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Abstract

High density oligonucleotide expression arrays are a widely used tool for the measurement of gene expres-
sion on a large scale. Affymetrix GeneChip arrays appear to dominate this market. These arrays use short
oligonucleotides to probe for genes in an RNA sample. Due to optical noise, non-specific hybridization,
probe-specific effects, and measurement error, ad-hoc measures of expression, that summarize probe inten-
sities, can lead to imprecise and inaccurate results. Various researchers have demonstrated that expression
measures based on simple statistical models can provide great improvements over the ad-hoc procedure
offered by Affymetrix. Recently, physical models based on molecular hybridization theory, have been pro-
posed as useful tools for prediction of, for example, non-specific hybridization. These physical models show
great potential in terms of improving existing expression measures. In this paper we demonstrate that the
system producing the measured intensities is too complex to be fully described with these relatively simple
physical models and we propose empirically motivated stochastic models that compliment the above men-
tioned molecular hybridization theory to provide a comprehensive description of the data. We discuss how
the proposed model can be used to obtain improved measures of expression useful for the data analysts.
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1 Introduction

In the Affymetrix system, a fair amount of further pre-processing and data reduction occurs following the
image processing step to obtain measures of gene expression. Background adjustments, normalization, and
summarization of the probe level data are three typical steps. The model proposed in this paper is especially
useful for the background adjustment step thus we will focus our discussion on this aspect. However, in
Section 6 we briefly discuss how it can be useful for normalization and summarization as well.

Affymetrix GeneChip arrays use short oligonucleotides to probe for genes in an RNA sample. Each gene
will be represented by 11-20 pairs of oligonucleotide probes. The first component of these pairs is referred to
as aperfect match(PM) probe and is designed to be specific to transcripts from the intended gene. However,
non-specific hybridization and optical noise are unavoidable. Therefore, the observed intensities need to be
adjusted to give accurate measurements of specific hybridization. Affymetrix’s approach to adjusting is to
pair each perfect match probe with amismatch(MM) probe, that is designed by changing the middle (13th)
base, with the intention of measuring only optical background noise and non-specific hybridization (NSB).
The default adjustment, provided as part of the Affymetrix system, is based on the difference between perfect
match and mismatch probe intensities(PM−MM).

A final step in the pre-processing of these arrays is to combine the 11-20 probe pair intensities, after
background adjustment and normalization, for a given gene to define a measure of expression that represents
the amount of the corresponding mRNA species. Affymetrix’s default algorithm, MAS 5.0, is based on a
robust average of the logPM−MM values (some tweaking is performed to avoid logs of negatives). Various
researchers have developed alternative algorithms, motivated by statistical models, that outperform the de-
fault algorithm in many applications. For example, Li and Wong (2001) notice a strong probe effect in both
PM andPM−MM and describe it via a simple multiplicative model. By analyzing various arrays at once
they are able to estimate probe effects and use this to improve outliers detection. Li and Wong also propose a
non-linear normalization procedure that improves precision of the default re-scaling approach. Irizarry et al.
(2003a) demonstrate that thePM−MM transformation results in gene expression estimates with exagger-
ated variance. As a practical solution, they propose a global background adjustment step that ignores theMM
intensities. This approach sacrifices some accuracy for large gains in precision. After the global background
adjustment, arrays are quantile normalized (Bolstad et al., 2003) and a log-scale expression effect plus probe
effect model is fitted robustly to define the robust multi-array analysis (RMA) expression measure. Irizarry
et al. (2003b) (Irizarry et al., 2003c) and Cope et al. (2003) (Cope et al., 2003) demonstrate that RMA
outperforms MAS 5.0 and the Li and Wong procedure in various practical tasks. RMA has been imple-
mented in the Bioconductor project (http://www.bioconductor.org) affy package (Irizarry et al.,
2003b), Iobion’s Genetraffic (http://www.iobion.com/, and Insightful’s S+ArrayAnalyzer (http:
//www.insightful.com/products/s-plus_arrayanalyzer/) and has become a popular al-
ternative to the default algorithm provided by Affymetrix. Various other algorithms have been proposed
(Holder et al., 2001; Workman et al., 2002; Naef et al., 2001; Chu et al., 2002; Zhang et al., 2002). have
been proposed. In Section 6 we will argue that the model described in this paper can be used to improve
these methods, especially in terms of their accuracy.

A simple version of our model can be written asPM = O+ N + S with PM the measured intensity
of particular PM probe,O representing optical background noise for this probe,N representing NSB and
S represents specific signal. Similar models have been proposed by, for example, Hekstra et al. (2003)
and Zhang, Miles and Aldape (2003) . A deterministic model that motivates Affymetrix’s approach to
background adjustment would beMM = O+N which would imply thatPM−MM = S. However, in Section
2 we demonstrate that a stochastic model is more appropriate. I this case,PM = O(PM) + N(PM) + S and
MM = O(MM) + N(MM) whereO(PM) andO(MM) have the same expectation but are not perfectly correlated.
Similarly, N(PM) andN(MM) have the same expectation but are not perfectly correlated. In this case the
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differencePM−MM is unbiased, E(PM−MM) = S, but may have a large variance var (PM - MM).
In Section 2 we demonstrate that theO+N component of thePM andMM are not perfectly correlated,

thus var(PM) < var (PM - MM). In part this explains why PM-only measures, such as RMA, are more
precise than measures based onPM−MM, such as MAS 5.0. Irizarry et al. (2003b) empirically show that
for low intensitiesPM the variance of the differencePM−MM can be considerably larger than that ofPM.
Furthermore, in general,MM > PM for roughly 40% of all probes. This is problematic because we know
S is strictly positive. These facts have led some researchers to considerPM− only measures. However,
becauseO andN are strictly positive, not correcting for optical noise and NSB can lead to biased results:
E(PM)> S. To see the negative effect this can have in a practical application of, say, estimating expression
fold-change in two samples being compared, consider a simple example: Say that the true expression for
a particular gene of interest in two samples being compared areµ1 andµ2 picoMolar. Ideally we should
observe a fold change ofµ1/µ2. In practice, we observe intensitiesPM1 = O(PM)

1 +N(PM)
1 +kµ1 andPM2 =

O(PM)
2 + N(PM)

2 + kµ2 and an observed fold change(O(PM)
1 + N(PM)

1 + kµ1)/(O(PM)
2 + N(PM)

2 + kµ2). Thus, as
thekµ1 andkµ2 become smaller, as compared to the the strictly positive mean of the background components
O andN, the estimated fold change converges to 1. This results in attenuated fold change estimates. RMA
performs a global background adjustment that improves accuracy over non- background adjusted methods.
However, as we will discuss later, different probes have different propensities to NSB which implies RMA
does not fully account for NSB. In this paper we develop a model that predicts the behavior of optical
noise, NSB, and specific binding very well. We use hybridization theory from molecular biology together
along with data from carefully designed experiments to motivate the model. We also propose a model for
the distribution of the specific signalS intensities within an array. This model can be used to improve
existing expression measures and provides theoretical explanations for various facts observed in practice,
for example: 1)MM > PM for roughly 40% of all probes, 2)PM−MM has much larger variance thanPM
whenS is small, and 3)PM−MM is more accurate thenPM whenS is small.

2 Empirically Motivated Stochastic Models

In the Section we use publicly available data and data from our own experiments to motivate some of the
components of our stochastic models The first of these data sets is the Affymetrix spike-in experiments. This
experiment is described in detail, for example, by Irizarry et al. (2003b) and Cope et al. (2003). For this
experiment, human cRNA fragments matching 16 probe-sets on one of the Affymetrix human chips were
added to a hybridization mixture at concentrations ranging from 0 to 1024 picoMolar in a design similar to
a Latin square. Apart from the spiked-in probe-sets, the same RNA mixture was hybridized to 59 arrays.
Because we know the spike-in concentrations, it is possible to identify statistical features of the data for
which the expected outcome is known in advance. The second data come from what we call theempty chip
experiment. For this experiment, sample RNA control from human embryonic kidney derived cells was not
labeled, but hybridized following the Affymetrix protocol. Because the RNA was not labeled, the observed
intensities for this hybridization will represent optical noise in the presence of biological sample. Finally,
the third data come from what we call theNSBexperiment. For this experiment, yeast control RNA was
hybridized to an array probing for human genes. This hybridization will represent the full component of the
noise, NSB and optical noise. These two experiments are described in more detail in Wu et al. (2003).

2.1 Optical noise

A figure of a kernel density estimates (not-shown) of the empty chip probe level data (bothPM andMM).
This density looks very much like a normal distribution with mean of roughly 30 and standard deviation
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(SD) of roughly 2. This plots motivates the first component of our model, the optical noise component,
whichwe will model as normally distributed.

By using a log-scale transformation before analyzing microarray data, a great number of investigators
have, implicitly or explicitly, propose a multiplicative measurement error model (Dudoit et al., 2002; Newton
et al., 2001; Kerr et al., 2000; Wolfinger et al., 2001) for microarray data. A slightly more complicated
additive-background-multiplicative-measurement-error model has been proposed by, for example, Durbin
et al. (2002), Huber et al. (2002), Cui, Kerr, and Churchill (2003), and Irizarry et al. (2003a). In Figure 1a
we see observedPM log (base 2) intensities from the spike-in data plotted against their nominal log (base
2) concentration. The line shows the median value for each concentration. Notice that this line looks very
much like the shape of the functionf (x) = log2(x+ k) with k about 60. This confirms that optical noise is
additive as opposed to multiplicative.

Figure 1: Signal detection by PM and MM probes in the Latin-square spike-in experiment. a). log2(PM)
intensitiesof spike-in genes plotted against concentration. Number indicate the order of each probe within
probesets, each number is associated with a color for probesets. The line shows median log2(PM) for each
concentration. b). Same as a) but for MM intensities.

Figure 2a shows SD of probe intensities, computed across 28 replicate arrays, plotted against the respec-
tive average intensity. Figure 2b shows the same plot for log intensities. The mean-variance dependence
that is removed by applying a log transformation is a strong argument for a multiplicative error model. We
therefore propose using an additive-background-multiplicative-measurement-error

In Section 4 we describe a simple procedure for adjusting for optical background noise, similar to the
one proposed by Irizarry et al. (2003a). In Figure 3a we see the median intensities for each nominal
concentration, as in Figure 1, for thePM and thePM adjusted for background (along with other adjustments
described later). We expect the curves in Figure 3a to be lines with slope 1, since every time the nominal
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Figure 2: Standard deviation of probe intensity in original scale (a) and log scale (b) plotted a

concentrationdoubles observed concentration should double. We fit a line to the curve in this Figure and
the slope for thePM intensities is 0.51. For the adjustedPM we have a slope of 0.59. The background
adjustment slightly improves accuracy.

2.2 Non-specific binding

Molecular hybridization theory predicts that short oligonucleotides will hybridized to non-complementary
transcripts. Using data from the NSB experiment we can see this. Figure 4a demonstrate a log-scale scatter
plot of optical noise adjustedPMs versus optical noise adjustedMMs. This plot demonstrates intensities
due to NSB are larger (by orders of magnitude) than those obtained just from optical noise.

Because in this data there is no specific signal, if in fact theMM are an exact measure of the NSB
captured by thePM then the predictive power of theMM should be 1 and this plot should have no scatter.
However, as expected, we do see scatter. The relative predictive power orR2 for this scatter plot is 0.70.
Although not perfect, the largeR2 suggest that there is information on NSB to be extracted from theMM.
Notice also that Figure 4a seems to suggest that after adjustment for optical noise the NSB component of
thePM,MM pairs follow a bivariate normal distribution.

To see that NSB is an additive effect more than it is a multiplicative effect, we adjusted thePM by
subtracting and by dividing theMM. The resulting median intensity ofPM−MM is shown in Figure
3a. The estimated slope is 0.79 which is a good improvement over the non-adjustedPM. ThePM/MM
adjustment is very inaccurate (not shown in Figure 3a). The slope is only about 0.14. This suggest that NSB
is an additive effect more than it is a multiplicative effect.

In Figure 3b we show a smooth curve demonstrating the over-all log-scale SD, across 28 replicate arrays,
as a function of average log intensity, for the different adjustments. Notice that thePM−MM adjustment
is very noisy, especially at the low end. Notice that the loss of precision from subtractingMM is quite
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Figure 3: Accuracy and precision of various background adjustments. a).Log median adjusted intensity
plottedagainst log concentration. b). standard deviation of log adjusted intensity plotted against log con-
centration.

significant. The median SD grows from 0.20 for non-adjustedPM, to 0.36 for optical noise adjustedPM, to
0.90 forPM−MM. The loss in accuracy of ignoring theMM is not as drastic.

2.3 Specific Signal

Li and Wong (2001) demonstrate that, even after subtractingMM, there is a strong probe effect. Notice
in Figure 1 that the range of probe intensities measuring the same nominal amount of RNA cover various
orders of magnitude. In Figure 1 we use color and numbers to denote the same probes. The probes that
have, on average bigger effects, are shown in yellowish colors, those with lower values in blue colors. The
fact that the blue are always at the bottom, the yellow at the top demonstrate the strong and consistent probe
effects. The fact that Figure 1 is a log-scale plot, suggests that this probe effect is multiplicative as well as
the measurement error.

3 Physical Models

Zhang et al. (2003) propose a stacking energy, positional-dependent-nearest-neighbor (PDNN),model for
RNA/DNA duplex formed on microarrays. Their energy model takes into account the sequence of nearest-
neighbors (adjacent two bases) and the position of these nucleotide pairs. It has been suggest that the effect
of nearest-neighbor nucleotide pairs is the most important factor in determining RNA/DNA duplex stability.
Zhang et al. add a positional weight factor to reflect the different contributions from different part of the
probe.
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Figure 4: Intensity prediction ability comparison. a). Optical noise adjusted log2(PM) intensityplotted
against optical noise adjusted log2(MM) intensity. b). Optical noise adjusted log2(PM) against Naef’s
predicted affinity. c).Optical noise adjusted log2(PM) against PDNN predicted non-specific binding.

The energies for gene-specific binding and NSB of thei-th probe in j-th probe-set is thus calculated as,

Ei j = ∑ωkε(bk,bk+1)
E∗i j = ∑ω∗kε∗(bk,bk+1),k = 1,2, ...,24,

respectively, whereωk,ω∗k are weights, andε(bk,bk+1),ε∗(bk,bk+1) are nearest-neighbor stacking energies.
They describe thePM intensity of thei-th probe in j-th probe-set as

Nj/{1+exp(Ei j )}+N∗/{1+exp(E∗i j )}+O,

whereNj is the number of expressed mRNA molecules of genej, andNj/{1+exp(Ei j )} is the contribution
from gene specific binding.N∗ is population of RNA molecules contributing to NSB for the entire array,
andN∗/{1+exp(E∗i j )} is the contribution to intensity ofi-th probe in j-th probe-set.

Naef and Magnasco (2003) propose a simpler model for the NSB by considering only sequence compo-
sition of the probes. Affinity of a probe is described as the sum of position-dependent base affinities:

∑
l j

Sl j Al j ,

where l = A,C,G,T is the letter index andj = 1, . . . ,25 indicates the position along the probe.L is a
Boolean variable equal to 1 if thej-th base matches the respective position. Thus theA’s are per-site,
per-base affinities. Their model is fitted to many arrays at once to obtain an affinity value for each sequence.

In Figure 4b and 4c we plot the optical noise adjusted log2(PM)s from the NSB data set against Naef and
Magnasco’s affinities and Zhang’s PDNN log2(N∗)− log2(1+ exp(E∗i j )). Notice that Naef and Magnasco’s
affinities predict the NSB almost as well as theMM. TheR2 is 0.64. Zhang’s PDNN also does relatively
well with anR2 of 0.38. However, notice that the slope of the PDNN model scatter plot is not 1.

Figure 4 demonstrates that these physical models can not predict NSB perfectly. However, they motivate
a simple stochastic model. In Section 4 we propose a model that describes the NSB contribution as a log-
normal distributed with log-scale mean directly proportional to Naef and Magnasco’s affinities. The two
parameters describing the linear relationship is estimated from the data and not predicted using physical
models. The model works similarly with using Zhang’s− log2(1+exp(E∗i j )) as the affinity measure.
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3.1 Specific Signal

Let P bethe total number of probes on a GeneChip microarray,p(i) the number of probes belonging to an
intensity interval∆(i) centered oni, andq(i) the quantiles of the ranked measured intensitiesi. Our goal is
the derivation of an analytical form for the intensity density

ρ(i) =
1

∆(i)
p(i)
P
. (1)

TheLangmuir adsorption model for a compound in solution in contact with an adsorptive surface stipu-
lates that, at thermodynamic equilibrium,

Θ =
β

β +1
=

KC
KC+1

, (2)

whereβ = KC with K theratio of adsorption and desorption rate constant,C the concentration of the com-
pound in solution, andΘ is the fraction of binding sites which have been adsorbed (P.W., 1994). Obviously,
Langmuir adsorption kinetics are characterized by saturation effects as the occupancy fractionΘ increases
from zero to one. How one is to attribute a value toΘ depends on the experimental setup. For oligonu-
cleotide microarray, one assumes thatΘ is proportional to the fluorescence intensityi, that is,

i ∝ Θ =
β

β +1
. (3)

Supposefor a moment thatP is so large that the limit

ρ(i) = lim
∆(i)→0

1
∆(i)
× lim

P→∞

p(i)
P
≡ dq(i)

di
(4)

is meaningful, that is, we consider the quantileq(i) as a continuous function of the intensityi. Sinceβ = KC
is the true experimental controllable variable, it is more meaningful to consider

ρ(i) =
dq
dβ

dβ
di

= ρ(β)
dβ
di

∝ (β +1)2ρ(β) (5)

wherethe last proportionality stems from the derivative of equation (3) with respect toβ. Since it is observed
that ρ(i) ∼ 1/P for GeneChip at very high intensities which we assume correspond to points of probe
saturation (Hekstra et al., 2003), we expectρ(β) to decrease at least as fast asρ(β) ∼ 1/β2 asβ� 1.
Consequently, we postulate

ρ(i) = (β +1)2ρ(β)∼
[

β +1
β

]2

∼ 1
i2

(6)

for mid- to high-intensity data points. As we shall demonstrate below, the intensity densityρ(i) can in fact
be described to a high degree of accuracy over the entire range of observed intensities by the equality

ρ(i) =
1

(i +1)2 . (7)

This is a power-law which has been observed empirically in SAGE data (Blades et al., 2003).
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4 Unified Physical/Stochastic Model

The described physical models perform relatively well at predicting NSB and, as will become apparent,
the distribution of the specific signal. However, the predictions are not perfect and are complimented well
with stochastic versions. The system producing intensities is very complicated and we argue that one can
use physical models to approximate the process relatively well, but the lack-of-fit is best described with a
stochastic model.

Our model for thePM intensity contains NSB and specific signal components that on the probe sequence
composition as described by the physical models. The model can be written as

PM j = B j + f (A j)Nj +g(A j)Sj

whereA j is the probe affinity for thej-th probe,B∼ Normal(bo,σ2
o), log(Nj) ∼ Normal(µN,τ2), log(Sj) ∼

Exponential(1), and we approximate log(f (A j)) and log(g(A j)) with linear functions ofA j . Notice that
we use an exponential with rate 1 because when exponentiated this distribution approximates very well the
distribution described in Section 3.1 and it has a simple parametric form.

Notice that this model only has seven parameters and we have over 200,000 probe intensities to fit them.
One can use maximum likelihood estimation to do this. However, writing down the likelihood for this model
is complicated as it involved a convolution of 3 densities. We have developed some ad-hoc procedures to
estimate the parameters that yield very good fits.

To estimate the parameters we assume that theMMs do not measure specific signal and this can be mod-
eled withMM j = B j + f (A j)Nj . We then estimatebo by the 0.02 quantile of the MM intensities, following
Affymetrix convention. σo is estimate assumingMM intensities less than̂bo as the left half of a normal
distribution. To obtainPM andMM intensities adjusted for optical noise that are not negative (we knowN
+ S is positive) we use the posterior mean of Uniform(0,216)given(Uniform(0,216) + Normal(b̂o, σ̂o)) (216

is the scanner upper limit).
To obtain an estimate of the linear functionf (A), the logMM intensities (after optical background

adjustment) are regressed on theMM probe affinities described by Naef and Magnasco. For a series of given
affinitiesAk, we find theĝ(A) that makes the .8 quantile off (Ak)exp(Normal(µN,τ))+ ĝ(A)Exponential(1)
the same as the .8 quantile of optical background adjusted PM. We then regress thêg(Ak) values on theAk’s
to obtain linear approximation ofg(A).

5 Results

We fitted the model as described in the previous Section. The model fits extremely well. Figure 5a shows
kernel density estimates of thePM intensities for one of the spike-in arrays along with the predicted dis-
tribution from the model. Notice that there are only 7 parameters and 200,000 data points so over-fitting
is not a concern. Furthermore, the model is based on molecular hybridization theory. Figure 5b shows a
quantile-quantile plot that confirms the good fit.

Figure 6 we present the results shown in Figure 3 but instead of real data we use data simulated from
our 7 parameter model. Notice the similarity between the real and simulated results. This suggests that our
proposed model can be used for simulations related to statistical procedures based on Affymetrix data. For
example, one could use it decide among different test statistics (Wilcoxon, t-test, SAM, etc...)

Finally, we point out that under this model, as fitted to this array, the probability of aMM > PM is 0.40
which is exactly what we see in practice. Thus having manyMM > PM is not necessarily a bad thing. It is
just a consequence of the noisy character of the system.
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6 Discussion

We have presented a stochastic model motivated by molecular hybridization theory that fits Affymetrix
GeneChip probe level data very well. Apart from giving a theoretical explanation for various facts observed
in practice, this model can also be used to improve expression measures. For example, once we have fitted
the model, we could correct for optical noise and NSB by computing the expectation ofS given that we
have observed aPM and the all the parameters have been estimated. An approach such as this has been
used by Wu et al. (2003) with very encouraging results. Wu et al. describe an expression measure algorithm
similar to RMA but using a model such as the one described here to adjust for background. Their expression
measure is about as precise as RMA but much more accurate. In fact, it is more accurate than MAS 5.0.

Notice that this model can also be used for normalization and summarization. The fact that we have
a prior distribution for the specific signal component suggest that one could use the log-exponential as
the reference distribution used in quantile normalization. Furthermore, by incorporating information about
probe-sets in the mode (i.e. which probes represent which genes) one could directly obtain MLE estimates
of expression measures from the model. One aspect that is not described by our model is the existence of
outliers probes. This is subject of future work.

Finally, we would like to point out that the model described can be fitted relatively well using onlyPM
probes. The correction for non-specific binding can be done with Naef and Magnasco’s affinities. To see
this we include in Figure 3a the results of optical noise adjustedPMs adjusted for NSB using the prediction
of our model (based on Naef and Magnasco’s affinities). The slope is 0.76 which is comparable to that
obtained withPM−MM. Although there is complimentary information in theMM and in the affinities,
PM-only measures are attractive for various reasons, for example: 1) We can have twice as many probes on
the chips and 2) theMM seems to detect signal as demonstrated by Figure 1b.

Figure 5: Simulation result. a). Kernel density estimates of simulated PM intensity and PM intensity from
Latin-squarespike-in experiment. b). Quantile quantile plot of PM intensity from Latin-square spike-in
experiment against simulated PM intensity.
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Figure 6: As Figure 3 but with simulated data.
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