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A Model Based Background Adjustment for

Oligonucleotide Expression Arrays
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Abstract

High density oligonucleotide expression arrays are widely used in many areas of biomed-

ical research. Affymetrix GeneChip arrays are the most popular. In the Affymetrix system, a

fair amount of further pre-processing and data reduction occurs following the image processing
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step. Statistical procedures developed by academic groups have been successful at improving

the default algorithms provided by the Affymetrix system. In this paper we present a solution

to one of the pre-processing steps, background adjustment, based on a formal statistical frame-

work. Our solution greatly improves the performance of the technology in various practical

applications.

These arrays use short oligonucleotides to probe for genes in an RNA sample. Typically

each gene will be represented by 11-20 pairs of oligonucleotide probes. The first component

of these pairs is referred to as a perfect match probe and is designed to hybridize only with

transcripts from the intended gene (specific hybridization). However, hybridization by other

sequences (non-specific hybridization) is unavoidable. Furthermore, hybridization strengths

are measured by a scanner that introduces optical noise. Therefore, the observed intensities

need to be adjusted to give accurate measurements of specific hybridization. We have found

that the default adhoc adjustment, provided as part of the Affymetrix system, can be improved

via the use of estimators derived from a statistical model that uses probe sequence information.

A final step in pre-processing is to summarize the probe-level data for each gene to define a

measure of expression that represents the amount of the corresponding mRNA species. In this

paper we illustrate the practical consequences of not adjusting appropriately for the presence

of non-specific hybridization and provide a solution based on our background adjustment pro-

cedure. Software that computes our adjustment is available as part of the Bioconductor project

(http://www.bioconductor.org).

2

http://biostats.bepress.com/jhubiostat/paper1



1 Introduction

Affymetrix GeneChip arrays are the most popular high density oligonucleotide expression arrays

and are used by thousands of researchers worldwide. To probe genes, oligonucleotides of length

25 base pairs are used. Typically, the mRNA sequence of a gene is represented by a probe set

composed of 11-20 probe pairs. Each probe pair is composed of a perfect match (PM) probe, a

25-base DNA copy of a section of the mRNA sequence of interest, and a mismatch (MM) probe,

that is created by changing the middle (13th) base of the PM probe with the intention of measuring

non-specific binding (NSB). See the Affymetrix Microarray Suite User Guide for details.

After RNA samples are prepared, labeled and hybridized with arrays, these are scanned and

images are produced and processed to obtain an intensity value for each probe. These intensities

represent the amount of hybridization for each oligonucleotide probe. However, part of the hy-

bridization is non-specific and the intensities are affected by optical noise. Therefore, the observed

intensities need to be adjusted to give accurate measurements of specific hybridization. In this pa-

per, we refer to the part of the observed intensity due to optical noise and non-specific hybridization

as background noise. The default background noise adjustment, provided as part of the Affymetrix

system, is based on the difference PM−MM.

A final step is to combine the 11-20 probe pair intensities, after background adjustment and

normalization, for a given gene to define a measure of expression. Various alternatives algorithms

motivated by statistical models have been proposed that outperform the default algorithm in many

applications, see for example Li and Wong (2001) . Irizarry et al. (2003a) find that the PM−MM

transformation results in expression estimates with exaggerated variance. They propose a back-

ground adjustment step that ignores the MM intensities. This approach sacrifices some accuracy

3

Hosted by The Berkeley Electronic Press



for large gains in precision. The resulting algorithm, the robust multi-array analysis (RMA), has

become a popular alternative to the default algorithm provided by Affymetrix. In this paper we

demonstrate that the loss of accuracy mentioned above is due to inappropriate adjustment for the

presence of non-specific hybridization.

Data from our own experiments, molecular biology theory, and publicly available data sets

were used to develop a statistical model that describes background noise. An empirical Bayes

procedure motivated by this model results in a background adjustment procedure that improves

existing approaches. In Section 2 we describe why background adjustment is important and present

the data we generated to motivate the model. In Section 3 we introduce our model of the stochastic

structure of the oligonucleotide array data. In section 4 we describe the practical applications. In

Section 5 we show how our method provides an improvement to users of the Affymetrix GeneChip

technology. In Section 6 we briefly describe the software we have developed to implement our

methodology. Finally, in Section 7 we discuss our findings.

2 Motivation

The Affymetrix spike-in study1 is a subset of the data used to develop and validate the MAS 5.0

expression measure algorithm, Affymetrix’s current default (Affymetrix, 2002). For this experi-

ment, human cRNA fragments matching 16 probe-sets on one of the Affymetrix human chips, the

HGU95A GeneChip, were added to a hybridization mixture at concentrations ranging from 0 to

1024 picoMolar in a design similar to a Latin square. Apart from the spiked-in probe-sets, the

same RNA mixture was hybridized to 59 arrays. Because we know the spike-in concentrations, it
1Available from: http://www.affymetrix.com/analysis/download_center2.affx
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is possible to identify statistical features of the data for which the expected outcome is known in

advance. This experiment is described in detail by, for example, Irizarry et al. (2003b).

Figure 1a shows a typical density estimate of PM intensities obtained from 14 normalized

arrays from the Affymetrix spike-in experiment. For these 14 arrays the spike-in concentrations,

ranging from 0 to 1024, appear exactly 16 times and exactly once for each spike-in probeset. The

arrays were normalized using quantile normalization (Bolstad et al., 2003) and then the geometric

averages of PM intensities for each spike-in concentration were computed. These averages are

shown with arrows in Figure 1a and plotted against their intended or nominal concentrations in

Figure 1b. The presence of background noise is clear from the fact that the minimum PM intensity

is not 0 and that the geometric mean of the probesets with no spike-in is around 200 units.
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Figure 1: a) The solid lines is a density estimator of quantile normalized PM intensities. We only
show the (55,800) range in the x-axis for illustrative purposes. The PM values are as high as 20000.
The dotted lines are from a log-normal distribution representing background noise. The arrows
denote the geometric means of the PM intensities of probes with the same nominal concentrations.
The concentrations (in picoMolar) are shown at the top of the arrows. b) Geometric mean of
observed concentrations plotted against nominal concentrations. The mean was computed for the
concentration groups with 0, 1/4, 1/2, 1, 2, 4, and 8 picoMolar. The solid line represent a regression
line fitted to the data. c) Same as Figure a) but the x and y axis are now in the log-scale.

By using the log-scale transformation before analyzing microarray data, investigators have, im-

plicitly or explicitly, assumed a multiplicative measurement error model (Dudoit et al., 2002; New-

ton et al., 2001; Kerr et al., 2000; Wolfinger et al., 2001). The fact, seen in Figure 1, that observed
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intensity increases linearly with concentration in the original scale but not in the log-scale suggests

that background noise is additive with non-zero mean. Durbin et al. (2002), Huber et al. (2002),

Cui, Kerr, and Churchill (2003), and Irizarry et al. (2003a) have proposed additive-background-

multiplicative-measurement-error (ABME) models for intensities read from microarray scanners.

Figures 1 supports this view.

2.1 Previous work

Affymetrix’s first attempt at an expression measure (MAS 4.0) used the transformation PM−MM

to adjust for non-specific binding and background noise. In general, MM ≥ PM for about 1/3 of

the probes on any given array (Irizarry et al., 2003a) which results in negative adjusted intensity

values. This results in two obvious problem: 1) we can not use the log transformation to account

for the multiplicative measurement error and 2) expression measures based on averages of the

adjusted intensities are negative for about 5% of the probesets. This is in part due to the fact that

the MM are somewhat sensitive to targets probed by their PM counterpart, i.e. they detect specific

signal (Irizarry et al., 2003a). In the most recent version of their software, MAS 5.0, Affymetrix

defines PM−MM∗, with MM∗ a “tweaked” version of MM used to avoid adjusted values less than

or equal to 0. A robust average of the log transformed adjusted PM defines the MAS 5.0 expression

measure (Affymetrix, 2002).

Li and Wong (2001) were the first to propose model-based expression measures. They ob-

served a very strong probe effect in that PM−MM values, the need for non-linear normalization,

and the advantages of using multi-array summaries for detection and removal of outliers. These

three observation were used in the development of RMA and other popular expression measures.
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Although, the expression measure presented in this paper make use of Li and Wong’s discoveries,

we find the ABME model is a more appropriate stochastic assumption than the one made by Li and

Wong (2001). We base our approach on the model proposed by, for example, Durbin et al. (2002).

Using replicate array data, Irizarry et al. (2003b) showed that the across-replicate MAS 5.0

log expression measure standard deviation was an order of magnitude higher for probe-sets with

low intensities than for probe-sets with large intensities. Under our proposed model, presented

in Section 3, one can show that the variance of log(PM−MM∗) is roughly proportional to the

reciprocal of the true amount of RNA. This is consistent with empirical results. Non-specific

hybridization is likely to make PM−MM∗ a less biased estimate of a quantity proportional to

the true amount of RNA than PM, but log(PM−MM∗) will generally have larger variance than

log(PM), especially when the true amount of RNA is small.

The background adjustment step in RMA ignores the MM. An additive background plus spe-

cific signal with multiplicative error is proposed. They assume the specific signal follows an expo-

nential distribution and that the background noise follows a normal distribution. After a data-driven

ad-hoc procedure is used to estimate model parameters the conditional expectation of the specific

signal given the observed intensity results in a closed form transformation which provides a practi-

cal solution to background adjustment. Irizarry et al. (2003a, 2003b) demonstrate, using data from

spike-in and dilution experiments, that RMA outperforms other popular expression measures, in-

cluding MAS 5.0, in various practical tasks. However, as demonstrated in Section 5, by only

performing a global background adjustment, RMA does not adjust well for non-specific binding,

resulting in attenuated correlations between nominal and observed concentrations.
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2.2 Practical Considerations

One of the most popular applications of microarray technology is the identification of genes that

are differentially expressed. A common parameter of interest is fold-change. Notice in Figure 1c

that, on average, the observed fold-change between probes spiked-in at 0.25 and 0.50 picoMolar

is approximately 1 when it should be 2. Comparisons between the higher concentrations, 4 and

8 picoMolar, for example, have observed fold changes closer to what is expected. To see how

this is related to background, say that true expression values in two samples being compared are

µ1 and µ2 picoMolar. Ideally we should observe a fold change of µ1/µ2. In practice, we observe

intensities PM1 ≈ kµ1 + B1 and PM2 ≈ kµ2 + B2, with B1 and B2 representing background noise

and k a constant to account for the change in units. Because the B’s are strictly positive and,

after normalization, roughly the same, the observed fold changes of the non-background-corrected

values are smaller than expected. This bias will be more pronounced for smaller values of µ1 and

µ2, as observed in Figure 1c.

Receiver operator characteristic curves presented in Irizarry et al. (2003b) demonstrate that

RMA outperforms MAS 5.0 when using large absolute value of observed log fold change to define

differential expression. However, as pointed out by Irizarry et al. (2003b), fold-change estimates

obtained with RMA are less accurate (attenuated) than those obtained with MAS 5.0. In Section

5 demonstrate that our proposed background adjustment results in an expression almost as precise

as RMA and as accurate as MAS 5.0.
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2.3 Data

There have been attempts at using sequence information to predict non-specific binding (Zhang

et al., 2003). These are based on deterministic models. To build appropriate stochastic models

to describe how mismatch probes measure non-specific binding we have carried out three exper-

iments. First, we obtained RNA from human embryonic kidney derived cells to create a control

sample. We also used genomic DNA from yeast to create a hybridization mixture with DNA

molecules non-specific to transcripts synthesized on human arrays. The processing of the sample

was done following Affymetrix specifications with specific variations depending on the sample

content. Three samples were prepared to study different aspects of background noise: 1) Unla-

beled - In this sample RNA control from human embryonic kidney derived cells was not labeled,

but the cocktail was created as described above, using 15 µg of amplified cRNA. Because the RNA

was not labeled, the observed intensities for this hybridization will represent optical noise in the

presence of biological sample. 2) No RNA - In this sample hybridization cocktail was hybridized

with no RNA. As for the previous sample the observed intensities for this hybridization will repre-

sent optical noise in the absence of biological sample. 3) NSB - Yeast control RNA was hybridized

to an array probing for human genes. This hybridization will represent the full component of the

noise, non-specific binding (NSB) and optical noise. Data from the spike-in experiment, where ar-

rays were hybridized to labeled human RNA as described in the introduction, will represent typical

experiments where optical, NSB and specific hybridization components are all present.

Figure 2a shows a quantile-quantile plot comparing the log intensities, read from the array

hybridized to the unlabeled sample, to a normal distribution. The no RNA sample data looks almost

identical (data not shown). Notice that the distribution of optical noise is well approximated by a
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log normal distribution. Notice also that the mean, on the log-scale, translates to an intensity of

about 32 and that on the log-scale the variance is only about 0.1.

Figure 2b shows a scatter plot of the log intensities of PM,MM pairs in the NSB data. The PM

and MM have been adjusted for optical noise as described in Section 4.2. This plot suggests that

probe-pair NSB noise follow a bivariate log-normal distribution. The density of PM log intensities

stratified by values of MM shown in Figure 2c corroborate this assertion. Notice that the log-

scale variance of the log(PM) in each strata is roughly constant (it is actually increasing slightly)

and about 1, much larger than for optical noise. In Section 2.4 we describe how probe sequence

information can be used to describe some of the variation seen in NSB.

Figure 2d shows a log frequency versus log(rank) plot for the intensities read from an array

hybridized with labeled human RNA. This figure shows that when specific binding occurs the

distribution has a “fat-tail”. To some extent the data appear to follow a power law.

2.4 Probe sequence and affinity

The physical system producing probe intensities is a complicated one. Theoretical predictions of

non-specific bindings based solely on sequence are unlikely to be as successful as empirical ones.

Affymetrix technology implements an empirical approach by including MM probes and using

the observed intensities to adjust for background noise. However, as mentioned above, empirical

evidence suggests that simply subtracting MMs is a sub-optimal strategy. In this paper we develop

a method and estimation procedures useful for background adjustment. In this Section we describe

how probe sequence information can be used to motivate a useful model.

In traditional hybridizations (such as Southern blots) performed at moderate or low stringency,
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Figure 2: a) Normal quantile-quantile plot of observed log intensities from an array hybridized
to the mixture with no label. b) Optical noise adjusted log2(PM) intensity plotted against optical
noise adjusted log2(MM) intensity. c) Densities of optical noise adjusted log2(PM) intensity within
selected strata of log2(MM) intensity. d) Log-frequency versus log(rank) plot for the intensities
from a typical array hybridized to human RNA.

non-specific hybridization background is often observed to be due to partial nucleic acid homology

between two single strands with imperfect complementarity. This problem is closely related to the

base composition of the nucleic acid molecules. G/C in sequence lead to stronger hybridization

because each G-C pair forms three hydrogen bonds whereas each A-T pair forms two. On the other

hand, bases U and C are labeled in amplified RNA in the above described labeling protocol, which

appears to impede binding (Naef and Magnasco, 2003)

Naef and Magnasco (2003) propose a solution useful for predicting specific hybridization ef-

fects with base composition of the probes. Probe affinity is modeled as a sum of position-dependent
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base effects:

α =
25

∑
k=1

∑
j∈{A,T,G,C}

µ j,k1bk= j with µ j,k =
3

∑
l=0

β j,lk
l, (1)

where k = 1, . . . ,25 indicates the position along the probe, j indicates the base letter, bk represents

the base at position k, 1bk= j is an indicator function that is 1 when the k-th base is of type j and 0

otherwise, and µ j,k represents the contribution to affinity of base j in position k. For fixed j, the

effect µ j,k is assumed to be a polynomial of degree 3. The model is fitted to log intensities from

many arrays using least squares (Naef and Magnasco, 2003).

We adapt this idea to help describe the NSB component. We fit (1) to our NSB experiment log

intensity data using a spline with 5 degrees of freedom instead of a polynomial of degree 3. The

least squares estimates µ̂ j,k are shown in Figure 3. This Figure is similar to Figure 3 in Naef and

Magnasco (2003). In Section 3 we use these affinity estimates to describe NSB noise.

Zhang et al (Zhang et al., 2003) propose using a positional-dependent-nearest-neighbor (PDNN)

model which is based on hybridization theory. This model takes into account interactions between

bases that are physically close. However, Naef and Magnasco (2003) demonstrate that these in-

teractions do not add much predictive power for specific signal probe effects. Similar results for

prediction of NSB are found in Wu and Irizarry (2004). Figure 4 shows background adjusted

log2(PM) against α for the NSB data. Notice the affinities predict NSB quite well. Almost as

well as the MM intensities. The advantage of the affinities over the MM is that they will not detect

signal since they are pre-computed numbers.
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Figure 3: The effect of base A in position k, µA,k, is plotted against k. Similarly for the other three
bases.

3 Background Model

In this section we propose a statistical model that motivates useful background adjustments. For

any particular probe-pair we assume that:

PM = OPM +NPM +S (2)

MM = OMM +NMM +φS.

Here O represents optical noise, N represents NSB noise and S is a quantity proportional to RNA

expression (the quantity of interest). The parameter 0 < φ < 1 accounts for the fact that for

some probe-pairs the MM detects signal. We assume O follows a log-normal distribution and

that log(NPM) and log(NMM) follow a bivariate-normal distribution with means of µPM and µMM

and the variance var[log(NPM] = var[log(NMM)]≡ σ2 and correlation ρ constant across probes. We

assume µPM ≡ h(αPM) and µMM ≡ h(αMM), with h a smooth (almost linear) function and the αs

defined by (1). Because we do not expect NSB to be affected by optics we assume O and N are
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Figure 4: a) Optical noise adjusted log2(PM) intensity plotted against affinity for NSB data. The
solid line is a linear fit. b) Optical noise adjusted log2(MM) intensity plotted against affinity for
data from a typical array hybridized to human RNA. The solid line is a loess fit.

independent. Our exploratory plots support these assumptions.

The parameters µPM, µMM, ρ, and σ2 can be estimated from data. The large amount of data

results in very precise estimate of these parameters. A background adjustment procedure can then

be formalized as the statistical problem of predicting S given that we observed PM and MM and

assuming we know h, ρ, σ2 and φ.

4 Application

4.1 Background Adjustment

In this Section we define a new version of RMA that uses background adjustment procedures

motivated by (2) to improve accuracy. The normalization and summarization steps are kept the

same. We use the acronym GC-RMA to denote the resulting expression measure. To facilitate

the calculations of useful adjustments we make two assumptions that are worth mentioning: The
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first assumption is that φ is 0. Although we know φ > 0, in Section 5 we demonstrate that this

assumption does not have a significant impact on bottom-line results. The second assumption is

that O is an array-dependent constant.

4.1.1 Maximum Likelihood Estimate

Under the above described assumptions, the maximum likelihood estimate (MLE) of S can be

easily shown to be PM−O− N̂PM if PM− N̂PM > m, m otherwise. with N̂PM ≡ exp{ρ log(MM−

O)+µPM−ρµMM− (1−ρ2)σ2} and m the minimum value we allow for S, typically m = 0. To get

a numeric value of N̂ we can use plug-in estimators of ρ, h and σ2 described in Section 4.2.

This adjustment provides an intuitive result. Instead of subtracting MM as an adjustment, we

subtract a shrunken MM quantity that has been corrected for its affinity. The MM is shrunken

toward the mean of the probes with similar affinity levels and the amount of shrinkage depends

on the correlation between PM and MM. The shrinking is performed in the log scale which, in

practice, helps protect against extremely large values of MM resulting from the multiplicative

error structure.

Although the MLE provides transformations with desirable properties, it is not necessarily

a practical solution if one is interested in a task such as detecting genes that are differentially

expressed. As mentioned, one of the most important application of microarray technology is es-

timating fold-change of expression. In this case, instead of maximizing a marginal likelihood, a

more appropriate estimate is obtained from minimizing the mean squared error (MSE):

E[{log(S̃/S)}2 1{S>0} |PM,MM ]. (3)

Not all genes are expressed in a typical cell. Thus, we expect S = 0 for some probesets. If one
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is eventually going to consider fold-change, via log-ratios, as the quantity of practical interest,

excluding cases for which S = 0 from the loss function becomes important.

There are many strategies that could be devised to define appropriate estimates based on mini-

mizing (3). For example, we could increase the value of m to reduce the MSE. We have found that

decreasing and increasing m yields estimates with better accuracy and precision respectively. An

empirical-Bayes-type approach is described in the next section.

4.1.2 Empirical Bayes Estimate

A practical and simple solution is provided by an empirical-Bayes-type approach. In this case we

treat S as a random variable which implies minimizing (3) is equivalent to minimizing

E[{log(S̃/S)}2 |S > 0, PM,MM ]. (4)

Thus the solution is the posterior mean estimate: s̃ = E[s |S > 0,PM,MM], with s ≡ log(S). Here,

the random variable S represents a quantity proportional to the concentration of transcripts in

the hybridization mixture that are compliments to a randomly chosen PM. Assuming S is in-

dependent from N and O and with a prior distribution of s, f (s), the posterior mean can be writ-

ten as s̃ =
∫ a
−∞ w(PM,n) log{PM−O− exp(n)}dn/

∫ a
−∞ w(PM,n) with a = log(PM−O−m),

w(PM,n) depending on the prior f and the quantities µ∗ = ρ(log(MM− Ô)− µMM) + µPM and

σ∗ =
√

1−ρ2σ. The value m is the smallest value of S with positive probability. Although not as

simple as the MLE, s̃ provide an intuitive result: it is a weighted average, over all possible back-

ground values n, of log{PM−O− exp(n)} with values near µ∗ (a shrunken MM) receiving larger

weights and the spread of the weights depending on σ∗. As expected, values of s that are more

likely to occur get more weight (equations not shown).
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Imposing a uniform distribution U [m, log(216)] (216 is the scanner maximum) is a convenient

way of specifying a heavy-tailed prior distribution for S. In Section 5 using the uniform prior

provides useful results. Just like for the MLE, we consider m to be a tuning parameter. However,

users may decide to use priors appropriate for their application.

4.2 Plug-in Estimates for Model Parameters

Affymetrix arrays typically have over 100000 probe pair intensities. These can be used to get stable

and precise estimates of the parameters ρ, µPM, µMM, and σ2. Because the variance in optical noise

is ignorable when compared to that of the NSB, we treat O as constant and estimate it with the

minimum intensity observed each array. We define Ô = min{min j PM j,min j MM j}− 1 with j

indexing all probe pairs. We subtract 1 to avoid negatives when adjusting by subtracting Ô. For

estimating µPM,µMM and σ2 we fit a loess curve to the log(MM− Ô) versus αMM scatter plot, as

seen in Figure 4b, to obtain an estimate ĥ of the function h. We can then use this fit to estimate

µPM and µMM with µ̂PM = ĥ(αPM) and µ̂MM = ĥ(αMM). The correlation between log(BPM) and

log(BMM) should not change from array to array. For this reason we obtain an estimate from the

NSB of ρ̂ = 0.7 data and use it throughout.

4.3 Unified Model

We have used model (2) to perform background adjustment. To obtain expression measures from

probe level data two more steps are involved: normalization and summarization. A potential prob-

lem with this three-step approach is that the stability of the expression measure is obtained by

combining information from all arrays in a given experiment and thus all measures of expression
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for a given gene become correlated across experimental units. This makes obtaining reliable esti-

mates of uncertainty difficult. However, a multi-array versions of our model motivates a method

that performs background adjustment, normalization, and summarization as part of the estimation

procedure. Using this approach one can compute standard error estimates that account for the three

steps.

For example, if we were comparing gene expression across different conditions, each contain-

ing various arrays, we could write the following model based on (2):

Ygi j = Ogi j +Ngi j +Sgi j (5)

= Ogi j + exp(µgi j + εgi j)+ exp(sg +δgXi +agi j +bi +ξgi j). (6)

Here Ygi j is the PM intensity for the probe j in probeset g on array i, εgi j is a normally distributed

error that account for NSB for the same probe behaving differently in different arrays, sg repre-

sents the baseline log expression level for probeset g, agi j represents the signal detecting ability

of probe j in gene g on array i, bi is a term used to describe the need for normalization, ξgi j is a

normally distributed term that accounts for the multiplicative error, and δg is the expected differ-

ential expression for every unit difference in covariate X . Notice δg is the parameter of interest. As

described by Naef and Magnasco (2003) ag j is a function of α.

With this model in place one may obtain point estimates and standard errors for δg using, say,

the MLE. With appropriate priors in place one could also obtain Bayesian estimates. However, both

these approaches are computationally difficult. In Figure 5 we present some preliminary results

obtained using generalized estimating equations to estimate δ. A difficulty with this approach is

that when Sgi j = 0 in (5) then (6) is not defined. However, preliminary results look promising and

making this approach useful in practice is the subject of current research.
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Figure 5: Estimated differential expression δ̂g plotted against average log expression level. The
data comes from a typical pair of triplicate from the spike-in experiments where the nominal fold-
changes for the spiked-in genes are 2. Short horizontal bars are plotted at three times the estimate
of standard error of δ̂g. The spiked-in genes are are shown in circles. Stars denote the non-
differentially expressed genes with estimated δ̂g beyond three times standard error.

5 Results

5.1 Simulation

To assess the performance of the four discussed background adjustments we performed a simula-

tion. We generated data using models (2) and (6). We selected log2 expression levels 0,1, . . . ,12

for log2(S) for ease of computation. We chose values for the background parameters based on

estimates observed in practice. Specifically, we used µPM = µMM = 4.6 and εPM
g j and εMM

g j bivari-

ate normal with mean 0, variance 1, and correlation 0.88. For each level of S we simulated 320

probe-pairs (g = 1, . . . ,20, j = 1, . . . ,16) and for each probe on each of 250 array (i = 1, . . . ,250)

we generated IID e ∼ Normal (0,.08) so that εPM
gi j = εPM

g j + ePM
gi j and similarly εMM

gi j = εMM
g j + eMM

gi j .

We used these simulated values to create the PM and MM intensities.

Figure 6 shows assessments of accuracy and precision. To assess accuracy we show the average

adjusted log intensity for each value of log2(S) plotted against the true s. Notice that, as expected,
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the RMA adjustment is the most biased for small values of log2(S). MAS 5.0 and the MLE adjust-

ment perform similarly. The empirical Bayes adjustment is less biased than the RMA adjustment

but appears to over correct a bit in the 4 < s < 6 range. In terms of precision the RMA adjustment

is the best. The empirical Bayes adjustment has much better precision than MAS 5.0 and the MLE

for s < 6. For s > 6 all procedures have roughly the same precision. The results presented in Figure

6 are consistent with what is observed with real data, shown in the next Section.
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Figure 6: a) Average, over 250 simulated replicate arrays, adjusted probe log intensity plotted
against “true” s values. The identity line is also shown. b) Standard deviation across 250 simulated
replicate arrays of log-scale intensities plotted against “true” s values.

5.2 Detecting Differentially Expressed Genes

In this section we assess our background adjustment procedure using bottom line results of special

scientific interest obtained on real data. Both accuracy and precision are discussed. We use 28

arrays from the spike-in data described in Section 2. The 28 arrays were chosen so that array and

probe-set effects were balanced with respect to concentration. We computed expression measures

for these 28 arrays using MAS 5.0, RMA, and GC-RMA. We will sometimes refer to the expression
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values obtained as observed RNA concentrations.

For Figure 7 the observed log (base 2) concentration for each concentration group were aver-

aged and plotted against their respective nominal log (base 2) concentration. Ideally, if the nominal

concentration doubles, so should the observed concentration, and we should see a line with slope

1. We can see in Figure 7 that the empirical Bayes versions of GC-RMA outperform MAS 5.0

which in turn outperforms RMA.
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Figure 7: a) Average observed log2 intensity plotted against nominal log2 concentration for each
spiked-in probeset for all 28 arrays from the Affymetrix spike-in experiment. b) For each non-
spiked-in probeset we calculate the mean log expression and the observed log-scale standard de-
viation across all 28 arrays. The resulting scatter-plot is smoothed to generate a single curve
representing mean standard deviation as a function of mean log expression.

Figure 7 also shows smooth functions fitted to the scatter plot of the standard deviation (SD)

versus the average of the observed log concentration for each gene across the 28 replicate arrays.

These plots show that in terms of precision, RMA and the empirical GC-RMA and RMA outper-

form MAS 5.0. For genes with over-all low expression RMA and the empirical Bayes GC-RMA

are considerably better than MAS 5.0.

Table 1 shows the local slopes, observed in Figure 7, which represent the expected observed
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Table 1: For concentration groups that differ by a multiple of 2 the local slope is computed. Notice
that local slope is simply the difference between groups in average log observed concentration.
The last three lines are versions of GCRMA. The column headers define what two concentration
groups are being compared.

Method 0.50
0.25

1
0.5

2
1

4
2

8
4

16
8

32
16

64
32

128
64

256
128

512
256

1024
512

MAS 5.0 0.87 0.55 0.7 0.77 0.82 0.8 0.8 0.76 0.65 0.57 0.31 0.28
RMA 0.28 0.3 0.51 0.62 0.73 0.73 0.79 0.76 0.63 0.55 0.4 0.27

EB 0.42 0.44 0.83 1.08 1.37 1.09 1.09 0.85 0.68 0.6 0.43 0.32
MLE 0.58 0.45 0.7 0.79 0.82 0.84 0.85 0.76 0.64 0.56 0.4 0.32

PM-only EB 0.29 0.41 0.8 1.08 1.27 1.24 1.25 0.87 0.71 0.58 0.39 0.37

Table 2: As Table 1 but the local slopes are converted to local ranks out of 12626.
Method 0.50

0.25
1

0.5
2
1

4
2

8
4

16
8

32
16

64
32

128
64

256
128

512
256

1024
512

MAS 5.0 1737 2644 2147 1963 1855 1888 1907 1978 2287 2555 3781 3992
RMA 430 296 14 4 2 2 1 2 4 9 77 451

EB 148 126 2 1 1 1 1 2 8 21 136 451
MLE 253 456 149 100 89 81 78 116 189 274 599 882

PM-only EB 372 71 3 1 1 1 1 2 4 11 100 133

log fold-change for probesets with true fold-change of 1 as a function of the total nominal probeset

concentration in the two samples being compared. RMA does considerably worse for the lower

concentrations than for the higher. GC-RMA is generally more accurate than MAS 5.0, and MAS

5.0 is more accurate than RMA. To get a bottom-line result we can compute the expected percentile

of a gene with a true-fold change of 2, at a particular nominal concentration, when compared to

non-differentially expressed genes. Notice that the ideal is a percentile of 100%. To put this in the

context of microarray applications we translate the percentiles to the rank among 12625 genes and

present these in Table 2. The distribution of fold-changes for non-differentially expressed genes

was obtained empirically, i.e. using the 28 replicate arrays. Notice that for high concentrations

RMA performs best. For lower concentration, the empirical Bayes version of GC-RMA works

best.
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6 Software

Clearly the technology being proposed here relies on efficient access to probe-level sequence data.

Since there are many different types of chips the software should be modular with respect to chip

type. It is also evident that there are many other potential uses for probe-level sequence data so a

second guiding software design principle is to ensure that the data are readily available for other

uses. The matchprobes software package (Huber and Gentleman, 2004) has been created for this

purpose. A package specifically for the computation of the empirical Bayes and MLE background

procedures is also available. This package together with the affy package (Irizarry et al., 2003b) can

be used to compute expression measures using these background adjustment. All these components

are available as part of the Bioconductor project (http://www.bioconductor.org).

7 Discussion

We have presented a statistical model for background noise in Affymetrix GeneChip arrays. Our

model takes advantage of sequence information to appropriately describe NSB variation. Estima-

tion procedures motivated by the model result in practical adjustment that improves the over-all

sensitivity and specificity of the current default methods. Figure 8 presents log fold change versus

average log concentration (MA) plots demonstrating this.

A known problem with our approach is that we assume φ = 0 in (2). However, Table 1 demon-

strates that the attenuation effect of subtracting MM is not large. The last row in Tables 1 and 2

shows the results obtained using an empirical Bayes approach that ignores the MM. As expected,

this PM-only GC-RMA performs better for highly expressed genes (less attenuation) but a bit
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c) GC−RMA (EB)

Figure 8: The MA plot shows log fold change as a function of mean log expression level. A set
of 14 arrays representing a single experiment from the Affymetrix spike-in data are used for this
plot. A total of 13 sets of fold changes are generated by comparing the first array in the set to each
of the others. Genes are symbolized by numbers representing the nominal log2 fold change for the
gene. Non-differentially expressed genes with observed fold changes larger than 2 are plotted in
different color. All other probesets are represented with black dots. The smooth lines are 3SDs
away with SD depending on log expression.

worse for low expressed genes. However, the differences are minor. Because this expression mea-

sure uses the MM only to estimate the µPM we need only, say, about 1000 MM probes covering the

range of α. This implies Affymetrix could manufacture an array for almost half the price (1000

MM instead of 100000+) and provide expression measures just as accurate as with current arrays.

We predict that Affymetrix will stop using paired MM in the not-so distant future.

Two other minor problems with our approach are that 1) we assume the variance σ2 is inde-

pendent of α and 2) the attenuation observed for higher probes, predicted by adsorption models

(Naef et al., 2001), is not accounted for by our model. Future work is to run experiments to study

the attenuation and incorporate this appropriately into our model.
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