ, F ;X)
− 1

)]}

< 0.

Meanwhile, we notice that for any arbitrary, possibly random sequence {ζn},

nPn

{

log

[

1 + α

(

pζn(ξ̂n(ζn), ζn, F̂n(ζn);X)

p0(ξ0, F0;X)
− 1

)]}

≥ 0.

Using a minor adaptation of the Wald type argument used in the proof of
theorem 3.2 in Huang (1996), we can show that ξ̂n(ζn) − ξ0 = oP0(1) and
supv∈[σ,τ ] |F̂ (ζn) − F0| = oP0(1). The assertion of lemma 6 follows from the
arbitrariness of the sequence ζn and Slutsky’s theorem. �
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Proof of lemma 7. For each n ∈ N, j ∈ Z and M > 0, define “peels”
Sn,j,M =

{

(β, η, ζ) ∈ B ×Hη × Ξ : 2j−1 < rnd(η, η0) ≤ 2j ,

‖β − β0‖ ≤ 2−Md(η, η0)
}

. The event
{

β̃n ∈ B, η̂β̃n
(ζ) ∈ Hη, ζ ∈ Ξ,

rnd(η̂β̃n
(ζ), η0) ≥ 2M (1 + rn‖β̃n − β0‖)

}

is contained in one of the peels
{

(β̃n, η̂β̃n
(ζ), ζ) ∈ Sn,j,M

}

over j ≥ M . By the definition of η̂β̃n
(ζ), the

variable sup(β,η,ζ)∈Sn,j,M
Pn(mβ,η,ζ − mβ,η0,ζ) is non-negative on the event

{

(β̃n, η̂βn(ζ), ζ) ∈ Sn,j,M
}

. We conclude that for any possibly random se-

quence ζn,

P ?
(

rnd(η̂β̃n
(ζn), η0) ≥ 2M (1 + rn‖β̃n − β0‖), β̃n ∈ B, η̂β̃n

(ζn) ∈ Hη, ζn ∈ Ξ
)

≤
∑

j≥M
P ?( sup

(β,η,ζ)∈Sj,n,M

Pn(mβ,η,ζ −mβ,η0,ζ) ≥ 0).

The remainder of the proof is a straightforward adaptation of the proof of
theorem 3.2 given in Murphy and van der Vaart (1999), which details we
omit. �
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