
Columbia University
Columbia University Biostatistics Technical Report Series

Year  Paper 

Technical Report #B-92—Formulas for the
Exact Probability of Correct Selection in the

Binomial Levin-Robbins Sequential Selection
Procedure in the Cases b=2, c=3 and b=2, c=4

for r=1

Bruce Levin∗ Cheng-Shiun Leu†

∗Columbia University, Bruce.Levin@Columbia.edu
†

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/columbiabiostat/art4

Copyright c©2004 by the authors.



Technical Report #B-92—Formulas for the
Exact Probability of Correct Selection in the

Binomial Levin-Robbins Sequential Selection
Procedure in the Cases b=2, c=3 and b=2, c=4

for r=1

Bruce Levin and Cheng-Shiun Leu

Abstract

The purpose of this report is to record some explicit expressions for the proba-
bility of correct selection in the Levin-Robbins procedure for selecting the best b
out of c coins in the two cases in which such expressions are feasible.



Statistical Reports

TECHNICAL REPORT #B-92

July, 2004

formulas for the exact probability of

correct selection in the binomial

levin-robbins sequential selection

procedure in the cases

b=2, c=3 and b=2, c=4 for r=1

by

cheng-shiun leu and bruce levin

1

Hosted by The Berkeley Electronic Press



1. Introduction.

The purpose of this report is to record some explicit expressions for the prob-

ability of correct selection in the Levin-Robbins procedure for selecting the best b

out of c coins in the two cases in which such expressions are feasible. The reader is

referred to Leu and Levin (2004) for terminology and notation.

2. Exact probability of correct selection of best two out of three coins

without elimination of coins (b = 2, c = 3) in the case r = 1.

Remark 1. This problem is equivalent to selecting the worst coin. Also, by parity

reversal, the results of this section apply to selecting the best coin without elimina-

tion.

Procedure A: Start with tallies (0,0,0), toss vector-at-a-time until for the first time

X
(n)
(2) −X

(n)
(3) = r = 1, where X

(n)
(1) ≥ X

(n)
(2) ≥ X

(n)
(3) . Select coins corresponding to X

(n)
(1)

and X
(n)
(2) (call these coins (1) and (2)).

Remark 2. This procedure can be represented as a Markov chain with an infinite

state space, because X
(n)
(1) can be arbitrarily large at stopping time. It is thus key to

have the following result on returns to starting configurations.

Let the coins have probability of heads pi = 1− qi (i = 1, 2, 3). Without loss of
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generality, we may assume p1 ≥ p2 ≥ p3. Let P = p1p2p3 and Q = q1q2q3. Note that

P 6= 1−Q. Also, let wi = pi/qi (i = 1, 2, 3).

Definition : Let the tally of heads after n tosses be (X
(n)
1 , X

(n)
2 , X

(n)
3 ). The configu-

ration of the tally is (X
(n)
1 −X

(n)
(3) , X

(n)
2 −X

(n)
(3) , X

(n)
3 −X

(n)
(3) ).

Lemma 1. Suppose the tally configuration is (0, 0, 0). Let E0 be the event of an

eventual return to (0, 0, 0) before stopping. Then P (E0) = 3P (E), where

P (E) =
∞∑

m=0

(
2m
m

)

m + 1
{ PQ

(1− P −Q)2
}(m+1). (1)

Proof : Throughout we condition on vector outcomes that exclude all heads or all

tails, so that the configuration changes at each step. The conditional probability

of a step in the “outward” direction (1, 0, 0), say, is w1Q/(1 − P − Q), while a

step in the “inward” direction (0, 1, 1) is w2w3Q/(1 − P − Q). The lemma follows

from counting paths on the linear lattices {(s, 0, 0) : s ≥ 0}, {(0, s, 0) : s ≥ 0},

and {(0, 0, s) : s ≥ 0}. Consider a configuration at (1, 0, 0). The number of paths

that return to that configuration (not necessarily for the first time) in exactly 2m

steps without stopping and without visiting (0,0,0) is
(2m

m )
m+1

(see Lemma 2 below).

Each such path has probability {w1Q/(1 − P − Q)}m{w2w3Q/(1 − P − Q)}m =

{PQ/(1− P −Q)2}m. Thus the probability of an eventual return to (1, 0, 0) before
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stopping is
∑∞

m=0
(2m

m )
m+1

{ PQ
(1−P−Q)2

}m. If the random walk starts at (0, 0, 0), takes a

first step to (1,0,0), eventually returns to (1,0,0), and then takes a step back to

(0, 0, 0), the first and last steps introduce another factor of PQ/(1− P −Q)2. The

sum must begin at m = 0 to include an immediate return to (0, 0, 0). Note that

exactly the same expression results for sojourns in the initial direction (0, 1, 0) or

(0, 0, 1), because in each case a step outward and a step inward have joint probability

{w2Q/(1−P−Q)}{w1w3Q/(1−P−Q)} = {w3Q/(1−P−Q)}{w1w2Q/(1−P−Q)}

= PQ/(1− P −Q)2. Thus P (E0) = 3
∑∞

m=0
(2m

m )
m+1

{ PQ
(1−P−Q)2

}(m+1). QED

Remark 3. The proof shows that if the starting configuration is (0, 0, 0) and E1 is the

event of an initial step outward to (1, 0, 0) followed by eventual return to (0, 0, 0),

and similarly for E2 with initial step (0, 1, 0) and E3 with initial step (0, 0, 1), then

P (E1) = P (E2) = P (E3) = (1/3)P (E0). We write the common value simply as

P (E) =
∑∞

m=0
(2m

m )
m+1

{ PQ
(1−P−Q)2

}(m+1) as in (1).

Remark 4. We have been tacitly assuming all pi > 0. If any pi = 0, then P (E1) =

P (E2) = P (E3) = P (E) = P (E0) = 0 because inward steps along possible lattices

have zero probability.

The number of paths returning to configuration (1, 0, 0) is a special case of the

following lemma.

4

http://biostats.bepress.com/columbiabiostat/art4



Lemma 2. The number of paths starting at configuration (s + 1, 0, 0) for s ≥ 0 and

visiting configuration (1, 0, 0) (not necessarily for the first time) in exactly n ≥ 0

steps without visiting (0,0,0) is
(

n
t

)
s+1
t+1

, where t = (n + s)/2.

Proof: (by the André reflection principle). Consider the two-dimensional lattice

(n, s) from configuration (s+1, 0, 0) after n steps (see Figure 1). There are
(

n
t

)
lattice

paths in total from (0, s) to (n, 0) at diagonally opposite corners of a rectangle. The

number of these paths that cross or touch the line at level s = −1 and end at (n, 0)

equals the number of paths that start at (0, s) and end at (n,−2). There are
(

n
t+1

)

of these. Thus the number of allowable paths that do not go below s = 0 equals

(
n
t

)
−

(
n

t+1

)
=

(
n
t

)
(1− n−t

t+1
) =

(
n
t

)
(2t−n+1

t+1
) =

(
n
t

)
( s+1

t+1
).

[Figure 1 here]

Theorem: For the three-coin procedure A to select the b = 2 coins with highest pi,

the probability of correct selection, P [CS] = P [{(1), (2)} = {1, 2}] is given by

P [CS] =

w1w2Q
1−P−Q

{1 + 1
w1+w3

+ 1
w2+w3

} − { w1

w1+w3
+ w2

w2+w3
}P (E)

1− 3P (E)
, (2)

where P (E) is given in (1).

Proof: It suffices to consider only paths that do not return to configuration (0, 0, 0);

formally, P [CS] = P (E0)P [CS] + {1− P (E0)} P [CS| no return to (0, 0, 0)] by the

5
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stationarity of the procedure once it returns to the origin. Thus P [CS] = P [CS|

no return to (0, 0, 0)]. Now P [CS| not E0] = {P [CS| first step to (1, 0, 0) and not

E0] P [(1, 0, 0) and not E0] + P [CS| first step to (0, 1, 0) and not E0] P [(0, 1, 0) and

not E0] + P [ first step is (1, 1, 0)]}/P [ not E0]. On the event [(1, 0, 0) and not E0]

the conditional probability of correct selection is w2/(w2 +w3), corresponding to the

event that coin 2 gets a head before coin 3, in which case the terminal configuration is

(s+1, 1, 0) for some s ≥ 0. Furthermore, P [(1, 0, 0) and not E0] = P [(1, 0, 0) and not

E1] = P [(1, 0, 0) on the first step]−P [E1] = w1Q
1−P−Q

−P [E]. Similarly, P [CS|(0, 1, 0)

and not E0] = w1/(w1 + w3) and P [(0, 1, 0) and not E0] = w2Q
1−P−Q

− P (E). Also

P [(1, 1, 0) on first step ] = w1w2Q
1−P−Q

. Therefore

P [CS] =
w2

w2+w3
{ w1Q

1−P−Q
−P (E)}+ w1

w1+w3
{ w2Q

1−P−Q
−P (E)}+ w1w2Q

1−P−Q

1−P (E0)

=
w1w2Q

1−P−Q
{1+ 1

w1+w3
+ 1

w2+w3
}−{ w1

w1+w3
+

w2
w2+w3

}P (E)

1−3P (E)
.

Remark 5. We know by Remark 1 that P [CS] is the same as that of the Levin-

Robbins procedure without elimination for selecting the “best” coin (after parity

reversal) and thus satisfies P [CS] ≥ w−1
3

w−1
1 +w−1

2 +w−1
3

= w1w2

w1w2+w1w3+w2w3
, although this

does not appear to follow trivially from (2).

Remark 6.

6
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Q

1− P −Q
= q1q2q3

p1q2q3+q1p2q3+q1q2p3+p1p2q3+p1q2p3+q1p2p3

= 1
w1+w2+w3+w1w2+w1w3+w2w3

,

and

P
1−P−Q

= (P/Q)Q
1−P−Q

= w1w2w3

w1+w2+w3+w1w2+w1w3+w2w3

= 1
w−1

1 +w−1
2 +w−1

3 +w−1
1 w−1

2 +w−1
1 w−1

3 +w−1
2 w−1

3

.

If p1 = p2 = p3 = p, say, and w = p/q, then Q
1−P−Q

= 1
3(w+w2)

, and

P [CS] =

w2

3(w+w2)
{1 + 1

2w
+ 1

2w
} − P (E)

1− 3P (E)
=

1/3− P (E)

1− 3P (E)
= 1/3.

If p3 = 0, since P (E) = 0, then

P [CS] =
w1w2

w1 + w2 + w1w2

{1 +
1

w1

+
1

w2

} =
w1 + w2 + w1w2

w1 + w2 + w1w2

= 1.

If p1 = 0 or p2 = 0, P [CS] = 0−0
1−0

= 0.

If p1 = 1, we must interpret w1Q = p1q2q3 = q2q3, P = p2p3, Q = 0, w1w2Q =

p2q3 and w1

w1+w3
= 1. Then

7
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P [CS] = p2q3

1−p2p3
{1 + 1

w2+w3
} =

p2q3{1+ 1
w2+w3

}
q2q3+p2q3+q2p3

= w2

1+w2+w3
{1+w2+w3

w2+w3
} = w2

w2+w3
.

Similarly, for p2 = 1, interchange the role of coins 1 and 2, P [CS] = w1

w1+w3
. If

p3 = 1 then Q = 0, which implies P [CS] = 0.

Remark 7. Suppose the selection procedure starts at configuration (s + 1, 0, 0) for

s ≥ 0, as could occur with a four-coin procedure with elimination (c = 4, b = 2, r =

1). Let E1,s = [ return to configuration (0, 0, 0) before stopping ]. From Lemma 2,

there are
(

n
t

)
s+1
t+1

paths that return to configuration (1, 0, 0) (not necessarily for the

first time) in exactly n steps, where t = (n+s)/2, and each such path has probability

( w1Q
1−P−Q

)
n−s

2 ( w2w3Q
1−P−Q

)
n+s

2 = (w2w3

w1
)

s
2 { PQ

(1−P−Q)2
}n

2 , assuming n has the same parity as

s. Thus if s = 2u and n = 2m, paths have probability (w2w3

w1
)u { PQ

(1−P−Q)2
}m, and if

s = 2u + 1 and n = 2m + 1 (u ≥ 0,m ≥ 0), paths have probability

(w2w3

w1
)u+ 1

2{ PQ
(1−P−Q)2

}m+ 1
2

= (w2w3

w1
)u{ PQ

(1−P−Q)2
}m{w2w3

w1

PQ
(1−P−Q)2

} 1
2

= (w2w3

w1
)u{ PQ

(1−P−Q)2
}m w2w3Q

1−P−Q

Therefore, including the final step to configuration (0, 0, 0) we have for s = 2u,

8
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u ≥ 0,

P [E1,2u] =
∞∑

m=0

(
2m

m + u

)
2u + 1

m + u + 1
{ PQ

(1− P −Q)2
}m w2w3

w1

)u w2w3Q

1− P −Q
(3)

and for s = 2u + 1, u ≥ 0,

P [E1,2u+1]=
∞∑

m=0

(
2m + 1

m+u+1

)
2u + 2

m+u+2
{ PQ

(1−P−Q)2
}m(

w2w3

w1

)u(
w2w3Q

1−P−Q
)2 (4)

Similarly, if E2,s = [ return to configuration (0, 0, 0) before stopping ] given

starting configuration (0, s + 1, 0), and E3,s likewise for (0, 0, s + 1), then P [Es,2]

follows (3) and (4) with the final factor replaced by (w1w3

w2
)u(w1w3Q

1−P−Q
)1 or 2, and P [E3,s]

replaces the final factor by (w1w2

w3
)u( w1w2Q

1−P−Q
)1 or 2. Note in (3) and (4) the binomial

coefficients can be written as
(

2m
m−u

)
and

(
2m+1
m−u

)
, respectively. Therefore the first

non-zero term in either sum is m = u.

Remark 8. Following logic similar to the Theorem, the probability of correct selection

given initial configuration (s + 1, 0, 0), which we write as P [CS|(s + 1, 0, 0)], is

P [CS|(s + 1, 0, 0)] = P (E1,s)P [CS|(0, 0, 0)] + {1− P (E1,s)} w2

w2 + w3

because, as before, on any sample path not in E1,s the probability of correct selec-
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tion is simply w2

w2+w3
. Similarly, P [CS|(0, s + 1, 0)]=P (E2,s)P [CS|(0, 0, 0)] +(1 −

P (E2,s))
w1

w1+w3
and P [CS|(0, 0, s+1)] = P (E3,s)P [CS|(0, 0, 0)], because paths start-

ing from (0, 0, s + 1) not in E3,s can not terminate in a correct selection.
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http://biostats.bepress.com/columbiabiostat/art4



3. Exact probability of correct selection of the best two out of four coins

with elimination (c = 4, b = 2) in the case r = 1.

We now derive the P [CS] for the Levin-Robbins procedure with elimination of

inferior coins in the simplest case, r = 1. Without loss of generality, we assume the

probabilities of heads are p1 ≥ p2 ≥ p3 ≥ p4.

Procedure B : Sample coins 1, · · · , 4 vector-at-a-time until the time of first elimina-

tion, N = inf{n ≥ 1 : X
(n)
(2) − X

(n)
(4) = r}, where X

(n)
(1) ≥ X

(n)
(2) ≥ X

(n)
(3) ≥ X

(n)
(4) . At

time N , any and all coins j with X
(N)
j = X

(N)
(4) are eliminated from further consider-

ation. If more than b coins remain, the procedure continues from the current tallies.

Stopping occurs at time N∗ = inf{n ≥ 1 : X
(n)
(2) −X

(n)
(3) = 1}.

Stopping occurs at time N∗ = n if the configuration a(n) = (X
(n)
1 −X

(n)
(4) , X

(n)
2 −

X
(n)
(4) , X

(n)
3 −X

(n)
(4) , X

(n)
4 −X

(n)
(4) ) is of the form (1, 1, 0, 0) or (s+2, 1, 0, 0) or (1, s+2, 0, 0)

for s ≥ 0 with a correct selection, or for other permutations of these configurations

with an incorrect selection. The procedure continues for other configurations of the

form (1, 1, 1, 0) or (s + 2, 1, 1, 0) for s ≥ 0, or permutations thereof. For ease of

notation, we write configuration events at time of first elimination as [(1, 1, 0, 0)],

for example, and the set of coins in play after N as C. The probability of correct

selection P [CS] = P [{X(N∗)
1 , X

(N∗)
2 } = {X(N∗)

(1) , X
(N∗)
(2) }] is given by expression (5):

11
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P [CS] = P [(1, 1, 0, 0)] + P [(1, 1, 1, 0)]P [CS|C = {1, 2, 3}, (0, 0, 0)]

+P [(1, 1, 0, 1)]P [CS|C = {1, 2, 4}, (0, 0, 0)]

+
∑∞

s=0 P [(s + 2, 1, 0, 0)] +
∑∞

s=0 P [(1, s + 2, 0, 0)]

+
∑∞

s=0 P [(s + 2, 1, 1, 0)]P [CS|C = {1, 2, 3}, (s + 1, 0, 0)]

+
∑∞

s=0 P [(1, s + 2, 1, 0)]P [CS|C = {1, 2, 3}, (0, s + 1, 0)]

+
∑∞

s=0 P [(1, 1, s + 2, 0)]P [CS|C = {1, 2, 3}, (0, 0, s + 1)]

+
∑∞

s=0 P [(s + 2, 1, 0, 1)]P [CS|C = {1, 2, 4}, (s + 1, 0, 0)]

+
∑∞

s=0 P [(1, s + 2, 0, 1)]P [CS|C = {1, 2, 4}, (0, s + 1, 0)]

+
∑∞

s=0 P [(1, 1, 0, s + 2)]P [CS|C = {1, 2, 4}, (0, 0, s + 1)]. (5)

We have already derived expressions for the P [CS] in the reduced procedure

after time of first elimination. It remains to derive the probability of the various

configurations at time of first elimination.

As in Remark 3, starting from (0, 0, 0, 0), we define events E∗
1 = [ first step to

(1, 0, 0, 0) and return to (0, 0, 0, 0) before first elimination ], · · ·, E∗
4 = [ first step to

(0, 0, 0, 1) and return to (0, 0, 0, 0) before first elimination ]. These events all have

probability equal to P (E∗), say, with

12
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P (E∗) =
∞∑

m=0

(
2m

m

)
1

m + 1
{ P ∗Q∗

(1− P ∗ −Q∗)2
}m+1, (6)

where P ∗ = p1p2p3p4 and Q∗ = q1q2q3q4.

As in the proof of the preceding theorem, it suffices to consider sojourns that

do not return to zero to derive the probability of configurations at time of first

elimination, because the unconditional probability equals the conditional probability

given no return to (0, 0, 0, 0). Thus, for example, P [(1, 1, 0, 0)] = P [(1, 1, 0, 0)| no

return to (0, 0, 0, 0)] = {P [(1, 1, 0, 0) on first step ]+P [(1, 0, 0, 0) on first step followed

by any path that returns to (1,0,0,0) without returning to (0,0,0,0) followed by

outcome (0,1,0,0) ] + P [(0, 1, 0, 0) on first step followed by any path that returns to

(0,1,0,0) without returning to (0,0,0,0) followed by outcome (1,0,0,0) ]}/(1−4P (E∗))

= { w1w2Q∗
1−P ∗−Q∗ + P (E∗) w2

w2w3w4
+ P (E∗) w1

w1w3w4
}/(1− 4P (E∗))

= { w1w2Q∗
1−P ∗−Q∗ + 2P (E∗)

w3w4
}/(1− 4P (E∗)). (7)

The second and third terms follow because the event E∗
1 (respectively, E∗

2) is

isomorphic to paths that visit (1, 0, 0, 0) on the first step (respectively, (0, 1, 0, 0))

and on the last step move to (0, 1, 0, 0) (respectively, (1, 0, 0, 0)) instead of inward

to (0, 0, 0, 0) in direction (0, 1, 1, 1) (respectively, (1, 0, 1, 1)).

13
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For other permutations of (1, 1, 0, 0), we interchange subscripts, or use the fun-

damental transposition lemma for configurations a = (a1, a2, a3, a4) at time of first

elimination: if aij is a with ai and aj interchanged, then P [aij] = P [a]w
−(ai−aj)
ij ,

where wij = wi/wj for any i, j. Thus,

P [1, 0, 1, 0] = P [1, 1, 0, 0] · w−1
23 ,

P [1, 0, 0, 1] = P [1, 1, 0, 0] · w−1
24 ,

P [0, 1, 1, 0] = P [1, 1, 0, 0] · w−1
13 ,

P [0, 1, 0, 1] = P [1, 1, 0, 0] · w−1
14 ,

P [0, 0, 1, 1] = P [1, 1, 0, 0] · w−1
13 w−1

24 = P [1, 1, 0, 0] · w−1
14 w−1

23

.

We argue similarly for P [(1, 1, 1, 0)]: P [(1, 1, 1, 0)] = P [(1, 1, 1, 0)| no return to

(0, 0, 0, 0)] = {P [(1, 1, 1, 0) on first step ] + P [(1, 0, 0, 0) on first step followed by

any path returning to (1,0,0,0) but not (0,0,0,0), followed by outcome (0,1,1,0)

] + P [(0, 1, 0, 0) on first step followed by any path returning to (0,1,0,0) but not

14
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(0,0,0,0), followed by outcome (1,0,1,0) ] + P [(0, 0, 1, 0) on first step followed by

any path returning to (0,0,1,0) but not (0,0,0,0), followed by outcome (1,1,0,0)

]}/(1− 4P (E∗))

= {w1w2w3Q∗
1−P ∗−Q∗ + P (E∗)( w2w3

w2w3w4
+ w1w3

w1w3w4
+ w1w2

w1w2w4
}/(1− 4P (E∗))

= {w1w2w3Q∗
1−P ∗−Q∗ + 3P (E∗)

w4
}/(1− 4P (E∗)). (8)

Similarly,

P [(1, 1, 0, 1)] = { w1w2w4Q
∗

1− P ∗ −Q∗ +
3P (E∗)

w3

}/(1− 4P (E∗)),

P [(1, 0, 1, 1)] = { w1w3w4Q
∗

1− P ∗ −Q∗ +
3P (E∗)

w2

}/(1− 4P (E∗)), and

P [(0, 1, 1, 1)] = { w2w3w4Q
∗

1− P ∗ −Q∗ +
3P (E∗)

w1

}/(1− 4P (E∗)).

Next consider P [(s+2, 1, 0, 0)] for s ≥ 0. Now we enumerate paths of two forms:

(a) (1, 0, 0, 0) on first step followed by paths taking s + m steps outward toward

(1, 0, 0, 0) and m steps inward toward (0, 1, 1, 1), in any order, never returning to

(0, 0, 0, 0), followed by (1, 1, 0, 0); and (b) (1, 0, 0, 0) on first step followed by paths

taking s + m + 1 steps toward (1, 0, 0, 0) and m steps toward (0, 1, 1, 1), followed by
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(0, 1, 0, 0). Paths of type (a) have probability ( w1Q∗
1−P ∗−Q∗ )

s+m+1(w2w3w4Q∗
1−P ∗−Q∗ )m w1w2Q∗

1−P ∗−Q∗ ,

and paths of type (b) have probability ( w1Q∗
1−P ∗−Q∗ )

s+m+2(w2w3w4Q∗
1−P ∗−Q∗ )m w2Q∗

1−P ∗−Q∗ .

Lemma 3. The number of paths starting with configuration (1, 0, 0, 0) and ending

at configuration (s + 1, 0, 0, 0), not necessarily for the first time and never visiting

(0, 0, 0, 0), in exactly s + 2m steps is
(

s+2m
m

)
s+1

s+m+1
. The number of paths starting

with configuration (1, 0, 0, 0) and ending at configuration (s + 2, 0, 0, 0), not neces-

sarily for the first time and never visiting (0, 0, 0, 0), in exactly s + 2m + 1 steps is

(
s+2m+1

m

)
s+2

s+m+2
.

Proof : In the two dimensional lattice (n, s) corresponding to configuration (s +

1, 0, 0, 0) after n steps, by the André Reflection Principle, there are as many paths

that start at (0, 0), cross or touch level −1, and end at (s+2m, s) as there are paths

that end as far below level −1 as s is above level −1, i.e., end at (s + 2m,−(s + 2)).

Unrestricted paths with m + s outward steps and m inward steps number
(

s+2m
m

)

while unrestricted paths with m − 1 outward steps and s + m + 1 inward steps

number
(

s+2m
s+m+1

)
=

(
s+2m
m−1

)
. Thus there are

(
s+2m

m

)
−

(
s+2m
m−1

)
=

(
s+2m

m

)
(1 − m

s+m+1
)

=
(

s+2m
m

)
( s+1

s+m+1
) paths that do not cross level −1, i.e., do not visit configuration

(0, 0, 0, 0). For paths with m + s + 1 outward steps and m inward steps, replace s

by s + 1. QED
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Therefore we find P [(s + 2, 1, 0, 0)] = P [(s + 2, 1, 0, 0)| no return to (0, 0, 0, 0)]

= {∑∞
m=0

(
s+2m

m

)
s+1

s+m+1
( P ∗Q∗

(1−P ∗−Q∗)2 )
m( w1Q∗

1−P ∗−Q∗ )
s+1( w1w2Q∗

1−P ∗−Q∗ )

+
∑∞

m=0

(
s+2m+1

m

)
s+2

s+m+2
( P ∗Q∗

(1−P ∗−Q∗)2 )
m( w1Q∗

1−P ∗−Q∗ )
s+2( w2Q∗

1−P ∗−Q∗ )}

× (1− 4P (E∗))−1

= {∑∞
m=0

(
s+2m

m

)
s+1

s+m+1
( P ∗Q∗

(1−P ∗−Q∗)2 )
m( w1Q∗

1−P ∗−Q∗ )
s+2 · w2

+
∑∞

m=0

(
s+2m+1

m

)
s+2

s+m+2
( P ∗Q∗

(1−P ∗−Q∗)2 )
m( w1Q∗

1−P ∗−Q∗ )
s+3 · w2

w1
}

× (1− 4P (E∗))−1 (9)

Similarly, for P [(1, s+2, 0, 0)], interchange w1 and w2 in (9), or use the transpo-

sition lemma, P [(1, s + 2, 0, 0)] = P [(s + 2, 1, 0, 0)]w
−(s+1)
12 .

Next consider P [(s + 2, 1, 1, 0)]. Here we count paths of two types again (a)

(1, 0, 0, 0) on first step followed by s + m outward and m inward steps in any order,

never returning to (0, 0, 0, 0), followed by (1, 1, 1, 0); and (b) (1, 0, 0, 0) on first step

followed by s + m + 1 outward and m inward steps in any order, never returning to

(0, 0, 0, 0), followed by (0, 1, 1, 0). This is the same as for (s + 2, 1, 0, 0) except for

the final step. Thus P [(s + 2, 1, 1, 0)] equals

{∑∞
m=0

(
s+2m

m

)
s+1

s+m+1
( P ∗Q∗

(1−P ∗−Q∗)2 )
m( w1Q∗

1−P ∗−Q∗ )
s+2 · w2w3
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+
∑∞

m=0

(
s+2m+1

m

)
s+2

s+m+2
( P ∗Q∗

(1−P ∗−Q∗)2 )
m( w1Q∗

1−P ∗−Q∗ )
s+3 · w2w3

w1
}

× (1− 4P (E∗))−1 (10)

Similarly, for P [(1, s + 2, 1, 0)], interchange w1 and w2 in (10); for P [(1, 1, s +

2, 0)] interchange w1 and w3 in (10); for P [(s + 2, 1, 0, 1)] replace w3 in (10) by

w4; for P [(1, s + 2, 0, 1)] replace w3 by w4 in (10) and interchange w1 and w2; for

P [(1, 1, 0, s+2)] replace w3 by w4 in (10) and interchange w1 and w4. Alternatively,

use the transposition lemma, e.g., P [(1, s + 2, 1, 0)] = P [(s + 2, 1, 1, 0)]w
−(s+1)
12 , and

P [(1, 1, 0, s + 2)] = P [(s + 2, 1, 1, 0)]w
−(s+2)
14 w+1

13 etc.
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