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Alternative Hypothesis
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Abstract

Power calculations in a small sample comparative study, with a continuous out-
come measure, are typically undertaken using the asymptotic distribution of the
test statistic. When the sample size is small, this asymptotic result can be a poor
approximation. An alternative approach, using a rank based test statistic, is an ex-
act power calculation. When the number of groups is greater than two, the number
of calculations required to perform an exact power calculation is prohibitive. To
reduce the computational burden, a Monte Carlo resampling procedure is used to
approximate the exact power function of a k-sample rank test statistic under the
family of Lehmann alternative hypotheses. The motivating example for this ap-
proach is the design of animal studies, where the number of animals per group is
typically small.
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Summary
Power calculations in a small sample comparative study, with a continuous outcome
measure, are typically undertaken using the asymptotic distribution of the test statis-
tic. When the sample size is small, this asymptotic result can be a poor approxima-
tion. An alternative approach, using a rank based test statistic, is an exact power
calculation. When the number of groups is greater than two, the number of cal-
culations required to perform an exact power calculation is prohibitive. To reduce
the computational burden, a Monte Carlo resampling procedure is used to approxi-
mate the exact power function of a k-sample rank test statistic under the family of
Lehmann alternative hypotheses. The motivating example for this approach is the
design of animal studies, where the number of animals per group is typically small.
KEYWORDS : Animal study design; Exact test; Permutation distribution; Sample
size calculation
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1. INTRODUCTION
The subject of this work is the demonstration of an accurate power computation for a
small sample randomized comparative study, based on a continuous outcome measure.
The motivation for this approach was the development of a statistical design to assess
the bene�t of experimental cancer therapies in the preclinical (nonhuman) setting,
but it is general enough to apply in any randomized comparative study. A prototype
experiment will be used throughout the manuscript to highlight the statistical issues.
This experiment entails the injection of tumor cells into n mice, and after allowing the
tumor cells to grow in a predetermined time frame, the mice are randomly allocated to
either a control group or one of multiple experimental therapies. The tumor volume in
each mouse is recorded over time, and at a �xed follow-up time period, the area under
the tumor volume curve is recorded for each mouse. (Note that any continuously
valued positive measure, most notably survival time, truncated at the �xed follow
up time, can be used as an outcome measure.) The number of mice allocated to the
k� 1 experimental groups are denoted by n1; : : : ; nk�1 and the number of mice in the
control group is nk; the total sample size in the experiment is n = n1 + : : :+ nk.

Sample size/power considerations developed for preclinical studies are typically
based on the asymptotic distribution of the test statistic used for the comparison.
This asymptotic approximation can be inaccurate when the number of subjects in
each group is small. An exact power calculation using a rank based test statistic is
an alternative approach, but it is impractical when there are more than two groups
due to the number of calculations required. In this paper, a Monte Carlo approach
is used for power calculations under the Lehmann family of alternative hypotheses
with a rank based test statistic. It is demonstrated that the Monte Carlo approach
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is both highly accurate and computationally e�cient and hence applicable under all
conditions.

The Monte Carlo approach is introduced for the two-sample problem. Although
exact power calculations can be performed in the current computing environment,
when the number of animals per group is small, the two-sample framework provides
the simplest vehicle to demonstrate the methodology. The Monte Carlo approach is
then extended to the k-sample case, where it will be of most use.

2. THE TWO-SAMPLE CASE
Assume there are n1 independent identically distributed copies x11; x21; : : : ; xn11, gen-
erated from the absolutely continuous distribution function F1 and n2 independent
identically distributed copies x12; x22; : : : ; xn22, generated from the absolutely contin-
uous distribution function F2. Denote the complement of the distribution function,
also known as the survival function, as G(z) = 1 � F (z). The null and alternative
hypotheses are written as

H0 : G1(z) = G2(z)
HA : G1(z) < G2(z):

With regard to the prototype experiment, if G1 represents the experimental therapy
survivor function and G2 the control group survivor function, the alternative states
that larger tumors are more likely to occur in the control group.

The most common approach to expressing stochastic dominance in the alternative
hypothesis is the shift function

HA : G1(z) = G2(z ��) � > 0:
4
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This alternative states that the di�erence between the two population means, medi-
ans, or any other population quantile is given by the shift parameter �. Once the
alternative hypothesis is chosen, a test statistic is selected to re
ect this hypothesis.
Under a shift alternative, the t-statistic is a natural candidate for a test statistic.
Unfortunately, prior work suggests that the size of this test is poor if the underlying
distribution F is skewed [1-3]. Here the problem is manifested through the e�ects of
outliers on the t-statistic. Miller [2] notes that the outliers will in
ate the variance
of the t-statistic, thereby depressing the value of the corresponding signi�cance level.
Although this problem may be alleviated through a normalizing transformation of
the outcome variable, the appropriate transformation is not identi�able at the design
stage without prior data.

One method to downweight the in
uence of outlying observations is to replace the
observations with their ranks. The most common rank test statistic is the Wilcoxon
rank sum statistic

S = n1X
i=1 rank(xi1);the ranks of the experimental sample based on the combined data. For the tumor

volume study, evidence of an e�ective experimental therapy is supported by a small
rank sum statistic. To perform power calculations based on this test statistic, an
asymptotic null pivotal statistic is formed by studentization

~S = S � E0(S)qVAR0(S) ;
which enables the investigator to approximate the reference distribution for ~S under
the null hypothesis with the standard normal distribution. For the rank sum statistic,

E0(S) = n1(n+ 1)2 VAR0(S) = n1n2(n+ 1)12
5

Hosted by The Berkeley Electronic Press



Although the studentized rank sum statistic provides an adequate standard nor-
mal approximation under the null in small samples, the power computation requires
knowledge of the experimental outcome distribution (F1) and the control distribution
function (F2). Without su�cient prior data to assist in the speci�cation of these
distributions, the accuracy of this power calculation is suspect.

The Lehmann family of alternative hypotheses can be used instead of the shift
alternative for power calculations when using the rank sum statistic. Here, power
calculations are performed without full speci�cation of the underlying distributions.
Rather, a semiparametric relationship is proposed,

G1(x) = G
2(x): (1)
where the underlying survival distributions (G1; G2) are left unspeci�ed, but their
relationship is governed by a single parameter 
.

The interpretation of 
 is critical to the design. Two interpretations, one using
the odds parameter and one using population averages, are provided using the tumor
volume study for illustration. For the odds parameter, let � = Pr(X1 > X2) represent
the probability a mouse from the experimental group has greater area under the
tumor volume curve than a mouse from the control group. Since Pr(X1 > X2) =R G1(x)dG2(x), it follows from the Lehmann alternative given in (1) that


 = 1� ��
is an odds parameter. In the example, 
 = 4 indicates that the odds are 4:1 that a
representative control mouse has the greater tumor volume. A second interpretation
of 
 is derived in terms of the relative average tumor volume in the two populations.

6
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The hazard function in survival analysis is de�ned as
h(x) = �@ log[G(x)]@x ;

and the Lehmann alternative G1(x) = G
2(x) can be written in terms of the hazard
functions in the two populations as h1(x) = 
h2(x). Using the relationship

E " 1h(X)
# = Z G(x)f(x) f(x)dx;

which for positive valued outcomes is the population mean of the outcome measure,
an alternative interpretation for the Lehmann alternative is that the average tumor
volume in the control population is 
 times greater than the average tumor volume
in the experimental population, i.e.


 = �2�1 :
An advantage to using the relative mean alternative rather than the shift alternative is
that it does not require a priori knowledge of a common population standard deviation
to perform the power calculations.
3. POWER CALCULATIONS FOR A TWO-SAMPLE RANK TEST

Three methods for calculating the power of the Wilcoxon rank sum statistic under
the Lehmann alternative are presented. The exact power calculation [4] is derived
by enumerating all possible assignments of the n subjects into two groups of size
n1 and n2, and the probability of each assignment is calculated under the Lehmann
alternative as,

Pr(R1 = r1; : : : ; Rn1 = rn1) = 
n10BB@ n
n1

1CCA
n1Y
j=1

�(rj + j
 � j)�(rj) �(rj+1)�(rj+1 + j
 � j) (2)

7
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where Rj (j = 1; : : : ; n1) represents the pooled ranks in group 2, �(�) is the Gamma
function and rn1+1 = n+1. Enumeration of this sample space is reasonable when the
sample size is small. For example, randomly allocating 20 subjects evenly between
the two groups, would require approximately 180,000 probability calculations using
equation (2); a job that would take seconds in the current computing environment.

The asymptotic normal approximation to the Wilcoxon rank sum statistic is the
most widely used approach to power calculations. The power of a two-sided � level
test is approximated by

1 � �
0@E0(S)� EA(S) + z1��=2qVAR0(S)qVARA(S)

1A
+ �

0@E0(S)� EA(S)� z1��=2qVAR0(S)qVARA(S)
1A

where the subscripts f0; Ag denote the moment calculations under the null and alter-
native hypotheses respectively, � is the standard normal distribution function, and
z1��=2 is the 1 � �=2 quantile of the standard normal distribution, i.e. �(z1��=2) =
1� �=2. The expectation and variance of the rank sum statistic under the Lehmann
alternative is [5],

EA(S) = n1n21 + 
 + n1(n1 + 1)2
VarA(S) = n1n2(n1 � 1) 11 + 2
 � 1(1 + 
)2

!+
n1n2(n2 � 1) 1� 2
1 + 
 + 
2 + 
 � 1(1 + 
)2

!+ n1n2 
(1 + 
)2 ;

 = 1 provides the moment calculations under the null hypothesis.

The Monte Carlo resampling approach to computing the power function for the
Wilcoxon rank sum test statistic ~S is now described. The power of the two-sided rank

8
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sum test statistic under the Lehmann alternative is computed as
Power = Pr[ j ~Sj � c1��jn1; n2; 
 ]

where c1�� denotes the 1 � � quantile from the null permutation distribution. Let
xi represent the outcome for subject i; i = 1; 2; : : : ; n and ri � r(xi) indicate the
pooled rank of the outcome data for subject i. In addition to the pooled rank value,
each subject is identi�ed by a group indicator; � = 2 if the subject is a member of
the control group and � = 1 if the subject belongs to the experimental group. Thus,
each subject is speci�ed by the pair (ri; �i). The permutation procedure rearranges
the group indicators for the n subjects, while keeping the pooled ranks �xed. The
permuted sample is denoted by fri; ��i gni=1, where the asterisk indicates the permuted
group assignments. Each new permutation sample fri; ��i gni=1 results in a permutation
statistic S�. Generating a large number of permutation samples results in permutation
statistics that produce a Monte Carlo estimate of the permutation distribution of
S. Under the null hypothesis, all possible permutations of the group indicators are
equally likely. Under the alternative hypothesis, however, the permutation samples
have an unequal chance of occurrence. Thus, power computations must account for
the unequal probabilities when generating the permutation distribution of S under
an alternative hypothesis.

The derivation of the permutation algorithm under the alternative hypothesis
is based on the hazard rate for each group in the Lehmann alternative, and the
assignment of the control and experimental group subjects to the pooled ordered
outcomes x(1) < x(2) < : : : < x(n). The hazard rate is de�ned as

h(x) = lim�x!0 Pr[x � X < x+�xjX � x]�x :
9
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The allocation of the subjects to the ordered outcomes occurs sequentially starting at
the lowest value. For the two sample problem, the probability of selecting a member
from group 1 to be placed into outcome x(j) is

nj1h1(x(j))nj1h1(x(j)) + nj2h2(x(j))
where njg represents the number of subjects in group g not chosen prior to x(j).
This computation is considerably simpli�ed under the Lehmann family of alternatives
h1(x(j)) = 
h2(x(j)) and leads to

Pr[place group 1 indicator into x(j)jnj1; nj2; 
] = nj1
nj1
 + nj2 :
The probabilistic allocation of the group indicators to the order statistics is function-
ally independent of the observed values x(1); x(2); : : : ; x(n); all that is required is the
rank under evaluation and the subjects in each group not chosen prior to that rank.
As a result, the ranks may be substituted for the ordered outcomes, enabling the
permutation algorithm to be implemented at the design stage. In addition, under the
Lehmann alternative, group assignment does not require knowledge of the underlying
distributions. What is necessary, however, is the speci�c relationship between G1 (h1)
and G2 (h2) governed by the parameter 
. The value 
 = 1 generates the Monte Carlo
approximation of the null permutation distribution. Additional discussion of the gen-
eration of the permutation distribution under the Lehmann alternative is found in
Maritz [5] and Jennison [6]. In the case of ties, the assignment of midranks to the
tied data values is the only modi�cation needed for the Monte Carlo power estimates.

The results of the Monte Carlo approximation, the asymptotic approximation,
and the exact power calculation are presented in Table 1. The results are based

10
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on sample sizes of 5 and 10 in each group. The nominal signi�cance level of the
asymptotic normal approximation was calibrated to be equal to the size of the exact
power calculation. One hundred thousand resamples were used to estimate the Monte
Carlo power function.

The results demonstrate that the Monte Carlo approach provides an accurate
approximation to the exact power calculations. With �ve subjects per group, the
maximum deviation in the Monte Carlo power calculation is 0.003. In comparison,
the asymptotic approximation has a consistent disparity of approximately 0.070 in
the midrange of the power function. When the sample size increases to 10 per group,
the maximum deviation is 0.001 for the Monte Carlo power computation and the
deviation in the asymptotic normal calculation reduces to 0.036. Thus, even for a
sample size of 10 per group, there is an accuracy gain using the Monte Carlo power
approximation.

4. MONTE CARLO POWER APPROXIMATION
FOR A K-SAMPLE RANK TEST

When the number of animals in each group is small, it is reasonable to employ exact
power calculations for the two-group comparison. The feasibility of the exact power
calculation diminishes when the number of groups is greater than two, because of the
increased computational burden. Denoting by (n1; n2; : : : ; nk) the sample size in each
of the k groups, with n = n1 + n2 + : : : + nk, the number of possible assignments
of the n subjects to the k groups is Cnn1;n2;:::nk = n!=n1n2 : : : nk. For example, �ve
subjects assigned to each of four groups, results in C205;5;5;5 � 1:17 � 1010, or over
11 billion possible group assignments. This evaluation requires extensive computing
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time, and even in the current computing environment, it cannot be undertaken on a
routine basis. Somewhat surprisingly, the power calculation based on a large sample
distribution of a k-sample rank statistic is considered too complicated for practical
application. A noncentral �2 approximation based on a contiguous shift alternative
does exist, but its accuracy under general alternatives is not reliable [1]. Clearly, the
need for an accurate Monte Carlo resampling power computation is paramount when
there are a small number of subjects and more than two groups.

Continuing with the tumor volume example, it is assumed that there are k � 1
experimental therapies, with tumor volumes generated from the survival functions
G1; G2; : : : ; Gk�1, and a control therapy with tumor volumes generated from Gk. The
Lehmann family of alternatives is generalized to
H0 : Gj(x) = Gk(x) j = 1; : : : ; k � 1
HA : Gj(x) = G
jk (x) j = 1; : : : ; k � 1; 
j � 1 with 
j > 1 for at least one j:

The parameter 
k is set equal to 1. Although the k� 1 parameters 
j (j = 1; : : : ; k�
1) in the alternative are speci�ed relative to the control group, their speci�cation
determines the Lehmann alternative between any two groups i; j

Gi(x) = G
i=
jj (x) i; j = 1; 2; : : : ; k; 
k = 1:
The alternative states that the odds a mouse in group i has a smaller tumor volume
than a mouse in group j is 
i=
j, or using a probabilistic interpretation, the probability
a mouse in group i has smaller tumor volume than a mouse in group j is 
i=(
i+ 
j).
The test statistic used for this k-sample alternative is the widely used Kruskal-Wallis
rank statistic

W = kX
j=1fR:j � (n+ 1)=2g2

12
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where R:j represents the average of the pooled ranks in the jth group.
The Monte Carlo power calculation places subjects into the k groups, sequentially,

starting from the lowest pooled rank. The group selection for each rank is decided
stochastically, based on the conditional probability

Pr[place group i indicator into x(j)jnj1; : : : ; njk; 
1; : : : ; 
k�1] = nji
iPkl=1 njl
l (3)
where nji represents the number of subjects remaining in group i when selecting for
rank j. After group assignment is completed, the Kruskal-Wallis test statistic (W )
is computed, and the algorithm is repeated a large number of times to approximate
the distribution of W under a speci�c Lehmann alternative. The power function is
computed using

Pr(W � c1��j
1; : : : ; 
k;n1; : : : ; nk)
where c1�� is the Monte Carlo estimate of the 1� � quantile for W when 
1 = : : : =

k = 1.

The accuracy of the Lehmann alternative Monte Carlo power function relative
to the exact power computation is examined in the following two designs. The �rst
design places 18 mice into three equal groups and the second design places 16 mice
into four equal groups. These designs were chosen for the practical consideration that
the exact power function could be computed for a variety of parameter combinations
in a reasonable time frame. Note that C186;6;6 = 17; 153; 136 and C164;4;4;4 = 63; 062; 996.
In all cases, 100,000 resamples were used to produce the Monte Carlo power estimates.
The results are presented in Tables 2 and 3.

The power comparisons were computed at a nominal signi�cance level of 0.05.
The Lehmann alternative Monte Carlo approximation and exact power function were
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computed for the Kruskal-Wallis test statistic over many di�erent parameter com-
binations. The results for the three sample case with six observations per group,
demonstrate a high degree of accuracy over all parameter combinations examined.
The four sample case with four observations per group, represents a more discrete
distribution for W , but the approximation remains accurate, with a maximum devi-
ation of 0.003 over all parameter combinations considered.

The power calculations produced by the general Lehmann alternative can be repli-
cated using other methods. An alternative speci�cation of the Lehmann family states
that a monotone but unknown transformation produces exponentially distributed out-
comes. Thus for a rank test statistic, generating nj (j = 1; : : : ; k) random variables
from an exponential distribution with parameter 
j produces comparable results. Al-
though not as constructive as the algorithm based on equation (3), the generation of
exponential random variables, using the Lehmann alternative parameter correspond-
ing to each group, is su�cient to reproduce the general Lehmann alternative Monte
Carlo power function, and it is simpler to implement.

Tables 2 and 3 demonstrate that the general Lehmann alternative and the expo-
nential distribution Monte Carlo power approximations produce comparable results.
The two algorithms use similar steps but in a di�erent order. For the general Lehmann
alternative algorithm, the ranks are �xed and the group indicators are chosen based
on the Lehmann alternative parameter vector and equation (3). For the exponential
distribution power simulation, the group indicators are �xed and within each group
the exponential random variables are generated with parameter 
j (j = 1; 2; : : : ; k)
to compute the ranks.

14
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5. EXTENSIONS
The Monte Carlo power computations are easily generalizable to k-sample designs
for an ordered alternative or testing the superiority of k � 1 experimental therapies
relative to a control population. The probabilistic mechanism for the allocation of the
n samples to the k groups remains the same and is determined by equation (3). The
allocation is based on the number of subjects in each of the k groups (n1; n2; : : : ; nk)
and the k � 1 odds parameters (
1; 
2; : : : ; 
k�1).

For example, suppose k increasing dose levels of an experimental therapy are pro-
posed and it is hypothesized that the odds of the reduction in tumor volume between
successive dose levels is proportional to the dose administered. The ordered alter-
native hypothesis for this experiment, assuming the Lehmann family of alternatives,
may be written as

1 � 
k�1 � : : : � 
1
where 
i
j = didj
and di represents the dose level administered to group i. The Jonckheere-Terpstra
statistic provides greater power than the Kruskal-Wallis statistic under the ordered
alternatives, and can be written in terms of the Wilcoxon rank sum statistics

J =X
i<j Sij i = 1; 2; : : : ; k � 1 j = 2; 3; : : : ; k

where Sij is the Wilcoxon rank sum statistic applied to groups (i; j). The Monte
Carlo power function is then computed for J .

Alternatively, when comparing k � 1 experimental therapies to a single control
15
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(group k), the test statistic
E =X

i Sik i = 1; 2; : : : k � 1
can be applied to the k-sample allocation mechanism enabling Monte Carlo power
computations to be carried out.
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Table 1. The columns in the table represent: the odds parameter, the exact power,
the Monte Carlo power calculation, and the asymptotic power.

Two sample case - 5 observations per group
 exact power Monte Carlo power asymptotic power1 0.056 0.056 0.0562 0.144 0.145 0.1343 0.273 0.273 0.2384 0.386 0.385 0.3295 0.477 0.475 0.4066 0.549 0.549 0.4737 0.606 0.605 0.5308 0.652 0.654 0.58010 0.721 0.718 0.66215 0.817 0.817 0.79720 0.866 0.867 0.874

Two sample case - 10 observations per group
 exact power Monte Carlo power asymptotic power1 0.052 0.052 0.0522 0.249 0.249 0.2323 0.511 0.512 0.4754 0.693 0.693 0.6635 0.804 0.805 0.7916 0.871 0.871 0.8737 0.913 0.913 0.924
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Table 2. Exact and Monte Carlo power calculations. Three sample case - 6 observa-
tions per group

Monte Carlo power(
1; 
2); 
3 = 1 exact power Lehmann alternative Exponential distribution(1,1) 0.050 0.050 0.049
(3,3) 0.308 0.307 0.304(3,2) 0.246 0.247 0.244(3,1) 0.302 0.302 0.299
(5,5) 0.552 0.553 0.548(5,3) 0.467 0.468 0.463(5,1) 0.573 0.574 0.569
(7,7) 0.694 0.693 0.690(7,4) 0.616 0.618 0.613(7,1) 0.737 0.734 0.731
(11,11) 0.830 0.830 0.825(11,6) 0.778 0.778 0.774(11,1) 0.886 0.884 0.882
(21,21) 0.932 0.932 0.930(21,11) 0.911 0.910 0.909(21,1) 0.973 0.973 0.972
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Table 3. Exact and Monte Carlo power calculations. Four sample case - 4 observations
per group

Monte Carlo power(
1; 
2; 
3); 
4 = 1 exact power Lehmann alternative Exponential distribution(1,1,1) 0.050 0.050 0.050
(3,3,3) 0.195 0.196 0.199(3,2,2) 0.143 0.144 0.146(3,2,1) 0.181 0.181 0.184(3,1,1) 0.166 0.168 0.167
(5,5,5) 0.362 0.364 0.368(5,3,3) 0.271 0.273 0.276(5,4,2) 0.307 0.307 0.312(5,1,1) 0.309 0.311 0.312
(10,10,10) 0.602 0.604 0.607(10,7,4) 0.519 0.520 0.526(10,5,5) 0.489 0.492 0.496(10,1,1) 0.556 0.558 0.562
(16,16,16) 0.730 0.730 0.734(16,8,8) 0.642 0.643 0.646(16,11,6) 0.665 0.664 0.669(16,1,1) 0.708 0.710 0.714
(30,30,30) 0.848 0.848 0.849(30,15,15) 0.794 0.793 0.797(30,20,10) 0.809 0.808 0.811(30,1,1) 0.849 0.851 0.852
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