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Inference for Proportional Mean Residual Life
Model 1n the Presence of Censoring

Ying Q. Chen and Nicholas P. Jewell

Abstract

As a function of time t, mean residual life is defined as remaining life expectancy
of a subject given its survival to t. It plays an important role in many research
areas to characterise stochastic behavior of survival over time. Similar to the
Cox proportional hazard model, the proportional mean residual life model were
proposed in statistical literature to study association between the mean residual
life and individual subject’s explanatory covariates. In this article, we will study
this model and develop appropriate inference procedures in presence of censor-
ing. Numerical studies including simulation and real data analysis are presented
as well.



1 INTRODUCTION

Time-to-event data or survival data have been collected and studied in many research areas
for decades. Although the full length of well-defined survival time is always of interest to
study, the residual life time of a subject at time ¢, which is the remaining survival time given
the subject surviving up to ¢, is also important to study in areas such as industrial reliability,

demography and life insurance.

In statistical literature, the most important function regarding to the residual life is mean

residual life:

m(t) = E(T —t|T > 1)

for t > 0, where T' is the survival time, a nonnegative real-value random variable (Chiang,
1960). That is, the mean residual life is the remaining life expectancy given survival to ¢.

For a comprehensive review of previous research on this function, readers are refereed to

Guess & Proschan (1988) and Csorgé & Zitikis (1996).

To evaluate the association between the mean residual life and its covariates 7, the

proportional mean residual life model is proposed (Oakes & Dasu, 1990; Zahedi, 1991):
m(t|Z) = mo(t) exp(B7), (1)

where m(:|Z) is the mean residual life of p—vector covariate Z, mg(t) is some unknown
baseline mean residual life of covariate Z = 0, and § € B C R? is parameter. Here the

superscript T' denotes vector transpose.

Model (1) is closely related to the accelerated failure time model (Kalbfleisch & Prentice,
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1980):
logT =377 + ¢, (2)

where €’s are 1.i.d. random errors with an unspecified distribution. To see this, let £ = 0 in
model (1), then
log E(T|Z) = logm(t = 0|Z) = log mg(0) + BT Z.

Although FE(logT|7Z) and log F(T'|7) are not necessarily identical by the Jensen’s Inequality,
careful choice of the baseline mean residual life in (1) and the distribution of € in (2) would
lead to identical models. Given the conditions for validity of mo(t) in Hall & Wellner (1981),

the proof in Appendix 1 shows that

PROPOSITION 1. Suppose that there is a sequence of constants {dy }12° .. such that mo(t) =

k=—c0

+ oo

k=—0c0

model of (1) and the accelerated failure time model of (2) coincide if and only if mo(t) is

dit* on [0,to] for some big enough to > 0. Then the proportional mean residual life

constant.

Model (1) is also related to the proportional hazards model (Cox, 1972). As noticed
in Meilijson (1972), the hazard function of the forward recurrence time, V, say, in the

equilibrium renewal processes formed by T’s is the reciprocal of the mean residual life of T
(Cox, 1962, p. 27) . Thus,

A (tZ) = Aoo(t) exp(=412), (3)
where A, () stands for hazard function of the forward recurrence time at a fixed time for
equilibrium renewal process that has the same underlying distribution as 7. As shown in
Oakes & Dasu (1990, Theorem 2) and Gupta & Kirmani (1998, Theorems 2.1 & 2.2), the

sufficient and necessary condition for which the proportional mean residual life model and

the proportional hazards model coincide is that when mg(t) is linear in ¢. In conjunction
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with Proposition 1, it is true that the afore-mentioned three models are identical if and only

if the underlying distribution of 7' is exponential.

Although inference on the parameters in model (1) was briefly discussed in Zahedi (1991),
it is mainly maximum likelihood method for complete survival data when the baseline mean
residual life is parametric. Elegant approaches by Magulari and Zhang (1994) utilized the
relationship in (3) when the baseline mean residual life is unknown, but they are restricted
to the situation when survival times are not censored. In practice, however, survival data
collected for analysis often involves censoring, when the complete survival time is not fully
observable. In this article, we will propose appropriate inference procedures in presence of
censoring. Details are elaborated in §2. Numerical studies including Monte-Carlo simulation
and actual data analysis are in §3. Some remarks are in §4. Technical proofs are collected

in Appendices.

2 INFERENCE PROCEDURES IN PRESENCE OF CENSORING

Let C' be the potential censoring time. Conditional on Z, T" and C' are assumed to be inde-
pendent. Suppose that the observed data set consist of n independent triplets of (X;, A;, Z;),
where X; = min(7;,C;), A; = I(T; < C;) for i = 1,2,...,n. Here , I(+) is the indicator
function taking the value of 1 if the condition is satisfied and 0 otherwise. In addition, C;

are assumed to be homogeneous and follow the survival function of F.(-).

When there is no censoring, the approach in §3.2 of Magulari and Zhang (1994) provides

a way to estimate the parameters in model (1). Specifically, they first noticed that the
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forward recurrence time V of covariate Z has survival function:

E{(T = )*|2}
mo(1) exp(ATZ)

where (T — ¢)* denotes (T — t)I(T > t). And for complete V, the partial score estimating

Su(t12) = B{I(V > )| 2} =

equation based on the proportional hazards model (3) is:

. = dE,(1) =0, (4)
E{exp(=pT2)I(V > 1)}

where Fv() is an appropriate estimator of the distribution function F(-) of V. Therefore,

with replacement of I(V > t) with an appropriate estimator, an estimating equation of (3

based on T is

£(2) - /“ B{Zexp(=2"2)(T =)'} Efexp(-8"2)I(T > 1)} 5
o E{exp(~28T2)(T —1)*}  Efexp(-BTZ)T}

Therefore, by replacing E with its respective empirical estimator, an estimating function

was proposed as

e, [ Ziexp(=28TZ)(T = O S exp(=BTZ)I(T; > 1)
! ;Z” o Sesp(2ATZNT D Sexp(LATZ)T

(6)

Asymptotic results regarding to estimator B in (6) were derived as well.

However, when censoring presents, T; are not always observable but potentially censored.
That is, (X;, A;) are often observed, instead. Then equation (6) needs to be modified to

accommodate such potential censoring. It is not difficult to see that, for any well-defined

)

E <E {%E{[(Q > Ti)}‘ ZTD = E{H(T,, Z;,1)}.

function of H(X;, Z;, 1),

i e G e e
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Therefore, if let H(X;, Z;,t) = Z;, H(X;,t) = (X; — )T and H(X;,t) = I[(X; > 1), we will

have
o) - H
p{ S - a0
and

{%}:E{[(Tiztﬂw

respectively. So, it is natural to further replace Z;, (T;—¢)* and I(T; > ¢) with ZZ'AZ'{FC(XZ')}_I,
(X; —t)"'Ai{Fc(Xi)}_l and 1(X; > t)Ai{Fc(Xi)}_l in equation (6), respectively, where FL()
is an appropriate estimator of F.(-), such as its Kaplan-Meier estimator. Then the resulting

estimating function denoted as U(f3) is

U =0 Y

i=1 FC(XZ')
[T i Ziexp(=28"Z;)(X; — t)+Az'{AFc(Xz’)}"l 2iexp(=BTZ)1(X; > t)AAi{Fc(Xi)}_ldt'
o do;exp(=2BTZ)(X; — )T A{F(Xi)}! 22 exp(=BTZ) Xi A Fo(Xi) } !
-1 - AZ 7. 7
- {ZZ ZZ(B,FC)}
where
75 F):/Oo 3, Ziexp(—QﬁTZi)(Xi—t)+Ai{AFc(Xi)}‘1‘ exp(—BTZ)I(X; > L)t |
ST o Yiexp(<287Z)(Xe — F AL (X} nt Y exp(— BT Z) XA F(Xi)} !

A

Denote (3 the solution to U(3) = 0.

Using a martingale representation of the Kaplan-Meier estimator £ (Fleming & Har-

rington, 1991, p. 97), some straightforward algebraic manipulation with the functional

Hosted by The Berkeley Electronic Press



Delta-method shows that

>

A; A; A FU(Xy) - FC(XZ')
x) )

(xRN R(X)  RX
A L= [OANI(XG > ) Fy(t—) dM;(t)
o ]Z:/o Fo(Xi)

>

F.(X)) F.(t) Ba(t)’
where
t
M]‘(t) == [(X] S t,A]‘ == 0) —/ [(X] Z S)d/\c(s),

0

and
B,(t)=n"" Y I(X; > t) = B(t).
=1

Here A. = —log(1 — F.) is the cumulative hazard function of the censoring times. Denote

F.(t) the filtration generated by the o-algebras
o{l(C; <s),s <t (T <), Zi(u),0 <u<oo,i=1,2,...,n}.

Then {M;(t),j = 1,2,...,n} are martingales with respect to the filtration F.. Therefore,

according to the Law of Large Numbers, it is also true that U(3) — u(3), where

W8 = B | gtz - 20,5

[P B{Zexp(—28"2)(T — 0%} Blexp(—52)I(T > 1)}
-2 / Blesp(—20T2)(T — )%} Elep(_@T0)T} "

and u(fy) = 0. Here [y is the true value of parameter 3. According to Proposition 1 in
Maguluri and Zhang (1994), it is known that u'(3y) is negative definite. Therefore, u(3y) =0

implies that B is consistent and unique in the neighbourhood of (.

To obtain a large-sample approximation of the distribution of B, a Taylor expansion shows
that nl/Q(B—ﬁo) is asymptotically equivalent to AU (3y)/33-n'/?U(B,). Furthermore, assume

that B is a closed set of 3. Then U(3) — u(3) uniformly and hence U (3,)/05 — u'(Bo).

6
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With the asymptotic normality of n'/?U(3,) established in Appendix 2, we have the following

result
T

A D _ _
nM2(f = o) B N(O.{u'(B0)} ™ B0, ) [ (Bo)} | -
Therefore, the asymptotic distribution of B can be approximated by a normal with mean

(o and variance-covariance matrix estimated by replacing theoretical terms in the above

variance-covariance with their empirical estimates, that is,
v Zam
RANLTAS D o1 (0 08 i Ip Qi
{20 s {204

More generally, a weighted version of U(3) which includes weight function can be pro-

posed as:

SUETEY %{Z _ 73, ), ()

where w(-) is a specified weight function. Appropriate weight function can be selected in
UY(B) to allow oU™(3)/0p to be negative definite for 5 € B (Magulari and Zhang 1994),
then its monotonicity and hence the uniqueness of B of the estimating function can be
obtained as well. Another application of the weighted estimating function of U"(3) is to
assess adequacy of the proportional mean life model in (1). Similar to the methods proposed
in Gill & Schumacher (1987) and Lin (1991) to assess the adequacy of the proportional
hazards model, we can choose two different weight functions, w(3T7;) and w,(3%7;), say.
Then we can test the null hypothesis of adequacy of the proportional hazards model through

the quadratic form test statistics
Aw AuT =17 Aw Aw
TasL = (51 — 3 ) E121(51 — 535 )7
where Bi“ and B;“ are corresponding solutions respectively, and Y1 is an appropriate estima-

tor of the variance-covariance matrix of 3} — 3. In practice, a simulation approach by Lin

7
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(1998) can be adapted to obtain V in practice. The proposed statistics is asymptotically XZ

under the null hypothesis.

One limitation with the proposed inference procedure is that the censoring times follows
same marginal distribution. Although this usually may not be a serious issue in controlled
randomised clinical trials, it may be challenged in practice when the distributions of censoring
times are different among individuals. One remedy is to sort the covariates into groups and
estimate survival function for each individual group. Then it is straightforward to extend
the proposed inference procedure to multiple groups. Specifically, a grouping version of

estimating function U(f3), U,(3) is proposed as

Uy(8) =n"! Z m{z — 7B, F.)}

where Fcﬂ' is the Kaplan-Meier estimator of the censoring times of the covariate group that

Z; belongs to, and

78, F.) = /Oo S Ziexp(—28T Z)(X; — )AL FL (X))}
s o Sexp(=2B8TZ)(X; — )P A{FL (X))}
eXp(—/BTZi)[(XZ’ > t)dt
n=t Y exp(— BT Z) Xi A Foa( X))~

Furthermore, the asymptotic properties of Bg solved in U,(3) = 0 follow similar argument as
used for B However, when the covariates are continuous or of high dimension, it is almost
impossible to estimate individual survival curves nonparametrically because of the so-called
“curse of dimensionality.” More sophisticated approach involving modeling the censoring
times through a proportional hazards model can then be adapted (van der Laan, Gill &

Robins, 2000). Brief discussion of this approach is laid out in §4.
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3 NUMERICAL STUDIES

Several simulation studies are conducted to evaluate the proposed inference procedures. To
demonstrate our inference procedures in presence of censoring, we adopt similar simulation
setup as in Maguluri and Zhang (1994). We mimic two-arm randomised clinical trials with
approximately n/2 (n = 100,200) subjects being randomised into each arm. That is, covari-
ate Z is simulated to be a binary indicator with success probability of 0.5. The choices of
parameter 3y are -1, 0 and 1. The baseline distribution has linear mean residual life of the
Hall-Wellner Family:
mo(t) = (D1t + Dy)*,

where Dy > —1 and Dy > 0. We fix Dy = 1, and let D; = —0.5,0 and 0.5, corresponding to
a rescaled Beta, a unit exponential and a Pareto distribution, respectively (Oakes & Dasu,
1990). In addition, independent censoring times are generated from exponential distribution

with different mean u’s which allow different prespecified censoring proportions: 0%, 10%,

20% and 30%.

Summary of simulation results is in Table 1. The quantity in each entry is computed
based on 500 simulations of its corresponding configuration. In Table 1, bias is the abso-
lute difference between the sample mean of the estimates of 500 simulations and the true
value, and coverage probability is the percentage of the Wald-type 95% confidence intervals
that contain the true parameter. As shown in Table 1, B is virtually unbiased and carries

reasonable coverage probabilities.

[Table 1 about here]
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A survival data set collected in actual randomised clinical trial is used as an example. The
trial was conducted by Lad, et al. (1988) to evaluate the efficacy of systematic combination
of chemotherapy for incompletely resected non-small-cell lung cancer. In this trial, a total of
172 participants were randomised to receive either postoperative radiotherapy (RT) solely or
postoperative RT and chemotherapy with Cytoxan, Adriamycin and Platinol (CAP) for six
months. One of the endpoints to evaluate the efficacy is survival time since randomisation.

A log-rank test statistic to compare the survivals of two treatment arms is 9.80 with p-value

of 0.002.

Furthermore, let Z be the group indicator of postoperative RT and chemotherapy with
Cytoxan, Adriamycin and Platinol (CAP). If the proportional hazards model

NUZ = 1) = At1Z = 0)exp(3)

is fitted, the partial likelihood estimate of 3 is -0.57 with estimated standard error of 0.18
(hazard ratio of 0.56 with p-value<0.05). Therefore, the combined treatment is seemly
associated with lower hazard of survival time and hence may lead to longer survival time.
However, the proportionality of hazard functions of two treatment arms may not be satisfied

for the proportional hazards model, as shown in Figure 1 of the smoothed hazard functions

(smoothing bandwidth is 90 days).

[Figure 1 about here]

Alternatively, a proportional mean residual life model
m(t|Z =1) = m(t|Z = 0) exp(3) (8)

is to be fitted. It is known that the censoring proportions in the treatment and control

groups are 33.3% and 18.6%), respectively. Furthermore, the log-rank statistic is 0.274 with

10
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p-value of 0.601. And, a graphical display of Kaplan-Meier estimates of censoring survival
functions does not show strong pattern of differential. Therefore, it is sensible to use U(3)
to estimate parameter 3. In fact, B = 0.61 with standard error of 0.17 (p-value< 0.05). This
also suggests a significant benefit of the treatment in prolonging the mean residual life of

lung cancer patients, for which the treatment mean residual life is 1.84 times of the control’s.
[Figure 2 about here]

In addition to the treatment indicator, three more covariates are selected into model (8):
Cell Type (squamous versus non-squamous), Age and Gender. The estimates of additional
regression parameters are -0.47 (s.e. = 0.20, p-value< 0.05), -0.002 (s.e. = 0.01, p-value>
0.5) and 0.12 (s.e. = 0.20, p-value> 0.5), while the parameter estimate of treatment indicator
is 0.65 (s.e. = 0.17, p-value< 0.05). This is consistent with what was found with the
proportional hazards model in Piantadosi (1997, p. 310). That is, by adjusting for potential
confounding variables of age and gender, the treatment indicator and the cell type stand out
as significant variables. The adjusted treatment effect still shows benefit of the combined

treatment in prolonging mean residual life.

4 REMARKS

In contrast to the widely used proportional hazards model (Cox, 1972), the proportional
mean residual life model is more intuitively appealing to practitioners because of its inter-
pretation in conditional mean. However, similar to assumption of the proportional hazards
model, the proportionality assumption is critical to the proportional mean residual life model.

In two-arm randomised clinical trials, for example, when the treatment effect is not as persis-

11
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tent as expected, it is possible that there is no constant proportionality in the mean residual
life. If situations like this happen, then the proportional mean residual life model needs to
be modified to accommodate the time-varying treatment effect, or alternative models should

be explored.

An alternative perspective to see that Proposition 1 is true is actually quite intuitive.
Since the Weibull family of distribution is the only one to satisfy both the proportional
hazards model and the accelerated hazards model, therefore the hazard function of the Hall-

Wellner linear mean residual life must satisfy that

1+ D,

= DytPe.
Dit+ Dy °
That is, 1 + Dy = Dy DstP**t! + Dy D4tP. Because Dy > 0, Dy = Dy = 0. As a result, the

baseline hazard function must be constant and hence exponential.

To avoid complicate approximation in computing the sandwich estimate of B’s variance-
covariance matrix, an alternative resampling approach due to Parzen et al. (1994), which was
used also in Lin et al. (1998), can be adapted to estimate the variance-covariance matrix.
The basic idea is to perturb the estimating function by a set of simulated independent

standard normal deviates, (e1,ez,...,€,):

and solve the solution Be of the equation Ue(Be) = e, where e is also a normal deviate
with zero-mean and variance-covariance matrix of 3. Then according to Parzen, et al.
(1994) and Lin, et al. (1998), nl/Q(B — Be) has the same limiting distribution as nl/Q(B —
Bo). Therefore, the variance-covariance matrix of B can be approximated by the empirical

variance-covariance matrix of 3., given enough large number of sets of (eq,es,...,€,) and e

12
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are generated.

The estimating function proposed in this article provides one possible way to estimate
the parameter in presence of censoring, while treating the baseline mean residual life mq(t)
as nuisance. It is a type of the inverse probability of censoring weighted estimating function.
It can be extended to the models in which the censoring satisfies the so-called coarsening-
at-random, and furthermore, for instance, the censoring time follows a proportional hazards

model:

Ae(t]Z) = Aep(t) exp(a’ Z).

Then the general theory in Robins and Rotnitzky (1992) and van der Laan, Gill and Robins
(2000) can be applied to compute its corresponding locally efficient estimating function.
Some similar pros and cons of using this “optimal” estimating function can be found in

Bang & Tsiatis (2000), although under a different context.

13
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APPENDIX 1

Proof of Proposition 1

Suppose that there exist 3 and 33 such that

m(112) = mo(t) exp(B; Z) = mo{t exp(—0B; Z)} exp(B; 7).

Since mo(t) = Y722 dit*, therefore

Z dit* exp(B) 7) = Z dit* exp{(1 — k)5, Z}.

k=—o0 k=—0c0

Hence, for any pair of ky and kg such that dg, dy, # 0,

exp(817) = exp{(1 — k)BT 2} = exp{(1 — k2)3] Z}.

As a result, k; = k. That is, mg(¢) is only in the form of dit* for some k. According to
the condition (a) in the Hall-Wellner Characterization Theorem (Hall & Wellner, 1981, p.
172), mo(t) is an appropriate mean residual life when k£ = 0, that is, when the corresponding

survival time is exponential. The sufficient condition is straightforward.

APPENDIX 2

Asymplotic normalily of n'*U(3,)

Consider the same martingale representation of F. in §2. Then using the functional Delta-

method, we would have

(o

U(Bo) = n—lz{ (o, F2) + Qil Bo, Fe)— F(_XF) '}+op<n—”2>

k n—lz{a(ﬂo,nn | SR )}+op< ), (A

14
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where

N {Zi— 7:(8, F.)}

Pl(ﬁvFC) =

F.(X) ’
and
An(t, B, F, ‘1262 B F)I(X; > 1) = A(L, B, F).
Here Q;(3, F.) is computed as follows:
a [A; _
Qz(ﬁa Fc) = _Fca—ﬂ |:_ {Zz - Zz 67 Fc)}:|

- —r | (F) - o)+ S 5.7)]

CA{Z - Zi(B,F)) AOZi(B, F)
P2 F. OF,

= Pi(ﬁ,Fc)+Ri(/87FC)7

- _F

where

Ri(ﬁaFC)

:A./OO 9 {ZZ'ZNXP(—MTZJ( i = OFA{F(X:)} !
Yo OF | X exp(=28TZ)(Xi — )T A{F(X)}!

y eXp(—ﬁTZi)[(Xi > 1) ol
n=t Y exp(=BT7Z) Xi A Fe(Xi) 1!

:/OO Ka(B8, F.)exp(— BTZi)[(X¢>t)
o 1!y oexp(=BTZ) XA Fu(Xi) !

+/ Kio(B, F2) D2, Ziexp(— QBTZi)(Xz'—t)+Ai{Fc(Xz’)}_1dt
0 Doy exp(=268T7Z;)(Xi — )P AL F(Xi) ’

dt

15
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I(li(ﬁv Fc)

_ 0 |:Ei ZieXp(—QﬂTZz’)(Xz’—t)+Ai{Fc(Xi)}_l]
OF, | >, exp(—207Z)(X; — DA F(X0)) 1

= [i exp(—20" Z;)(X; — t)+Ai{Fc(Xi)}_1]

=1

1

B [zn: Ziexp(=28"Z;) (X, — t)+Ai{Fc(Xi)}_2]

Y Ziexp(=28"Z)(Xi — )T AL FX)} [ exp(—287Z;)(X; — t)+Az’{Fc(Xz’)}_2]

=1 ;

—_

1=

exp(—26" Z;)(Xi — t)+Ai{Fc(Xi)}_1] } :

=1

and

K2(8, F.)
_ 0 [ exp(=BTZ)I(X; > 1) ]
8Fc n-! EZ eXp(— = BTZZ)XZAZ{FC(XZ)}_l
= {exp(—ﬁTZi)[(Xi > t)}
X [n‘l Z eXp(—ﬁTZZ')XiAi{Fc(XZ-)}_II [n‘l Z eXp(—/BTZZ')XZ-AZ'{FC(XZ')}_QI \

Then it follows a Multivariate Central Limit Theorem that n'/2U(3,) is asymptotically

normal with mean zero and variance and covariance matrix

Here v®? = vvT. Furthermore, if Z; are assumed to be bounded, since Z; — Z(3, F.) is

E(ﬁch):E

F(0)-measurable, the first two terms in (A1) is uncorrelated. It is therefore follows standard

variance calculation for martingales that

F)A™(t, Bo, Fe)
B(1)

3 E{P(ﬁo,Fc)}®2 4 /OO A(t, Bo, dA.(t)

16
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n
100
100
100
100
100
100
100
100
200
200
200
200
200
200
200
200

Cens.

0%
0%
10%
10%
20%
20%
30%
30%
0%
0%
10%
10%
20%
20%
30%
30%

Table 1: Summary of Simulation Studies

Bias
Cov.
Bias
Cov.
Bias
Cov.
Bias
Cov.
Bias
Cov.
Bias
Cov.
Bias
Cov.
Bias
Cov.

n
100
100
100
100
100
100
100
100
200
200
200
200
200
200
200
200

Rescaled Beta Exponential
Go==1 Bo=0 fo=1 Bo=-1 Bo=0 fo=1
0.009 0.001  -0.001 0.003 0.016  0.007
0.934 0.934  0.952 0.948 0.956  0.954
0.014 0.002  0.006  -0.012 0.003  -0.002
0.948 0.960  0.952 0.974 0.946  0.946
0.000 0.012 -0.003 -0.014 -0.005 -0.001
0.936 0.940  0.964 0.960 0.954  0.958
0.001 0.006  0.009 0.005  -0.002 -0.005
0.952 0.940  0.948 0.964 0.934  0.966
0.003 0.015 0.011 0.001 -0.001  0.011
0.940 0.952  0.946 0.944 0.950  0.946
0.008  -0.010 -0.001 0.006  -0.013  0.003
0.958 0.956  0.938 0.948 0.958  0.956
0.007  -0.001 -0.015 0.002 0.003  0.001
0.954 0.974  0.952 0.958 0.962  0.952
-0.004  0.001  0.007  -0.008 0.001  -0.001
0.938 0.954  0.952 0.936 0.950  0.938

Pareto
Cens. Go=—1 0(Bo=0 [Bog=1
0%  Bias  0.002 0.003  -0.001
0% Cov.  0.942 0.964  0.952
10% Bias  0.021 0.002  0.003
10% Cov.  0.948 0.932  0.940
20% Bias  -0.016 0.002  -0.003
20% Cov.  0.958 0.944  0.962
30% Bias -0.012  -0.001 -0.006
30% Cov. 0.944 0.946  0.934
0%  Bias -0.007  -0.001 0.004
0% Cov.  0.950 0.944  0.952
10% Bias  0.003  -0.005 -0.000
10% Cov.  0.954 0.962  0.942
20% Bias  0.009 0.015 -0.011
20% Cov.  0.956 0.958  0.948
30% Bias  -0.002 -0.009 0.002
30% Cov.  0.956 0.954  0.936
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Figure 1: Smoothed hazard functions in comparative treatment efficacy lung cancer trial
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Figure 2: Survival functions for censoring times in comparative treatment efficacy lung cancer

trial
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