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Cluster Stability Scores for Microarray Data in
Cancer Studies

Mark Smolkin and Debashis Ghosh

Abstract

A potential benefit of profiling of tissue samples using microarrays is the gen-
eration of molecular fingerprints that will define subtypes of disease. Hierarchi-
cal clustering has been the primary analytical tool used to define disease sub-
types from microarray experiments in cancer settings. Assessing cluster reliabil-
ity poses a major complication in analyzing output from these procedures. While
much work has been done on assessing the global question of number of clus-
ters in a dataset, relatively little research exists on assessing stability of individual
clusters. A potential benefit of profiling of tissue samples using microarrays is
the generation of molecular fingerprints that will define subtypes of disease. Hi-
erarchical clustering has been the primary analytical tool used to define disease
subtypes from microarray experiments in cancer settings. Assessing cluster re-
liability poses a major complication in analyzing output from these procedures.
While much work has been done on assessing the global question of number of
clusters in a dataset, relatively little research exists on assessing stability of in-
dividual clusters. We address this problem by developing cluster stability scores
using subsampling techniques. These scores exploit the redundancy in biologi-
cally discriminatory information on the chip. Our approach is generic and can be
used with any clustering algorithm. We propose procedures for calculating clus-
ter stability scores for situations involving both known and unknown numbers of
clusters. The methods are illustrated on data from a childhood cancer study (Khan
et al., 2001).
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Abstract

Motivation: A potential benefit of profiling of tissue samples using microarrays is the
generation of molecular fingerprints that will define subtypes of disease. Hierarchical
clustering has been the primary analytical tool used to define disease subtypes from
microarray experiments in cancer settings. Assessing cluster reliability poses a major
complication in analyzing output from these procedures. While much work has been
done on assessing the global question of number of clusters in a dataset, relatively little
research exists on assessing stability of individual clusters.

Results: We address this problem by developing cluster stability scores using subsam-
pling techniques. These scores exploit the redundancy in biologically discriminatory
information on the chip. Our approach is generic and can be used with any clustering
algorithm. We propose procedures for calculating cluster stability scores for situations
involving both known and unknown numbers of clusters. The methods are illustrated
on data from a childhood cancer study (Khan et al., 2001).

Availability: Code implementing the proposed techniques can be obtained by con-
tacting the second author.

Contact: ghoshd@umich.edu

Introduction

Due to the advent of high-throughput microarray technology, scientists have been
able to conduct global molecular profiling studies. One of major disease areas in
which microarrays have been utilized has been in cancer (Alizadeh et al., 2000; Bittner
et al., 2000; Khan et al., 2001). One of the scientific goals of these experiments is
the discovery of disease subtypes defined by the gene expression data that are more
predictive of clinical outcomes (disease recurrence, survival, disease-free survival, etc.)
than usual clinical correlates. Development of such a molecular classification system
may potentially lead to more tailored therapies for patients as well as better diagnostic
procedures.

Hierarchical clustering has been an important tool in the discovery of disease sub-
types in microarray data (Eisen et al., 1998). Such procedures typically output a
dendrogram that groups samples; an example using the data from the study by Bit-
tner et al. (2000) is provided in Figure 1. Determining the reliability of clustering
methods poses a major problem in the interpretation and analysis of microarray data.
It is important to separate the clusters which arise due to random chance from those
which represent “true” clusters.

A global question pertaining to interpretation of cluster analysis output is estimat-
ing the true number of clusters in a dataset. Several methods have addressed this
issue: these include the proposals of Calinski and Harabasz (1974), Hartigan (1975),
Krzanowski and Lai (1985), Tibshirani et al. (2001), Ben-Hur et al. (2002) and Dudoit
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and Fridlyand (2002). In addition, there have been alternative clustering methodologies
developed for microarray data (Getz et al., 2000; Ben-Dor et al., 2000).

Determining the reliability of a given cluster, by contrast, is a local clustering
question. Less work has been done in this area (Kerr and Churchill, 2001). However,
it is obvious that the global and local questions are related, as the individual clusters
will depend on the number of clusters inferred from the dataset.

In most microarray studies, the number of samples profiled is much smaller than
the number of genes and ESTSs represented on the chip. Due to the number of elements
spotted on the microarray, it is reasonable to assume that there is redundant infor-
mation available on them (Xing and Karp, 2001). Consequently, if we cluster samples
based on a subset of the spots on the microarray, stable clusters should be replicated on
average. This statement heuristically describes our approach to assessing the reliabil-
ity of clustering analyses of microarray data. We propose calculating cluster stability
scores based on subsampling methods. The approach is relatively generic and can be
applied to any clustering algorithm. We will focus primarily on hierarchical clustering
since that is the technique used most often in the analysis of microarray data. While
we emphasize the problem of clustering samples in the paper, these methods can be
utilized for clustering genes as well. Such techniques have been examined for supervised
learning problems (Ho, 1998); their application to clustering or unsupervised learning
problems appears to be novel. In addition, we develop a joint procedure for addressing
the global and local cluster problems. In Systems and Methods, we describe the
data used and summarize the procedure of Ben-Hur et al. (2002) for estimating the
number of clusters, which is a global clustering question. Two approaches are then
described. For the first, we assume that the number of clusters is known; cluster sta-
bility scores are calculated. In the second situation, the number of clusters is unknown.
These techniques are described in Algorithms. We have programmed our procedures
in the R language; in Implementation, we briefly discuss the software. We use these
methods to re-analyze microarray data from a childhood cancer study (Khan et al.,
2001). These analyses are summarized in Results. Finally, in Discussion, we make
some concluding remarks.

Systems and Methods
Data

We will let x4, ..., x, denote the p dimensional vectors of gene expression profiles; n
is the number of samples profiled. In what follows, we assume that the data have been
preprocessed and normalized. Thus, our procedures work with both oligonucleotide
and cDNA microarrays. We will be primarily applying our methods to hierarchical
clustering procedures, but other methods, such as self-organizing maps, k-means or
more recent methods (Getz et al., 2000; Ben-Dor et al., 2000) could be utilized as well.

Hosted by The Berkeley Electronic Press



Estimating number of clusters

In the Algorithm section, we discuss a two-stage procedure for calculating cluster
stability scores when the number of clusters is not fixed a priori. The method involves
estimating the number of clusters at the first stage and then computing the scores at
the second stage. We looked at the literature for the various proposals of estimating the
number of clusters. Based on our experience with real datasets, the best performance
seemed to be given by the method of Ben-Hur et al. (2002). We now briefly describe
their procedure. In their approach (2002), the samples are partitioned into & clusters.
We then rerun the clustering algorithm based on the subsampling a fraction of the
samples and group the subsamples into £ clusters. Next, we compute a similarity index
of the subsamples, the correlation coefficient between the clusters for the resampled
data with those for the original data computed based on the definition given by Fowlkes
and Mallows (1983). This is repeated several times to get a histogram of correlation
coefficient values. We then vary £ and redo the procedure. For values of £ where real
biological clusters are represented, the histogram of correlation coefficient values will
be concentrated around 1. On the other hand, correlation coefficient histograms for
larger values of £ tend to be spread more uniformly. The estimate for the number of
clusters in a dataset is the value of £ for which the histograms transition from being
concentrated near 1 to being more uniformly distributed.

Algorithms
Cluster stability scores for known number of clusters

In this section, we assume that the number of clusters is known to be some number,
say K. Thus, the samples {1,2,...,n} are partitioned into K sets Aj,..., Ax. We
then randomly choose a subset D of the indices {1,2,...,p}, where d is the cardinality
of D. A new dataset, consisting of x}, ..., x}, where x} is the d-dimensional subvector
of x; (i = 1,...,n), is then created. We compute a new dissimilarity matrix based
on the x7, ¢ = 1,...,n and rerun the hierarchical clustering procedure. The resulting
dendrogram is cut into K clusters, A7, ..., Aj. We then check to see if A; C A7 for
1,7 = 1,..., K. This resampling is repeated B times. For each of the original sets
Ay, ..., Ak, the cluster stability score is defined as the proportion of B samples in
which A; (i = 1,...,K) appears. If the score is close to 1, then this is evidence that
the cluster is stable. On the other hand, if the proportion is small, then the stability
of the cluster is less reliable.

A parameter in the procedure is d. The stability scores will depend on the choice
of d. Larger values of d tend to yield larger sensitivity measures while the converse
holds for small d. Our experience has been to choose d to be within between .75 and
.85 times p.
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The sensitivity measure computed here is an estimate of a probabilistic quantity
that is averaged over B models, where each model is based on a random subset of the
data. This provides an analogue of stacking or combining models (Wolpert, 1992) for
unsupervised learning. It might be also possible to calculate sensitivity measures that
average both over d as well as over subsets of (1,...,p), but we will not pursue that
here.

Cluster stability scores for unknown number of clusters

In the previous section, we developed the calculation of cluster stability scores in
the case where the number of clusters is known. If, on the other hand, the number
of clusters is not known, then this has to be estimated somehow. We propose the
following two-stage method:

1. We estimate the number of clusters at the first stage using the technique of
Ben-Hur et al. (2002) and get an estimate K*.

2. Conditional on K*, we calculate the cluster stability scores.

Observe that any method for choosing number of clusters, such as those listed in the
introduction, could be used in step 1 of the procedure.

Implementation

We are in the process of writing macros in R for implementing the methods we have
proposed here. When ready, they will be obtainable from the second author’s website
at the following URL:

http://www.sph.umich.edu/~ghoshd/COMPBIO/

R is a freely downloadable software package (http://www.r-project.org/) and can run
on either a Windows or UNIX platform.

Results

We applied the proposed methodology to three microarray datasets: one from a child-
hood cancer study (Khan et al., 2001), one from a lymphoma study (Alizadeh et al.,
2000) and the last from a cutaneous melanoma study (Bittner et al., 2000). Because
of space limitations, the results from the last two can be found at the second author’s
website, the URL for which was given in the previous section. For implementation of
the Ben-Hur et al. (2002) algorithm, we randomly subsampled 65% of the available
samples. In instances for which the true number of clusters was not obvious, both
visual inspection of the original dendrogram and examination of the result obtained
using the other linkage methods for that dataset were considered. After estimating the
true number of clusters, cluster stability scores were calculated for d = 85%, 75%, 50%
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and 25% of the total numbers of genes. For each rate, one hundred subsamples were
generated.

In the Khan dataset, gene expression values were measured for 2308 genes on a
total of 89 subjects. The dendrogram using complete linkage clustering of these data
is presented in Figure 2. For this data, application of the method of Ben-Hur et al.
(2002) yielded an estimate of K = 7 clusters, the labels of which are listed in Table 1.
The cluster stability scores are presented in Table 2. Based on these results, the most
stable cluster was cluster 4, which consisted of Ewing’s sarcomas; based on the original
paper, the test sample is an osteosarcoma. The next set of stable clusters are clusters
1, 6, and 7. As reported in the original paper, cluster 7 consists of two normal muscle
tissue samples.

As was mentioned before, the cluster stability scores depend on d. As d decreases,
the scores decrease as well. Based on the results of Table 2, the one cluster that remains
stable for varying values of d is cluster 7. However, note that the relative rankings of
the clusters appears to be unchanged. We suggest using the cluster stability scores as
a relative measure rather than as an absolute one.

Discussion

In this paper, we have developed a simple approach to statistical validation of clustering
results based on subsampling methods. One of the advantages of this approach is that
it exploits the fact that in microarray experiments, the number of spots on the chip is
greater than the number of samples profiled. By subsampling the spots on the chip, we
are able to determine which clusters are relatively stable on average. It is important to
note that an assumption being made is that there is sufficient correlation on the spots
with respect to discriminating between clustered samples. For example, if only one
gene on a 10K chip discriminates two cancer subtypes, then the approach described
here might give misleading results.

Based on the cluster stability score method, we reanalyzed several datasets from
cancer studies to explore the stability of clustered samples. In particular, we found
relatively little statistical evidence to support the claims of subtypes found by Alizadeh
et al. (2000) and by Bittner et al. (2000). However, our approach is statistical and
should by no means serve as a substitute for experimental validation.

In many cancer studies, there are additional clinical covariates (e.g., survival time,
PSA recurrence) available. One potential method of more formal biological validation
is to combine the clustering methodology with correlation of the subsequent output to
these covariates.
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Figure 1: Hierarchical Clustering Dendrogram of gene expression data from Bittner et
al. (2000). Average linkage clustering used.
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Figure 2: Hierarchical Clustering Dendrogram of gene expression data from Khan et
al. (2001). Complete linkage clustering used.
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Table 1. Cluster labels for K = 7 groups from Khan et al. (2001) data

Cluster Samples

1 EWS.T1, EWS.T2, EWS.T3, EWS.C3, EWS.C2, EWS.C4,
EWS.C1, BL.C1,BL.C2, BL.C3, BL.C4, RMS.CS,
RMS.C11, RMS.T1, RMS.T4, RMS.T2, RMS.T3,

TEST.5, TEST.24

p EWS.T4,EWS.T6, EWS.T7, EWS.T9, EWS.T11, EWS.T12,
EWS.T14,EWS.T15,EWS.T19,RMS.T5, TEST.6
3 EWS.T13,RMS.C3, RMS.C9, RMS.C5, RMS.T6, RMS.T7, RMS.TS,

RMS.T9, RMS.T10, TEST.10, TEST.21, TEST.20, TEST.22, TEST.16,

TEST.23, TEST.14, TEST.25, TEST.19
4 EWS.C8, EWS.C6, EWS.C9, EWS.C11, EWS.C10, TEST.3
5 EWS.C7, BL.C5, BL.C6, BL.C7, BL.C8, NB.C1,

NB.C2, NB.C3, NB.C6, NB.C12 NB.C7, NB.C4,

NB.C5, NB.C10, NB.C11, NB.C9, NB.C8,
RMS.C4, RMS.C2, RMS.C6

RMS.C7, RMS.C10, TEST.11, TEST.8, TEST.18, TEST.15,
6 RMS.T11,TEST.1,TEST.2,TEST.4,TEST.7, TEST.12, TEST.17

7 TEST.9, TEST.13

Table 2. Cluster stability scores for childhood cancer data from Khan et al. (2001)

Cluster Labels

d/2308 1 2 3 4 5 6 7
.85 63 53 4 79 15 67 62
.75 61 42 2 71 4 64 60
.50 17 5 0 31 1 36 49
.25 6 1 0 14 0 21 47

Note: Cluster labels are from Table 1. Complete linkage clustering used.
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