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Computing the Total Sample Size When
Group Sizes Are Not Fixed

Mithat Gonen

Abstract

This article is concerned with computing the total sample size required for a two-
sample comparison when the sizes of the two groups to be compared cannot be
fixed in advance. This is frequently encountered when group membership depends
on a variable which is observable only after the subject is enrolled to the study,
such as a genetic or a biological marker. The most common way of circumventing
this problem is assuming a fixed number for the prevalence of the condition that
will determine the group membership and compute the required sample size con-
ditionally. In this article this practice is formalized by placing a prior distribution
on the prevalence which results in an analytically tractable formula for the uncon-
ditional sample size. In particular a sample size inflation factor, a number that
can be multiplied with conditional sample size, is presented. An example is given
from the planning of a clinical trial investigating the prognostic role of molecular
markers in gastrointestinal stromal cancer.



Computing the Total Sample Size When
Group Sizes Are Not Fixed

Mithat G�onen
Department of Epidemiology and Biostatistics

Memorial Sloan-Kettering Cancer Center
New York, NY 10021
gonenm@mskcc.org

Summary. This article is concerned with computing the total sample size
required for a two-sample comparison when the sizes of the two groups to be
compared cannot be �xed in advance. This is frequently encountered when
group membership depends on a variable which is observable only after the
subject is enrolled to the study, such as a genetic or a biological marker. The
most common way of circumventing this problem is assuming a �xed number
for the prevalence of the condition that will determine the group member-
ship and compute the required sample size conditionally. In this article this
practice is formalized by placing a prior distribution on the prevalence which
results in an analytically tractable formula for the unconditional sample size.
In particular a sample size ination factor, a number that can be multi-
plied with conditional sample size, is presented. An example is given from
the planning of a clinical trial investigating the prognostic role of molecular
markers in gastrointestinal stromal cancer.
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1 Introduction
Two-sample comparisons are fundamental in statistics and the sample size
requirements to adequately power these tests are well-studied. In particu-
lar, one can �nd a closed-form approximation to the sample size for every
conceivable two-sample comparison, including normal, binary, ordinal, sur-
vival and count data (see, for example, Cohen, 1988; Fleiss, 1981; Gail, 1974,
Noether, 1987; Lachin, 1981; Campbell, Julious and Altman, 1995). All of
these formulae presume that group sizes can be �xed in advance, a reason-
able assumption for randomized studies. In some instances, however, group
sizes cannot be �xed in advance because group membership is determined by
variable which is observable only after the subject is recruited to the study.
A genetic or biological marker that is thought to have a bearing on the out-
come of the patient, but can only be observed after the patient is enrolled in
the clinical trial, is a commonly encountered example. The term \marker"
will be used throughout the paper to denote the variable that determines
group membership.

This article addresses the case where the marker is dichotomous and the
corresponding comaprison of interest is a two-sample test. The two categories
will be called positive (+) and negative ({) generically. Marker status for a
given patient usually requires tissue or blood samples to be collected for
which the patient has to be consented and enrolled to the study. Therefore
the numbers of marker positive and marker negative patients are beyond the
control of the investigators. An example is given in Section 4 on a problem
of this nature that arised in the context of a clinical trial.
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The proportion of marker positive patients will be referred to as preva-
lence. The current practice in handling these situations is to guess the preva-
lence, either eliciting it from clinical investigators or from the numbers re-
ported in the literature for similar patient populations, and treat it as �xed.
This results in a conditional procedure where the computed sample size pro-
vides adequate power only if the presumed prevalence is correct. As a partial
remedy, it is customary to o�er power calculations for a variety of other val-
ues of prevalence, providing an idea for which values the study will have
acceptable power.

This procedure is in common use, mostly due to its simplicity, but it is an
underestimate of the required sample size since it ignores the variability in
prevalence. Here an unconditional approach which uses a prior distribution
on the prevalence and averaging over it with respect to the prior is presented.
This method is analytically tractable and results in a simple adjustment that
can be used to inate the sample size obtained conditionally. One must note
that, although the term prior is used, our method is not Bayesian in a general
sense. In particular a prior distribution for the parameter of interest is not
used.

The main results appear in the next section and the choice of prior is
discussed in Section 3. Section 4 contains a case study on the planning
of a clinical trial investigating the prognostic role of molecular markers in
gastrointestinal stromal cancer (GIST). and Section 5 contains the concluding
remarks.
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2 Methodology
The following establishes some necessary notation: _n is the sample size re-
quired for a two-sample comparison with equal group sizes, ~n is the sample
size required for the same two-sample comparison with unequal group sizes
when the groups sizes can be speci�ed in advance (conditional sample size)
and n is the sample size required for the same two-sample comparison with
unequal group sizes when the groups sizes cannot be speci�ed in advance
(unconditional sample size). It will be assumed that, for the endpoint in
question, a procedure is available for computing _n. It is well-known that

~njp = _n4p(1� p) (1)
where p denotes the prevalence of one of the groups with respect to the total
sample size. The conditional approach calls for inserting the best guess,
say p = p0, in (1). In this article this approach is formalized by using an
unconditional formula:

n = Ep(~njp)
n = Z 1

0 [4p(1� p)]�1 _n dG(p) (2)
To apply (2) one would need to specify G(p). Note that assuming p known
can be considered as a special case of (2) where G(p) is a point mass at p0
so this common practice is equivalent to specifying some G(:).

A more realistic distribution for p is the standard Beta family with pa-
rameters � and �, denoted by Be(�; �). The density and cumulative density
functions of Be(�; �) will be denoetd by f(p;�; �) and F (p;�; �), respec-
tively.
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Beta family is not only exible enough to represent varying levels of prior
information about p, but, because of the way p(1�p) appears in the integral,
leads to a simple analytical solution, provided � > 1 and � > 1, as well:

n = (� + � � 1)(� + � � 2)4(�� 1)(� � 1) _n
The term that multiplies _n will be called as the sample size ination fac-
tor (SSIF) since it represents the amount one needs to inate the sample
calculation if groups are assumed equal sizes:

SSIF ( _n) = (� + � � 1)(� + � � 2)4(�� 1)(� � 1) (3)
Remark 1: Note that when � < 1 or � < 1

limp!0 f(p;�; �) = 0
limp!1 f(p;�; �) = 0

Therefore, from a practical standpoint, the requirement that both � > 1 and
� > 1 assures, by removing all the appreciable probability in the neighbor-
hoods of the boundary points, that prevalence is su�ciently away from 0 or
1.
Remark 2: The mean of the beta distribution, �=(�+�), can be taken to be
equal to p0. When � and � tend to in�nity in such a way that p0 = �=(�+�)
remains constant, the density approaches a point mass at p0. SSIF, in this
case, approaches 4��=(�+ �) = p0(1� p0). This establishes the conditional
approach as a limiting case of the unconditional one.
Remark 3: It is sometimes of interest to compute the power for a given
sample size. Since p appears in the upper limit of the integral in a power

5

Hosted by The Berkeley Electronic Press



calculation, direct derivation for a power ination factor is elusive. Never-
theless one can recompute the approximate power of a study using n in the
power equation that is appropriate for the problem at hand.

3 Choosing � and �

Elicitation of � and � is critical for applications. In some cases, especially for
markers that are frequently encountered in the literature, there will be some
prior reports which provide prevalence estimates for the markers. Table 1,
further explained in the next section, is an example of a summary of previ-
ous reports for a particular marker in gastrointestinal stromal cancer (GIST).
Gnanadesikan, Pinkham and Hughes (1967) showed that, to �t a beta dis-
trubution to such data, maximum likelihood equations can be expressed in
terms of digamma functions and solved iteratively. Speci�cally, if there are
s comparable studies in the literature which report prevalences xj based on
a sample size of wj, j = 1; : : : ; s, then maximum likelihood estimates �̂ and
�̂ will satisfy

1s
sX

j=1 wj log(xj) = 	(�̂)�	(�̂ + �̂) (4)
1s

sX
j=1 wj log(1� xj) = 	(�̂)�	(�̂ + �̂): (5)

where 	(s) = �0(s)=�(s) is the digamma function.
If there is no reliable literature survey but the investigators have strong

convictions about a range for the possible values of p, the prevalence, denoted
by (pL; pU), such that P (p 2 (pL; pU)) = 1 � q, where 1 � q can be thought
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of the \con�dence" associated with this choice. In this case
F (pU ;�; �)� F (pL;�; �) = 1� q (6)

by de�nition and there are several (�; �) pairs that satisfy (6). Therefore
a further restriction on the parameters space is needed. One possibility is
setting p0 = �=(� + �). Another possibility is imposing symmetry in terms
of the tail probabilities:

F (pL;�; �) = q2 (7)
Strictly speaking (7) can be satis�ed only when � = �, that is when the
beta distribution is symmetric around its mean. But it may be possible
to �nd a solution that yields approximately equal tail probabilities. Either
approach involves solving a non-linear system. Since F is not available in
closed-form a solution can be obtained only numerically using an iterative
method. An automated iteration is rarely necessary and a manual trial-and-
error approach, with the help of a statistical software that evaluates F , is
su�cient.

4 Case Study: KIT mutations in GIST
Nearly all gastrointestinal stromal tumors express the receptor tyrosine ki-
nase KIT that has a role in cell proliferation and survival. Most GISTs have a
gain of function mutation in the KIT proto-oncogene resulting in constitutive
KIT activation in the absence of its natural ligand. STI571, commerically
known as Gleevec, is a selective molecular inhibitor of KIT and has shown
remarkable activity in patients with metastatic GIST. In June 2002, a multi-
center, randomized, placebo-controlled trial (American College of Surgeons
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Oncology Group Study Z9001) was opened to test the bene�t of adjuvant
STI571 in patients following the resection of their GIST.

The investigators propose to study the tissue specimens collected from the
patients enrolled in this multicenter trial. In particular they hypothesize that
the molecular characteristics of primary GIST predict the clinical outcome
after adjuvant STI571 therapy. This is formulated in a sequence of two-
sample hypothesis tests which compare the patients with KIT mutation with
those who do not which is unknown at the time a grant proposal is written
for this moelcular study.

Antonescu et. al. (2003) summarize the available evidence on KIT mu-
tations in GIST patients. A total of seven studies are published and their
relevant results are summarized in Table 1. For the moment we ignore the tis-
sue type and maximize the likelihood to �nd � = 3:95 and � = 2:71 (Figure
1). This results in a sample size ination factor of 1.31. One of the goals of
the study is to see larger tumors (> 5cm) is associated with KIT mutations.
Using the method of Fleiss (1981) one �nds a total sample size of 118 to
detect a di�erence of 20% (70% to 90%) in the prevalence of KIT mutations
in small and large tumor categories. This calculation assumes equal group
sizes. Therefore if the study is planned for 155 patients, it will, on average,
have 80% power to test this hypothesis.

One can visually con�rm (see Figure 2) the �t of the prior by overlaying
the model probabilties (smooth curve) with the actual probabilities (step
function). While the two distributions have substantial di�erences in the
middle, the overall �t is reasoanble. Another way to check if the chosen prior
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is sensible is to see if the implied tail probabilities are sensible. In this case
F (0:2; 2; 1:35) = 0:015
F (0:9; 2; 1:35) = 0:025

and the investigators found these extreme probabilities to be reasonable. If
this were not the case, a calibration of the prior would have been necessary.

Fitting a single distribution to prior data does not reveal possible incon-
sistencies in the literature. In this case, one can observe from Table 1 that
even large studies disagreed with each other. It is possible to visualize this
by �tting a mixture prior to the data, i.e. each study k would be assigned a
prior with �k� 1 being equal to the number of patients with KIT mutations
and �k�1 being equal to the number of patients without KIT mutations, for
k = 1; : : : ; 7. This choice of prior parameters can be motivated by Bayesian
practice, see Gelman et. al. (2000) for example. If one plots the mixture of
these betas (using equal mixture probabilities since sample sizes are already
factored in through the choice of �k and �k), as done in Figure 3, a disturbing
feature is revealed: the priors for the big studies do not overlap for the most
part, suggesting a hidden covariate (perhaps more than one) which explains
what mode the particular study belongs to in this multi-modal distribution.

It turns out that one such covariate is not hidden: one might notice
that the studies which had para�n-embedded tissues (marked with P in
the table) reported lower prevalences than those studies which has fresh
frozen tissues (marked with F in the table). This was not a surprise to the
study pathologist. Processing fresh frozen tissue requires an on-site tumor
bank, a substantial investment, and, as a result, many small institutions or
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community hospitals still prefer para�n embedding despite the fact that it
involves a sequence of operations which may inadvertently alter the genetic
makeup of the tissue and result in false negatives. Z9001 will encompass more
than one hundred institutions and will inevitably produce both para�n and
fresh frozen tissue. For this reason the recommendation for this particular
example is to use the SSIF of 1.31. In single-instituion studies, or in cases
where it is known that all samples will come from similar source of tissue,
it would be prudent to �t a prior only to the relevant reports. Figure 4
gives examples of a prior �t only to the studies reporting fresh frozen tissue
(solid curve) and only to the ones reporting para�n-embedded tissue (dotted
curve).

5 Discussion
This article presents an approach to computing the sample size for two-
sample comparisons when the experimenters do not have control over group
sizes. The proposed method is an improvement over the common practice of
�xing the group sizes and computing the sample size conditionally since it
explicitly models the variability in group sizes. It has the advantage of being
directly applicable to any two-sample problem for which the total size can
be computed with known group sizes. In addition it can be expressed as a
simple factor that multiplies the conditional sample size.

Modeling the uncertainty about group sizes is achieved through a para-
metric prior model, reminscent of Bayesian analysis, and the choice of prior
parameters are critical for the appropriate application of the method. The
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example from the GIST clinical trial demonstrates di�erent aspects of choos-
ing these prior parameters. This is an application-speci�c issue and a close
interaction between the clinical investigators and the statisticians is essential
for this purpose.

This approach essentially computes the sample size which will, on aver-
age, deliver the desired power. Proponents of the conditional approach may
object to this, since, the actual power of the study will depend only on the
observed group sizes and not the ones that could have been observed but
were not. In fact it can be shown that group size is an ancillary statistic
and, when observed, conditioning on it will always result in more e�cient
inferences. On the other hand, the idea of averaging over the sample space
is fundamental to the frequentist school of inference and the notion of power
has a distinct frequentist avor. Therefore the idea of an \average" sam-
ple size is consistent with the practice of Neyman-Pearson style hypothesis
testing. From a practical standpoint using a single best guess leads to un-
derestimating the sample size and using an extreme point can be excessively
conservative.

Similarly, one can argue that, if there is substantial evidence that the
marker prevalence is multi-modal, averaging over the entire mixture may be
misleading since only the component in which the current study will be is
relevant. Although this can be countered using the same principle from the
previous paragraph, one needs to be careful about which previous studies
are relevant for the current one. One possible source of multi-modality is
a systematic di�erence, such as the pathological methods used to determine
marker positivity. In this case only the methods that are the same as, or very
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similar to, the study at hand should be considered. This is critically di�erent
from a unimodal prior postulates that all previous studies are essentially
exchangable as far as the prevalence is concerned.

Finally, a viable alternative to the proposed method is sample size re-
estimation (Gould, 2001). One can, after a small group of patients is en-
rolled, estimate the prevalence and use it to re-estimate the sample size. In
larger trials this could be feasible and may result in a more powerful design
but it is unlikely to be useful in small trials. Another issue which limits
its applicability even in large trials is that, most multi-center clinical trials
involving pathological analysis designate a central laboratory which usually
processes the samples in large batches for reasons of accuracy and cost. It
is in fact very common that all samples are analyzed at the end of the trial.
Under such a protocol sample size re-estimation will not be feasible.

In summary, the proposed method is a reasonable way to take into account
the variability in group sizes at the design stage. It is simple to apply,
although choosing the prior parameters should be done with care and in close
collaboration with clinical invetsigators. This serves to reinforce the notion
that the role of the statistician in designing a study is not only providing
sample size and power for a variety of scenarios but actively participating in
building the scenarios and deciding which of them are more relevant.
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Table 1: Published studies on KIT mutations in GIST. Tissue indicates
the type of tissue used for molecular analysis: P for para�n-embedded tissue
and F for fresh frozen tissue. NR stands for not reported.

Study 1 2 3 4 5 6 7
Tissue NR P P P P F F

Sample size 6 35 46 200 124 45 120
KIT mutation 5 13 9 111 71 40 94
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Figures
Figure 1: Beta prior with parameters � = 3:95 and � = 2:71.
Figure 2: Empricial probabilities from Table 1 and the �tted cumulative
prior (� = 3:95 and � = 2:71).
Figure 3: Mixture prior for all the seven studies in Table 1
Figure 4: Mixture priors for studies using fresh frozen tissues (solid) and
studies using para�n tissue (dotted).
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