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Classification Using Generalized Partial Least
Squares

Beiying Ding and Robert Gentleman

Abstract

The advances in computational biology have made simultaneous monitoring of
thousands of features possible. The high throughput technologies not only bring
about a much richer information context in which to study various aspects of gene
functions but they also present challenge of analyzing data with large number of
covariates and few samples. As an integral part of machine learning, classification
of samples into two or more categories is almost always of interest to scientists.
In this paper, we address the question of classification in this setting by extending
partial least squares (PLS), a popular dimension reduction tool in chemometrics,
in the context of generalized linear regression based on a previous approach, Itera-
tively ReWeighted Partial Least Squares, i.e. IRWPLS (Marx, 1996). We compare
our results with two-stage PLS (Nguyen and Rocke, 2002A; Nguyen and Rocke,
2002B) and other classifiers. We show that by phrasing the problem in a general-
ized linear model setting and by applying bias correction to the likelihood to avoid
(quasi)separation, we often get lower classification error rates.
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Abstract

Advances in computational biology have made simultaneous monitoring of

thousands of features possible. The high throughput technologies not only bring

about a much richer information context in which to study various aspects of gene

functions but they also present challenge of analyzing data with large number of

covariates and few samples. As an integral part of machine learning, classifica-

tion of samples into two or more categories is almost always of interest to scien-

tists. We address the question of classification in this setting by extending partial

least squares (PLS), a popular dimension reduction tool in chemometrics, in the

context of generalized linear regression, based on a previous approach, Iteratively

ReWeighted Partial Least Squares, i.e. IRWPLS (Marx 1996). We compare our

results with two-stage PLS (Nguyen and Rocke 2002a,b) and with other classi-

fiers. We show that by phrasing the problem in a generalized linear model setting

and by applying Firth’s procedure to avoid (quasi)separation, we often get lower

classification error rates.

Keywords: Cross-validation; Firth’s procedure; Gene expression; Iteratively Reweighted

Partial Least Squares; (Quasi)separation; Two-stage PLS.

1 Introduction

The wealth of gene expression data now available poses numerous statistical ques-

tions ranging from image analysis and variability analysis of gene expression levels

(Chen et al. 1997, Newton et al. 2001), to the study of biochemical pathways. The

huge number of genes relative to the moderate sample size renders many of the sta-

tistical modeling approaches inappropriate and hence efficient methods for dimension

reduction and information extraction are of great interests. In this paper, we adapt a

technology prevalent in chemometrics to the analysis of gene expression data. Our

methodology easily extends to other settings, such as proteomic investigation through

mass spectrometry or more classical problems such as Fisher’s Iris data (Venables and

Ripley 2002).
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1.1 Partial Least Squares (PLS) in chemometrics

Similar data structures have been seen in the field of chemometrics, which has recently

focused on analyzing observational data, originating mostly from organic and analyti-

cal chemistry, food research, and environmental studies. In these areas the number of

observations tends to be many fewer than the number of measured variables and there

is usually a high degree of collinearity among the variables, e.g. digitizations of ana-

log signals, signals for different wavelengths in predicting chemical composition of a

compound in spectroscopy. The similarity of these problems to those in computational

biology suggests that the methodology developed for chemometrics may be appropri-

ate for computational biology data.

Over the years, chemometricians have developed techniques for predictive model-

ing based on heuristic reasoning and the empirical evidence which have shown gen-

erally good performance. Both Partial Least Squares (PLS) and Principal Component

Regression (PCR) have been popular regression methods in chemometrics (Wold 1975,

Massy 1965). There are a wealth of articles on regression applications to chemical

problems available in the Journal of Chemometrics (John Wiley) and Chemometrics

and Intelligent Laboratory Systems (Elsevier). An introduction to PLS regression is

given by Geladi and Kowalski (1986) and the use of PLS in calibration can be found in

Martens and Naes (1989). A statistical view of PLS along with other statistical methods

is given by Frank and Friedman (1993).

1.2 Application of PLS for gene expression data

In this paper, we propose a procedure for two-group and multi-group ( ��� group) clas-

sification (prediction) of human tumor samples based on microarray gene expression

data. The procedure involves incorporating PLS within the iteratively reweighted least

squares (IRWLS) steps for multinomial or binary logistic regression. Our approach

is based on Iteratively Reweighted Partial Least Squares (IRWPLS) first proposed by

Marx (1996) and a procedure by Firth (1992a,b, 1993) which is applied to remedy

and avoid the frequently encountered non-convergence and infinite parameter estimate
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problems in logistic regression (Albert and Anderson 1984, Santner and Duffy 1986).

This problem is usually present when the sample size is small relative to the number of

parameters. Infinite parameter estimates can occur even when there is only one covari-

ate which is highly predictive, hence the problem is due to the model rather than the

ability to classify. For binary logistic regression, Heinze and Schemper (2002) showed

that Firth’s procedure gives finite parameter estimates.

More recently, more effort has been devoted to using penalized likelihood to tackle

high dimensional problems, e.g. ridge penalized logistic regression (Eilers et al. 2001).

Fort and Lambert-Lacroix (2003) also proposed combining PLS with logistic regres-

sion penalized with a ridge parameter. Comparisons of our results with their ap-

proaches are of interest and will be explored in future research.

2 Methods

We first introduce PLS in its original form, i.e. for a continuous response. We then

consider the extension of PLS to generalized linear models (GPLS), specifically for

categorical data in classification problems. A more detailed description is first devoted

to the two-group classification problem where we also address separation problems in

logistic regression. We then generalize the approach to multi-group classification.

2.1 Partial Least Squares (PLS)

Originating from general systems-analysis models and developed as a calibration method

to predict chemical variables, PLS is usually presented as an algorithm.

Let �����	��

������������������� be the � by � matrix of predictors and � be the � by �
response vector. � can often be written as a bilinear form (Kruskal 1978):� � � �"!$#&%('� ) 
+*,!
 #-) �.*,!� #/�����.#0) '1*,!' #&% '
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where ���32 ).
4��)5�
�������6��)5'178���9�32 * 
4� * �4��������� * ':7 . The )�; ’s are called latent vari-

ables or scores, and the *<; ’s are called loadings. The % ' is the residual matrix and=
is the number of PLS components. Moreover, we usually assume that the � matrix

is standardized so that each column has mean 0 and standard deviation 1 (although the

latter is not necessary). We further assume the following,� � �?>� �A@�#-B8'� ).
.C+DE#0)+�FC�GH#������5#-)�'IC�JK#-B8'
where @L�M2 C D ��C G ����������C J 7 and B ' is the residual. Thus, � and � are linked via the

latent variables � .

Usually the criterion for constructing components in PLS is to sequentially max-

imize the covariance between the response � and �ON , subject to the constraint thatN ! � ! �PNQ�SR . The PLS components )(�/�PN�T are orthogonal, where N�TU��V$W5X$YZV$[]\.^_\.`�
acb4d �	�ON<���e� . If
=

is chosen to be the rank of � (i.e. minimum of the row rank and

column rank of � ) and � is of full rank, then the PLS estimates of > are identical to

ordinary least squares (OLS) estimates. However, since PLS is usually applied in cases

where � is larger than � , a value of f smaller than the rank of � is often used. Hence,f can be viewed as a hyperparameter that also needs to be optimized. f is often se-

lected by cross-validation as the number of PLS components for which the predicted

sum of errors is minimized.

2.2 Two-stage PLS logistic regression

When the outcome variable is not continuous, the ordinary PLS method does not apply

directly. Wang et al. (1999) proposed a probability-based multivariate algorithm com-

bining partial least squares and logistic regression for identification of the development

stages of oral cancer through analysis of autofluorescence spectra of oral tissues. Clas-

sification of the four stages of cancer development (normal, hyperplasia, dysplasia and
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early cancer) is carried out in two steps (we will call this two-stage PLS regression in

later sections). First the PLS components are obtained using the original covariates and

coded response matrix (where 3 dummy variables of values 0 or 1 are used to repre-

sent the categorical response, which is treated as unordered). In the second step, they

assume that g h X�� �ji� D �E��k�lmi:#0> !i.n i
where op�3�q�������6��r , i.e. �ji"�Ssp�	t g Vvu5u(oxw n iF� , and n i is the vector of PLS components

for an observation belonging to class o . MLE estimates for the regression coefficients

can be obtained and the samples were classified into the category which has the highest

predicted probability from the logistic regression based on the extracted components.

The authors used leave-one-out cross-validation (LOOCV) to determine the number of

PLS components and for evaluating the performance of the algorithm.

Nguyen and Rocke (2002b) applied a similar approach to problems of two-group

tumor classification using two-stage PLS regression on microarray gene expression

data. The original PLS procedure was first used for dimension reduction where the

response variable is either R or � , and logistic discrimination (LD) was applied to the

chosen PLS components for classification. Quadratic discriminant analysis (QDA) was

also tested as a comparison with LD. They applied their method to various data sets in-

volving human tumor samples and stability of the classification results was assessed by

re-randomization. They used a similar approach for multi-group classification (Nguyen

and Rocke 2002a). Later we compare our results with theirs.

Although their results for two-group classification appear good, their approach may

not be ideal since the original PLS algorithm is designed for a continuous outcome �
with constant variance and a linear relationship with � . Analogous to the development

of generalized linear models to accommodate regressions of non-normal responses on

a set of covariates, we consider the extension of PLS from the linear model to the

generalized PLS setting.
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2.3 Iteratively ReWeighted Partial Least Squares (IRWPLS)

McCullagh and Nelder (1989) showed that the maximum likelihood estimation of the

parameters > of generalized linear models via Fisher scoring method can be rephrased

as iteratively reweighted least squares (IRWLS) as follows,y?z<{}| D � y?z { #&~� � �����
�"#S�}�c�����4� �� �:�
where

z {
are the regression coefficient estimates for > at � {	� iteration, ~ is the score

vector and
y

is the expected value of Fisher Information. The �}� {	� element of
y

is,�U��� ���1�?�5�.�$����5� � where �m���&���q�������}� . The dependent variable here is a linearized

form of the link function applied to the response variable,� �K� #/�	�������4� �� �
and the weights, � , are functions of the fitted values �� . Estimates are obtained by

iteratively updating the adjusted dependent variable and weights until the convergence

criterion is met.

Marx (1996) proposed an iteratively reweighted PLS algorithm which incorpo-

rates PLS into the framework of generalized linear models. That approach embeds

the weighted PLS steps within the iterative steps, treating and updating the adjusted

dependent variable   as the response rather than working with the original outcome.

The two nested loops are iterated until the stopping criterion is satisfied. For more

details refer to Marx (1996).

2.4 Firth’s procedure

For classification problems using logistic regression, it is well-known that convergence

poses a long-standing problem. Infinite parameter estimates can occur depending on

the configuration of the sample points in the observation space (Albert and Anderson

7
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1984, Santner and Duffy 1986). There are three categories of configurations of the

sample points: complete separation, quasi-complete separation and overlap. For both

complete and quasi-complete separation, there exists a vector
z

that correctly clas-

sifies all observations to their groups. Thus the MLE for > does not exist and the

log-likelihood goes to zero and/or the dispersion matrix becomes unbounded as iter-

ations proceed. Only under the overlap configuration do finite regression coefficient

estimates exist. We note that although separation is an indication of perfect prediction

and hence could be considered positively, it is problematic for logistic model fitting

since it’s in contradiction to the assumptions of the model. In high dimensional prob-

lems, such as analysis of gene expression data we find that separation is a commonly

occurring problem. Since we want to make use of a logistic model as the basis for

analyzing these data we must find some way to overcome the separation problem.

Firth (1992a,b, 1993) developed a procedure to remove the first-order term of the

asymptotic bias of maximum likelihood estimates in GLMs based on a modification of

the score function,¡ �	k � � T � ¡ �	k � ��#&R
�£¢c¤O�¥W.V4t6¦¨§5©ª�«>1�m¬ D 2 � ©��}>:�®­ � k � 7�¯I��R
�°�A�±�E�����}�
where

¡ �}>²� is the original score function and ©��}>:� ¬ D is the inverse Fisher’s infor-

mation matrix evaluated at > . When applying Firth’s procedure to logistic regression,

Heinze and Schemper (2002) showed that in the modified score function for logistic

regression, each original observation, � � , is split into two pieces, a response and a non-

response. This guarantees finite estimates since for every covariate pattern there are

some responses and some nonresponses which is the overlap configuration. So this

procedure provides a solution to separation problems in logistic regression.

We can readily modify the original IRWPLS, by incorporating the Firth’s procedure,

to deal with two-group classification problems with large number of covariates (e.g.
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genes). Specifically,¡ �}k � � T � ³� � `<D §4�}� � #µ´ � ­ � �<�O� � ���H#&´ � �¶¯�[ �£�� ³� � `<D �}� T� �Q� T� �¥[ ���� ³� � `<D�· T� [ �£� � � �� � T� �	� T� �O� T� �
where · T� is the � {	� diagonal term of weight matrix� T � �¸¤Z¹q�¥V¨Xj��´ � #/�5�� T� � � � #&´ � ­ �� T� � � � ¤����H#&´ � �� T� �� � � #/�	� T� �O� T� ��� � �� � T� �
now the pseudo response is � T .

Although ´ � ’s are functions of > , they are treated as fixed when derivatives of score

functions with respect to > are taken to make the problem more tractable, hence the

last equation above is actually an approximation. We call this approach IRWPLSF pro-

cedure in later sections.

Note that even though Marx (1996) didn’t address the problem of separation, when

it does occur, some ad-hoc criterions are usually used in order to get an estimate of the

coefficient estimates. These rather arbitrary estimation criterions may actually invali-

date other aspects of model fitting, e.g. selection of optimal f as an hyperparameter.

The IRWPLSF procedure, however, avoids this problem. For example, it can properly

evaluate the difference among convergent models with all values of f without any

further data-dependent procedures.
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2.5 IRWPLS for multi-group classification

In this section, we generalize the IRWPLS procedure to the multi-group classification

scenario. It is a generalization of logit models for binary responses (see Fahrmeir et al.

(2001) Chap. 3 for a discussion). In our application, we always treat the classes as

nominal with no special ordering. But it would be straightforward to use any other

model deemed appropriate, such as adjacent logit models, etc. Moreover, we assume

that the counts at each configuration of the covariates are fixed, independent multino-

mials and we will refer to this model as the multinomial logit model. Let the categorical

outcome º have »/#S� classes labeled R
���q�������6�m» . We illustrate our model under the

common-baseline categorical model that is commonly used. Suppose the baseline class

is always labeled class 0, and for each �c���q��������» , the logit model holds:g h X�� � �£�� � l �E��> !� � �
where �E�¼�q�������6��� , indexes samples. Note here that the most general case, i.e. differ-

ent > � ’s for each of the » logits, is considered. With the following constraints,½�� ^ `�l � ��� ^ �9�¨� ½�� ^ `�l � ��� ^ �9�
where � �£� �¾©ª�¿u5V$Yc� g ¦��ÁÀÂt g Vvu5uª�4� , with ©���Ã � being an indicator function and using

the standard form of the likelihood, the score functions are:~��«>1�Ä� �O!¿�	ÅM��� �� � !_Æ �ªÇ� � �}ÅÈ��� �¶�
In the above formula, >É�Ê�}> D �Ë> G ���������Ë> ½ � ! , where > � �¨���È�q�������6�®» is the �0¤-�
regression coefficient vector corresponding to the � {	� logit. ÅÄ�Ì�}� !D ��� !G ����������� !³ � !where � � ���	� � D ��� � G �������6��� � ½ � ! , which is the »S¤Z� response vector for the � {	� sample.

Similarly �±�3� * ! D � * !G ��������� * !³ � ! where * � ����� � DF�	� � G¨�������6�¿� � ½ � ! , ���3�	� ! D �®� !G ���������®� !³ � !
10
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where

� � �
ÍÎÎÎÎÎÎÏ � � D Ð Ð ����� ÐÐ � � G Ð ����� Ð�����Ð Ð ����� R � � ½

Ñ�ÒÒÒÒÒÒÓ
in which � �£� is the covariate vector corresponding to the � {	� logit, �9�Ô�¨�������6�®» .

Usually � � D��Õ� � G0�Ö�����:�Õ� � ½ �Õ� � . Note that the baseline level, i.e. class 0,

is now only implicitly modeled as a result of conforming to the linear constraints for

uniqueness of the estimates. Æ is a block diagonal matrix with the � {	� diagonal block

being:

Æ � �
ÍÎÎÎÎÎÎÏ � � D ���1�Q� � D � �e� � D � � G ����� �e� � D � � ½�e� � D � � G � � G �Ë�:�Q� � G �×����� �e� � G � � ½������e� � D � � ½ �e� � G � � ½ �����Ø� � ½ ���:�O� � ½ �

Ñ�ÒÒÒÒÒÒÓ
It can then be shown that the pseudo-response vector for the � {	� sample is,  � � Ç � # �ªÇ �� � � �}� � � * � �¶�
Now the IRWPLS procedure can be carried out as before with the necessary changes,

and we refer to this model fitting procedure as MIRWPLS.

For the multinomial logit model, the problem of (quasi-)complete separation still

exists. Firth’s procedure can be extended to multinomial case, which we will denote by

MIRWPLSF. The pseudo response vector can be expressed in a similar form as before:  T� � Ç � # �ªÇ �� * T� �}� T� � * T� �
where * T� and �,T� are functions of the original * � and � � as in the description of MIR-

WPLS. The last equality illustrates that the problem can be rephrased as a multinomial

logit model with an adjusted response vector �ET� and mean vector * T� for each sample � .
For a detailed derivation refer to Appendix A. Note, however, even though MIRWPLSF
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tends to shrink > towards 0, and hence provides a more stable model than MIRWPLS

(Firth 1993), finite estimates are no longer guaranteed due to the multiplicity of classes.

Prediction of outcome is simply based on polytomous discrimination (PD), which

is essentially classifying a new observation into the class with highest predicted prob-

ability based on the fitted model. This prediction rule is also commonly referred as

softmax (Ripley 1996).

2.6 Assessing Prediction

We use classification error rates to assess the performances of IRWPLS-based proce-

dures and to compare with other classifiers. When a test set is available, the out-of-

sample test set classification error rate is estimated using the model built on the training

set. When a test set is not available, we use leave-one-out cross-validation (LOOCV).

For each iteration, one of the � samples is reserved as a test sample and the remaining�1�?� form the training samples. A model is constructed using the training samples, and

the test sample, i.e. the one left out, is classified using the built model. After iterating

through all � samples, the number of incorrect predictions divided by � is an estimate

of the error rate.

The optimal number of PLS components is selected by choosing that value of f
which minimizes LOOCV error rate for the training set. We also employ this for other

procedures that involve hyperparameters, such as k-nearest neighbors (KNN).

3 Results

In this section, we compare the classification results from IRWPLS-based procedures

with other classifiers including two-stage PLS, Fisher’s linear discriminant analysis

(FLDA), diagonal LDA (DLDA), quadratic discriminant analysis (QDA) (Dudoit et al.

2002), k-nearest neighbors (KNN), random forests (RF) (Breiman 2001, 2002) and sup-

port vector machines (SVM) (Furey et al. 2000, Guyon et al. 2002). Dudoit et al. (2002)
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found that simple classifiers such as DLDA and KNN were better than other more so-

phisticated classifiers in a large scale comparison of discrimination methods based on

their empirical distributions of misclassification error rates. All examples presented in

this section were run on publicly available data. The data sources are listed in Appendix

B. All software is available as R packages through either CRAN or the Bioconductor

Project. See Appendix B for the appropriate URLs.

3.1 Two-group classification

3.1.1 Pima data

We first test our procedure on a simple data set where number of covariates is smaller

than the number of samples available. We use the data as reported in Venables and

Ripley (2002). There are 532 complete records, 200 of which are used as training set

and the remaining 332 as the test set. The goal of the study was to establish a link

between the 7 covariate measurements collected and whether or not the woman has

diabetes (Smith et al. 1988). For both the training and test set, about 1/3 are from the

diabetic group.

Results on applying IRWPLS-based procedures to the Pima diabetes data are shown

in Table 1. f stands for the number of PLS components used. Overall refers to the

overall misclassification rate whereas N and D refer to the class specific conditional er-

ror rates for nondiabetic and diabetic samples respectively. Due to the simple structure

of the data and the abundance of samples, the best performance is achieved when using

7 PLS components, i.e. full rank, which is essentially logistic regression. LOOCV

error for training set is R]� �qÙ ¢FR and test set error is R
�Ú��Û¨ÜqÜ for both IRWPLS and IRW-

PLSF. The class specific training set CV error rates for N vs D are similar for IRWPLS

and IRWPLSF, hence only detailed results for the latter are shown (Table 1). In gen-

eral, the diabetic patients are more likely to be misclassified, possibly as a result of

there being fewer cases in the data andor they may be more variable.

13
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Table 1: % Misclassification for Pima Data using IRWPLS(F)

K Training set (n=200) Test set (n=332)
CV error out-of-sample error

IRWPLS IRWPLSF IRWPLS IRWPLSF
Overall Overall N D Overall Overall N D

1 0.2500 0.2500 0.1364 0.4706 0.2199 0.2199 0.1345 0.4037
2 0.2500 0.2500 0.1515 0.4412 0.2078 0.2048 0.1166 0.3853
3 0.2800 0.2800 0.1591 0.5147 0.2229 0.2229 0.1031 0.3945
4 0.2600 0.2650 0.1515 0.4853 0.2048 0.2078 0.1031 0.3945
5 0.2600 0.2550 0.1439 0.4706 0.2078 0.2018 0.1031 0.3945
6 0.2650 0.2550 0.1364 0.4853 0.2018 0.2078 0.1031 0.3945
7 0.2350 0.2350 0.1288 0.4412 0.1988 0.1988 0.1031 0.3945

Table 2: Comparison of % Misclassification for Pima Data

Classifier Training set (CV error) Test set (out-of-sample error)
Overall N D Overall N D

FLDA 0.2450 0.1364 0.4559 0.2018 0.1883 0.2294
DLDA 0.2400 0.2197 0.2794 0.2470 0.2242 0.5046

QDA 0.2750 0.1667 0.4853 0.2289 0.2108 0.2661
KNN 0.2550 0.1591 0.5735 0.2169 0.2063 0.2936

RF 0.2800 0.1667 0.4853 0.2469 0.1973 0.3119
SVM 0.2800 0.1515 0.5294 0.2319 0.2287 0.2385

The misclassification results from some other commonly used classification proce-

dures are listed in Table 2. For KNN, op�SÝ is the optimal number of k-nearest neighbor

based on lowest LOOCV misclassification rate of the training set. The performance of

IRWPLS and IRWPLSF is comparable with that of the other classifiers for this simple

data set, both in terms of overall and class specific error rates. This is true even when

IRWPLS or IRWPLSF are based on fewer than full rank PLS components. This exam-

ple indicates that IRWPLS-based procedures are reasonable classifiers for standard low

dimensional data.

3.1.2 Gene Filtering

Even though PLS can handle more covariates than there are samples, the number of

genes in a gene expression dataset (often in the tens of thousands) is still too large
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for practical use, especially given the fact that a considerable percentage of the genes

do not show differential expressions across groups. Hence, filtering is often applied

before classification to remove such genes. For the two-class problem reported here,

we choose the Y genes with the largest absolute � statistics. Gene selection is carried

out as a part of the CV procedure, that is, every time we leave one sample out, both

gene selection and model building are done using only the �0�±� samples and then

prediction of the left out sample is done (Ambroise and McLachlan 2002).

3.1.3 Colon Data

The classification of colon cancer is discussed in Alon et al. (1999). Gene expres-

sion data from 40 tumor and 22 normal colon tissue samples were analyzed with an

Affymetrix oligonucleotide array. Using two-way clustering, Alon et al. (1999) were

able to cluster ��Û normal and 5 tumor samples into one group and Ù ¢ tumor and 3 nor-

mal tissues into the other. Expression of the 2000 genes with highest minimal intensity

across the 62 tissues were used in the analysis. Several EST’s are replicated on the

arrays and some replicates for the same EST have exactly the same expression mea-

surements. Because of this, in all cases where there were replicate probe sets, we used

the mean expression profile of the replicates, leaving �5Û
�¨� nonredundant genes.

The number of misclassifications based on LOOCV for IRWPLS and IRWPLSF as

well as DLDA, KNN, RF and SVM, are shown in Table 3. The numbers in brackets for

IRWPLS and IRWPLSF are the optimal numbers of PLS components chosen by lowest

LOOCV classification error rates of the two IRWPLS-based procedures respectively

and those for KNN are the optimal numbers of nearest neighbors, again chosen by

LOOCV.

The minimum number of 6 misclassifications is achieved by IRWPLSF with YÞ�Ù R genes and KNN with Yß� � R genes. This result is comparable with Furey et al.

(2000), who also misclassified 6 cases using a support vector machine (SVM). How-
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Table 3: Comparison of Misclassification for Colon Data, n=62 (Tumor=40, Nor-
mal=22) Y IRWPLS IRWPLSF DLDA KNN RF SVM

5 11 (1) 12 (2) 11 12 (8) 16 13
10 9 (2) 8 (2) 8 8 (10) 12 10
20 7 (1) 7 (1) 7 6 (10) 8 9
30 8 (1) 6 (15) 8 8 (3) 9 8
40 8 (1) 8 (1) 8 9 (3) 9 9
50 8 (1) 8 (2) 7 8 (3) 9 8

100 8 (2) 7 (4) 11 7 (4) 10 10
200 8 (8) 6 (6) 14 8 (3) 10 9
500 10 (1) 7 (5) 18 8 (5) 10 10

1000 9 (4) 6 (5) 22 10 (2) 10 10

ever, Furey et al. (2000) used a slightly different feature selection procedure:à �}[ � �°� w � |� ��� ¬� wá |� # á ¬� �
where [ � is the gene expression for the � {	� gene, � |� �
�,¬� stand for the sample mean

of the tumor and normal groups respectively, and á |� � á ¬� are the group standard de-

viations. This statistic is very similar to t-statistic assuming unequal group variance

although summing over standard deviations rather than variances is rather unconven-

tional. Applying the Furey filter, we find that the smallest misclassified number using

IRWPLSF is 5 with ���Êr$R , faring a little better than the SVM approach using the

same gene selection procedure. This result also shows that gene selection influences

the performance of classifiers and that it is quite important to make sure that compari-

son of classification methods is done by controlling nuisance factors such as the feature

selection process.

Random splitting Due to the instability of LOOCV error rates for data with few sam-

ples and many covariates, comparison of various classifiers based solely on LOOCV

classification errors may not be reliable. We now compare our IRWPLS-based proce-

dures with the classifiers by randomly splitting the original dataset into a training set
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and a test set. There is currently no consensus on how to choose the relative size of

these randomly divided sets and we follow Dudoit et al. (2002) and choose the training

set and test set size ratio to be 2:1. For each training and test set, we build the classifiers

using the training set only and predict the test set data. The number of optimal PLS

components for IRWPLS-based procedures and the optimal number of nearest neigh-

bors for KNN are chosen by lowest CV error on the training set. Figure 1 shows the

boxplots of the test set error rates for top YÖ�M��R]� � R]� Ù R and � RqR genes chosen by �
statistic for each of the 6 classifiers based on âL�±�5RqR random splitting.

DLDA IRWPLS IRWPLSF KNN RF SVM

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p−
va

lu
e

p−
va

lu
e

p−
va

lu
e

p−
va

lu
e

m=10
m=20
m=30
m=200

Figure 1: Colon data 2:1 random splitting (N=100): boxplots of test set error rates for
classifiers with top 10 (white), 20 (light grey), 30 (dark grey) and 200 (black) genes
using a t-test filter.

Figure 1 suggests that the error rates for IRWPLS and IRWPLSF are typically lower

and less variable. There is no obvious difference between the distributions of error

rates for IRWPLS and IRWPLSF.
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3.2 Multi-group classification

3.2.1 Iris data

We now illustrate the IRWPLS-based multi-group classification approach, ie. MIRW-

PLS and MIRWPLSF and compare them with the other methods. We begin by using

the well-studied iris data set (Fisher 1936).

Table 4: % Misclassification for Iris Data

K IRWPLS IRWPLSF
1 0.6667 0.6667
2 0.6800 0.6467
3 0.3800 0.2867
4 0.0333 0.0333
5 0.0267 0.0400
6 0.0400 0.0267
7 0.0200 0.0267
8 0.0200 0.0267
9 0.0200 0.0200

10 0.0200 0.0267

From Table 4, the minimum CV misclassification rate is 0.02 (3 out of 150) for

both MIRWPLS (for K from 7 to 10) and MIRWPLSF with K=9. Compared with

error rates from other standard classification procedures we mentioned before, e.g.

FLDA (0.0200), DLDA (0.0400), QDA (0.0200), KNN (0.0400), RF (0.0400) and SVM

(0.0333), we can see that the MIRWPLS procedures achieve the same minimum error

rate (0.0200) with less than full rank than the other classifiers achieve using full data

information.

In the following section, we compare results from MIRWPLS and MIRWPLSF with

the multi-class PLS (MPLS) classification approach in Nguyen and Rocke (2002a) as

well as other classifiers. The procedure in Nguyen and Rocke (2002a) is a natural

extension of the two-stage PLS logistic regression, where the first stage of PLS com-

ponent extraction is in principle the same as before only that now instead of univariate
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response, » response variables are needed to uniquely represent »±#9� groups. The

univariate PLS procedure can be extended to accommodate this situation (Höskuldsson

1988, Helland 1988, Garthwaite 1994). The second stage of MPLS uses the common-

baseline multinomial logit regression model and polytomous prediction (PD), QDA,

DQDA or DLDA.

3.2.2 Gene filtering

Analogous to using � -tests for two-group gene filtering, here we apply the all-pairwise

t-filter used by Nguyen and Rocke (2002a), for choosing genes which have a large

number of significant pairwise differences across groups.

3.2.3 NCI60 data

This study involves using cDNA microarrays to study the gene expression profiling

among 60 cell lines from the NCI60 Cancer Microarray Project (Ross et al. 2000,

Scherf et al. 2000). Data on 10 tumor cell lines (the numbers in brackets are the num-

bers of samples in that cell line): breast (7), central nervous system (CNS, 6), colon (7),

leukemia (6), melanoma (8), non-small-cell-lung-carcinoma (NSCLC, 9), ovarian (6),

prostate (2), renal (8), unknown (1), are available. To compare with results from MPLS

reported in Nguyen and Rocke (2002a), we use only 5 of the cancer types: CNS, colon,

leukemia, melanoma, and renal. Furthermore, a subset of 1415 genes (1375 genes and

40 drug targets) which were specifically studied by Scherf et al. (2000) were used.

Missing values exist for some of the samples and expression values for genes with 2

or fewer missing values were imputed using the median expression across samples for

that gene. Genes with more than 2 missing values were excluded from our analysis.

This reduces the number of genes to 1299. Classification results are reported in Table 5.

Using the all pairwise t-filter, the misclassification rates for IRWPLS-based proce-

dures are considerably lower compared with those of MPLS-PD (Table 5) (numbers in

parentheses are the optimal PLS component numbers). The number of misclassifica-

tions drops from 15 (out of 35) for MPLS-PD to 2 for both MIRWPLS and MIRWPLSF,
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Table 5: Comparison of Misclassification for subgroups of NCI60 data using all pair-
wise t-filter (CNS=6, colon=7, leukemia=6, melanoma=8, renal=8)

m MPLS MIRWPLS MIRWPLSF DLDA KNN RF SVM
PD DLDA

41-54-69 ( ã 8) 15 5 2 (3) 2 (3) 2 2 (8) 3 3
148-159-189 ( ã 7) 9 3 0 (3) 1 (4) 2 1 (4) 2 3

when genes having at least 8 significant pairwise absolute mean difference are used.

Whereas, with even more genes, i.e. genes with at least 7 significant pairwise scores,

almost perfect classification can be achieve using IRWPLS-based procedures (MIRW-

PLS = 0, MIRWPLSF = 1) compared with 9 misclassifications for MPLS-PD. Although

error rates for MPLS-DLDA improved quite a bit over those of MPLS-PD, they are still

consistently larger than those of the MIRWPLS and MIRWPLSF’s. In this case, all

the other classifiers have comparable performances compared with MIRWPLS(F), es-

pecially DLDA and KNN (numbers in parentheses are the optimal number of nearest

neighbors).

There are no obvious explanations of the high error rate observed for MPLS in Table

5. However, intuitively it is unappealing to treat the binary elements, coded as dummy

variables as continuous and to use their covariance (or correlation) with the X’s to con-

struct PLS components. This point was also made in the two-group PLS classification

results of section 2. Secondly, for MPLS, the objective criterion is to maximize the

covariance between Xw and Yc, i.e. linear combinations of X and Y matrices respec-

tively, until convergence. The interpretation of a linear combinations of elements in the

response matrix is problematic. The issues with using the two-stage approach may be

even more serious in the multi-group case than the two-group case, where Y is a vector

and the second problem is not encountered. Moreover, we feel that since MPLS might

suffer from convergence problems in the first stage of the PLS component construction,

and (quasi-)complete separation in the second stage, its accuracy and predictive power

is questionable. These interpretations, however, do not necessarily relate directly to

why MPLS fares poorly.
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To summarize, overall for the two-group case, the IRWPLSF procedure tends to be

more stable, with its finite regression coefficients relative to IRWPLS in terms of clas-

sification as well as model fitting. For the multi-group classification problems, we have

shown that both MIRWPLS and MIRWPLSF represent quite a substantial improvement

over MPLS. There is no consistent evidence in our experiments to favor either one

of the IRWPLS-based procedures for multi-group classification in terms of prediction

error rate. Moreover, we have found that IRWPLS based procedures are, in general,

comparable with other popular classifiers such as FLDA, DLDA,QDA, KNN, RF and

SVM, etc. in terms of LOOCV error rates for the training set and test set error rates

when test set is available, e.g. Pima data. When no test set is available, we also show

that with random splitting into training and set sets, the distributions of test set error

rates for IRWPLS-based procedures tend to be lower and less variable compared with

other popular classifiers.

4 Discussion

With the introduction of high throughput microarray technology, data on the expres-

sion level of thousands of genes can be obtained simultaneously. This has provided a

wealth of information as well as a challenge to develop efficient analytical methods, es-

pecially from a statistical point of view. We have in our efforts found a solution to one

important aspect of machine learning, class prediction, via partial least squares regres-

sion. In comparison with the two-stage PLS approach (Wang et al. 1999, Nguyen and

Rocke 2002b,b), we seek alternatives in the context of generalized linear models. We

reintroduced the iteratively reweighted partial least squares (IRWPLS) first proposed

by Marx (1996). We also resolve (quasi-)complete separation problems by applying

Firth’s procedure, which guarantees finite regression coefficients for binary logistic re-

gression (Firth 1992a,b, 1993, Heinze and Schemper 2002). We further extended the

IRWPLS procedure to multinomial logit case where more than 2 groups exist, MIRW-

PLS. A second multi-class model, MIRWPLSF, which incorporates bias reduction into

multi-group classification is also derived.
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We have shown that IRWPLS-based procedures have comparable classification ef-

ficiency with some of the classic approaches such as FLDA, DLDA,QDA, KNN, RF and

SVM when standard data with relatively simple structure (i.e. � � � ) is encountered.

We have also observed that for high dimensional microarray expression datasets that

IRWPLS-based procedures achieve lower classification error rates than the two-stage

PLS approach especially for multi-group classification. They also tend to give fewer

misclassifications compared with DLDA, KNN, RF and SVM. (M)IRWPLSF has similar

performance as that of (M)IRWPLS but provides a more stable model.

Model-based classifiers, such as the IRWPLS-based procedures, may not be as flex-

ible as algorithm-based ones. However, algorithmic classifiers, such as SVM, are often

blackbox tools, with tuning parameters that are not necessarily intuitive for users, e.g.

choice of kernel functions, scale factor, etc, whereas IRWPLS-based procedures pro-

vide us with a well-established framework not only for class prediction but also for

good interpretation, stability and statistical inference. For example, one can interpret

the latent variables, i.e. ) ’s, similarly as one would with the principle components. Also

each � � is a linear combination of the original � , this could suggest which covariates

(genes) are important based on their weights. These issues relate more to the variable

selection and gene importance, which is another important topic that will be addressed

separately.

Moreover, even though we formulated multi-group classification IRWPLS for nom-

inal classes under common-baseline logit model, it can easily be extended to handle

ordinal classes, e.g. cumulative logit model, adjacent logit model, etc when cancer

stages are naturally ordered. Such flexibility of model formulation in regression based

methods, to best reflect the nature of the application, is usually not offered by the other

classifiers. So even though sometimes we may not see substantial improvement of

MIRWPLS(F) over the other algorithmic classifiers such as DLDA, KNN, etc. under a

particular formulation of the logit model, the former really offers a much more power-

ful and flexible tool for problems of higher complexity.
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Also in the PLS context, more research is needed to develop methods for determin-

ing the optimal number of components, estimating standard errors, and so on. We plan

to explore these issues in our future work.
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Appendix

A MIRWPLSF pseudo-response derivation

As we have mentioned in section 2.4, the Firth-modified score function is:¡ �«>:� T � ¡ �}>²��#&R
�£¢��� > g h Xj�®w ©ª�«>1��w �� ¡ �}>²��#&R
�£¢��� > g h Xj�®w �O! Æ ��w �� ¡ �}>²��#&R
�£¢,�¥W.V4t6¦¨§$�¿� !�Æ �Q�m¬ D � !®� Æ� > �ä¯� ¡ �}>²��#&R
�£¢,�¥W.V4t6¦¨§ Æ �å�¿� !_Æ �Q�m¬ 
 � ! � Æ� > Æ ¬ D ¯� ¡ �}>²��#&R
�£¢,�¥W.V4t6¦¨§5æ�� Æ� > Æ ¬ D ¯� ¡ �}>²��#&R
�£¢e�O!_æZç
where æÈ� Æ �å�	� ! Æ �O� ¬ 
 � ! is the hat matrix and èpé is a ��»�¤P� vector, each

element of which is a function of the corresponding term of � and diagonal elements

of æ .

23

Hosted by The Berkeley Electronic Press



æäé �

ÍÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÏ

´jD�D´jDËG
...´jD ½
...´ ³ D´ ³ G...´ ³ ½

Ñ�ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÓ
�

ÍÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÏ

��D�D��DËG
...�jD ½
...� ³ D� ³ G...� ³ ½

Ñ�ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÓ
Ã

ÍÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÏ

´jDmêF#&´jD�D´jDmêF#&´jDËG
...´jDmêF#&´jD ½
...´ ³ êF#&´ ³ D´ ³ ê #&´ ³ G...´ ³ ê #&´ ³ ½

Ñ�ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÓ� ¹¨�8V¨X��	æë�<���SÃ5æ T
where ´ ��� corresponds to the ���}���µ�+��ì²»Â#å�$� {	� diagonal term of æ ( �e�±�q�������Ë� ,�É�Ä�¨��������» ) and ´ � êO�Ôí ½� ^î`<D ´ ��� ^ . æåT , a column vector of length ��» , is in-

troduced here for notational convenience. æ�Tµ�Ô�¿ï,T�ðD ��ïeT�ðG ���������®ï,T�ð³ � ! and ïeT� ��¿´ � ê.#-´ � D.�m´ � ê.#&´ � Gq�������6�®´ � êF#-´ � ½ � ! . Similarly, æäé��3�	ï !é(D ��ï !é1G ����������ï !é ³ � ! whereï<é � ����´]é � DF�®´�é � G¨���������®´�é � ½ � ! .
Continuing the above derivation,¡ �«>1� T � �P! Æ �ªÇ� � �}ÅM��� ��#-R]� ¢E�P! Æ ��Ç� � æ ç� �P! Æ �ªÇ� � �}ÅM����#&R
�£¢eæZç:�� �P! Æ T ��Ç��ñ T �}ÅM���/#&R
�£¢eæZç:�¶�
where similar to binary outcome case,Æ T � Æ ¹¨�8V¨X��	æ é ­ � #/�5�� T � �òÃ¨�¿æ é ­ � #��+�¶�
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Now the pseudo response vector can be expressed as:  � � Ç � #ó�ªÇ �� � T� �}� � � * � #&R
�£¢eï é � �� Ç � #ó�ªÇ �� � T� §$�	� � #&R
�£¢eï � �,�K�Ë�H#&R
�£¢eï T� � * � ¯� Ç � #ó�ªÇ �� � T� �}� T� � * T� �
where ï � �3�¿´ � D.�m´ � GF���������®´ � ½ � ! and ïeT� ����´ªT� D �m´ªT� G �������6�®´jT� ½ � ! .
B URLsô Package URLs

– CRAN: http://cran.us.r-project.org/ì FLDA, QDA: MASSì DLDA smaì KNN: classì RF: randomForestì SVM: e1071

– IRWPLS (S-PLUS): http://www.stat.lsu.edu/bmarx

– Bioconductor: http://www.bioconductor.orgì (M)IRWPLS(F): gplsô Data URLs

– Pima data: R MASS package: Pima.tr (training set) and Pima.te (test set)

– Alon colon data: http://microarray.princeton.edu/oncology/affydata/index.html

– Iris data: R MASS package: iris

– NCI60:ì Information: http://genome-www.stanford.edu/nci60ì Data: http://discover.nci.nih.gov/datasetsNature2000.jsp
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