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Abstract

Finite population sampling is perhaps the only area of statistics where the primary
mode of analysis is based on the randomization distribution, rather than on statis-
tical models for the measured variables. This article reviews the debate between
design and model-based inference. The basic features of the two approaches are
illustrated using the case of inference about the mean from stratified random sam-
ples. Strengths and weakness of design-based and model-based inference for sur-
veys are discussed. It is suggested that models that take into account the sample
design and make weak parametric assumptions can produce reliable and efficient
inferences in surveys settings. These ideas are illustrated using the problem of in-
ference from unequal probability samples. A model-based regression analysis that
leads to a combination of design-based and model-based weighting is described.
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Abstract 

Finite population sampling is perhaps the only area of statistics where the primary mode 

of analysis is based on the randomization distribution, rather than on statistical models for 

the measured variables. This article reviews the debate between design and model-based 

inference. The basic features of the two approaches are illustrated using the case of 

inference about the mean from stratified random samples. Strengths and weakness of 

design-based and model-based inference for surveys are discussed. It is suggested that 

models that take into account the sample design and make weak parametric assumptions 

can produce reliable and efficient inferences in surveys settings. These ideas are 

illustrated using the problem of inference from unequal probability samples. A model-

based regression analysis that leads to a combination of design-based and model-based 

weighting is described.  

Keywords : Bayesian methods; design-based inference; sampling weights; regression, 

robustness; survey sampling 

1. Introduction 

 Scientific survey sampling, as represented by Neyman’s (1934) classic paper and 

subsequent developments (e.g. Hansen and Hurwitz 1943; Mahalanobis 1946) is one of 

the greatest contributions of statistics to science. It provides the remarkable ability to 

obtain useful inferences about large populations from modest samples, with measurable 

uncertainty. Extensions of simple random sampling to stratified multistage sampling 

greatly extend the reach of scientific sampling in the real world, and form the backbone 

of data collection in science and government. 

http://biostats.bepress.com/umichbiostat/paper4



 3 

 The key role of random sampling for data collection is not at issue in this article. 

The question concerns the role of the randomization distribution in the statistical analysis 

of random survey samples. Survey sampling is perhaps unique in being the only area of 

current statistical activity where inferences are primarily based on the randomization 

distribution rather than on statistical models for the survey outcomes. It is an area where 

the debate between randomization-based and model-based inference is most sharply 

drawn (e.g. Smith 1976, 1994; Kish, 1995). These philosophical differences in the 

analysis of survey data arise early in the study of statistics, in the form of the role of 

weights in multiple regression. The following example describes the issue. 

 

Example 1. Weights in regression. The basic fitting algorithm for standard forms of 

normal linear regression is ordinary least squares (OLS). In an early course on statistical 

methods, we learn that OLS is based on a model that assumes that the residual variance is 

constant for all values of the covariates. If the variance of the residua l for unit i is 2 / iuσ  

for some known constant iu , then better inferences are obtained by weighted least 

squares, with unit i weighted proportional to iu . This form of weighting is model-based, 

since the linear regression model for the outcome (say Y) has been modified to 

incorporate a non-constant residual variance. 

 A quite different form of weighting arises in survey sampling, based on the 

selection probabilities. If unit i is sampled with selection probability iπ , then the survey 

sampler replaces OLS by weighted least squares, weighting the contribution of unit i to 

the least squares equations by 1/i iw π∝ , the inverse of the probability of selection. This 

form of weighting is design-based, with iπ  relating to the selection of units: since unit i 
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“represents” 1/ iπ  units of the population, it receives a weight proportional to 1/ iπ  in the 

regression.  

 Both forms of weighting seem plausible, but they are not necessarily the same. So 

if they are different, which is correct?  The central role of the mode of inference to this 

question is clear, since the modeler’s distribution of Y seems to lead to weighting by iu  

and the randomization distribution leads to weighting by iw . The role of sampling 

weights in regression has been extensively debated in the literature; see for example, 

Konijn (1962), Brewer and Mellor (1973), Dumouchel and Duncan (1983), Smith (1988), 

Little (1991), Pfeffermann (1993), Korn and Graubard (1999). In the concluding section I 

discuss another regression estimator that weights cases by the product of the design and 

model weights. I show how this estimator can be justified from both frequentist and 

model-based perspectives, thus harmonizing the two approaches to inference.  

 Many survey statisticians adopt both design and model-based philosophies of 

statistical analysis, according to the context. For example, descriptive inference about 

finite population quantities based on large probability samples are carried out using 

design-based methods, but models are used for problems where this does approach not 

work, such as nonresponse or small area estimation. This pragmatic approach has 

increased in popularity since battles over the “foundations of survey inference” in the 

1980’s subsided. While the application of statistics to real data requires pragmatism, I 

have always felt the need for an unambiguous underlying theory. Just as mathematicians 

do not tolerate two competing theories of differential calculus, we should not be happy 

with two competing statistical theories that can lead to different solutions. Thus to avoid 
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“inferential schizophrenia”, I have always sought to reconcile the best aspects of survey 

analysis within a single statistical theory, namely, Bayesian modeling.  

 Advocating Bayes for sample survey inference is “swimming upstream”, since its 

subjectivist basis is anathema to many survey statisticians, who do not like modeling 

assumptions. But Bayesian methods run the gamut of subjectivity, and can be as 

“objective” as any frequentist method when necessary; indeed many frequentist answers 

can be replicated from a Bayesian perspective.  

 This article reviews some of the issues that inform the design-based and model-

based debate concerning the analysis of sample survey data. Section 2 outlines the basic 

features of design and model-based survey inference. Section 3 describes strengths and 

weaknesses of design-based inference, and Section 4 considers “model-assisted” survey 

inference, which captures some of the positive features of models within the design-based 

paradigm. Section 5 discusses the modeling approach to survey inference, with particular 

reference to the issue of survey weighting raised in Example 1. Section 6 presents some 

conclusions, and speculates on possible future trends in sample survey analysis.  

 

2. A brief review of design and model-based inference 

 The design-based approach to survey inference is described in many texts (e.g. 

Hansen, Hurwitz and Madow 1953, Kish 1965, Cochran 1977). The following 

description is not completely general, but captures the main features. For a population 

with N units, let 1( ,..., )NY y y=  where iy  is the set of survey variables for unit i, and let 

1( ,..., )NI I I= denote the set of inclusion indicator variables, where 1iI =  if unit i is 

included in the sample and 0iI =  if it is not included. Design-based inference is based on 
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the distribution of I, with the survey variables Y treated as fixed quantities. For inference 

about a finite population quantity ( )Q Q Y=  it involves the following steps: 

(a) the choice of an estimator incˆ ˆ ( , )q q Y I= , a function of the observed part incY  of Y, 

that is unbiased or approximately unbiased for Q with respect to the distribution I. I 

like writing the inclusion indicators I as an explicit argument of q̂  to emphasize 

that q̂ is a random variable as a function of I, not incY , which are fixed quantities. 

(b) the choice of a variance estimator incˆ ˆ( , )v v Y I=  that is unbiased or approximately 

unbiased for the variance of q̂  with respect to the distribution of I.  

Inferences are then generally based on normal large sample approximations. For 

example, a 95% confidence interval for Q is ˆ ˆ1.96q v± .  

 

Example 2. Design-based inference for the mean from a stratified random sample. 

To illustrate the above process, consider the simple case of estimation of a finite 

population mean Y  from a stratified random sample. Suppose the population is divided 

into J strata, and let jN  be the known population count in stratum j and jY  the unknown 

population mean in stratum j. The quantity of interest is 
1

J

j j
j

Q Y P Y
=

= = ∑ , where 

/j jP N N=  is the proportion of the population in stratum j. We assume that a random 

sample of size jn  of the jN  units are sampled in stratum j, and let { , 1,..., }ji jy i n=  

denote the set of sampled Y-values in stratum j. Then inc { , 1,..., ; 1,..., }ji jY y j J i n= = = . 

Stratified random sampling has the property that all the possible samples of size jn  in 

stratum j have the same probability of being selected. Formally: 
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1

1

Pr( 1) , if ,  and 0 otherwise
jN

j
ji ji j

ij

N
I I n

n

−

=

  
= = =  

   
∑ . 

The usual estimator of Y  in this setting is the stratified mean 

 st
1

ˆ
J

j j
j

q y P y
=

= ≡ ∑ , (1) 

where jy  is the sample mean in stratum j. The estimator (1) is also a weighted mean of 

the sampled units, where units in stratum j are weighted by the inverse of their selection 

probability /j j jn Nπ = . An attractive feature of stratified sampling is that the selection 

probabilities can vary across strata, giving rise to the design weights discussed in 

Example 1. The estimated variance of the stratified mean is 

 2 2
st

1

ˆ (1/ 1/ )
J

j j j j
j

v P s n N
=

= −∑ , (2) 

where 2
js  is the sample variance in stratum j. The quantities sty  and stν̂  are the basis of 

95%  confidence intervals of the form st stˆ1.96y v±  for Y , and tests for null values of 

the population mean Y . 

 The model-based approach to survey sampling inference requires a model for the 

survey outcomes Y, which is then used to predict the non-sampled values of the 

population, and hence finite population quantities Q. There are two major variants: 

superpopulation modeling and Bayesian modeling. In superpopulation modeling (e.g. 

Royall 1970; Thompson 1988; Valliant, Dorfman, and Royall 2000), the population 

values of Y are assumed to be a random sample from a “superpopulation”, and assigned a 

probability distribution ( | )p Y θ  indexed by fixed parameters θ . Inferences are based on 

the joint distribution of Y and I.  
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 Bayesian survey inference (Ericson 1969, 1988; Basu 1971; Scott 1977; Binder 

1982; Rubin 1983, 1987; Ghosh and Meeden 1997) requires the specification of a prior 

distribution ( )p Y  for the population values. Inferences for finite population quantities 

( )Q Y  are then based on the posterior predictive distribution exc inc( | )p Y Y of the non-

sampled values (say excY ) of Y, given the sampled values incY . The specification of the 

prior distribution ( )p Y  seems a formidable task, but is often achieved via a parametric 

model ( | )p Y θ  indexed by parameters θ , combined with a prior distribution ( )p θ  for 

θ , that is: 

 ( ) ( | ) ( )p Y p Y p dθ θ θ= ∫ . 

The posterior predictive distribution of excY  is then  

 exc inc exc inc inc( | ) ( | , ) ( | )p Y Y p Y Y p Y dθ θ θ∝ ∫ , 

where inc( | )p Yθ  is the posterior distribution of the parameters, computed via Bayes’ 

Theorem: 

 inc inc inc( | ) ( ) ( | ) / ( )p Y p p Y p Yθ θ θ= . 

Here ( )p θ  is the prior distribution, inc( | )p Y θ  is the likelihood function, viewed as a 

function of θ , and inc( )p Y  is a normalizing constant. This posterior distribution induces a 

posterior distribution inc( | )p Q Y  for finite population quantities ( )Q Y . 

 The specification of ( | )p Y θ  in this Bayesian formulation is the same as in 

parametric superpopulation modeling, and in large samples the likelihood based on this 

distribution dominates the contribution from the prior for θ . As a result, large-sample 

inferences from the superpopulation modeling and Bayesian approaches are often similar. 
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However, in my view the Bayesian approach is conceptually more straightforward and 

has some advantages for small samples, as illustrated in the next example.  

 The model formulations described thus far do not involve the distribution for I, 

basing inferences on the distribution of Y alone. This is justified when the sampling 

mechanism is “unconfounded” or “noninformative”, as when the distribution of I given Y 

does not depend on the values of Y (Rubin 1987, Chambers 2003). This is indeed the case 

with probability sampling, but is not necessarily the case with other less well-controlled 

forms of sampling, such as quota sampling. If the sampling mechanism is confounded, 

then model inferences must be based on a model for the joint distribution of I and Y, 

rather than simply a model for the marginal distribution of Y, and formulating an 

acceptable model for confounded sampling mechanisms is problematic. A key motivation 

for probability sampling from the modeling perspective is that it avoids the need to 

specify a model for the sampling mechanism, even though the sampling distribution is 

not the basis for inference. From the Bayesian perspective, random sampling provides a 

justification for assumptions of exchangeability of the sampled units (De Finetti 1990) 

that underpin i.i.d. models, such as that discussed in the next example for the case of 

stratified sampling.  

  

Example 3. Model-based inference for the mean from a stratified random sample.  

Sensible parametric models for stratified samples need to reflect stratum differences by 

assigning distinct parameters to the distribution of Y in each stratum. (The reason is 

explained in Example 8 below). Let jiy  denote the value of Y for unit i in stratum j. A 

common baseline model for continuous outcomes assumes that jiy  is normal with mean 
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jµ  and variance 2
jσ . A simple Bayesian specification in the absence of strong prior 

knowledge adds a noninformative prior for the parameters 2{ , }j jµ σ , yielding the model: 

 
2 2

2

( | , ) ~ ( , ); { , }

( ,log ) .,
ji ji iid j j j j

j j

p y z j G

p const

θ µ σ θ µ σ

µ σ

= =

=
 (3) 

where 2( , )j jG µ σ  denotes the normal (Gaussian) distribution with mean jµ  and variance 

2
jσ . With known variances 2{ }jσ , standard Bayesian calculations for this model yields 

the posterior distribution of Y  given ,incY I  and 2{ }jσ  as normal with mean  

 
2

inc st 1

2 2 2
inc st 1

( | , ,{ })

( | , ,{ }) (1/ 1/ ).

J
j j jj

J
j j j j jj

E Y Y I y P y

Var Y Y I v P n N

σ

σ σ

=

=

= =

= = −

∑
∑

 (4) 

The posterior mean is the stratified mean (1) from design-based inference. When 2{ }jσ  

are replaced by estimates 2{ }js , the posterior variance equals the design-based variance 

(2). This substitution is justified asymptotically. Thus in large samples, the posterior 

distribution of Y  yields a 95% posterior probability interval st stˆ1.96y v±  that is the same 

as the design-based 95% confidence interval in Example 2. The two approaches yield the 

same interval estimate, although the Bayesian posterior probability interval has the direct 

interpretation as a probability statement for the unknown population mean, rather than as 

a confidence interval. 

 The full Bayesian analysis under (3) propagates the uncertainty in estimating the 

variances 2{ }jσ  by integrating them out of the posterior distribution of Y  given incY , I 

and 2{ }jσ over the posterior distribution of 2{ }jσ  given incY , I. The posterior distribution 

of 2 2/{( 1) }j j jn sσ −  is easily shown to be inverse chi-squared with 1jn −  degrees of 
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freedom, independently for 1,...,j J= . Integrating over these posterior distributions 

yields the posterior distribution of Y given ,incY I  as a mixture of t distributions. This 

posterior distribution has a complicated density, but draws from it are readily computed 

by (a) drawing 2 2( 1) /j j j jn s cσ = −%  where jc  is chi-squared with 1jn −  degrees of 

freedom, and (b) drawing Y  from a normal distribution with mean sty  and variance stv% , 

where the variances 2
jσ  in stv  are replaced by their drawn values 2

jσ% . These draws can 

then be used to approximate the posterior distribution to any desired degree of accuracy. 

Note that integrating over the posterior distribution of 2{ }jσ  rather than simply plugging 

in estimates yields a useful small-sample correction not readily available from design-

based and superpopulation approaches. 

 

3. Strengths and weaknesses of design-based inference 

 The design-based approach to survey inference has a number of strengths that 

make it popular with practitioners. It automatically takes into account features of the 

survey design, and it provides reliable inferences in large samples, without the need for 

strong modeling assumptions. On the other hand it is essentially asymptotic, and hence 

yields limited guidance for small-sample adjustments. Unlike models, which lead to 

efficient inferences based on likelihood or Bayesian principles, the design-based 

approach is not prescriptive for the choice of estimator. It lacks a theory for optimal 

estimation (Godambe 1955), and estimates from the approach are potentially inefficient. 

Consider the following important example. 
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Example 4. The Horvitz-Thompson estimator.  I have noted that the stratified mean 

weights sampled units by the inverse of their probability of selection. The Horvitz-

Thompson (HT) estimator (Horvitz and Thompson 1952) applies this idea more 

generally. Consider inference about the population total 

 1( ) ... NQ Y T Y Y= ≡ + + , 

and any sample design with positive inclusion probability ( | ) >0i iE I Yπ =  for unit i, i = 

1,…, N. The HT estimator is then  

 
sampled 1

ˆ / /
N

HT i i i i ii i
t Y I Yπ π

=
= =∑ ∑ , (5) 

and is design unbiased for T, since 

 
1 1 1

ˆ( | ) ( | ) / /
N N N

HT i i i i i i ii i i
E t Y E I Y Y Y Yπ π π

= = =
= = =∑ ∑ ∑ . 

The unbiasedness of (5) under very mild conditions conveys robustness to modeling 

assumptions, and makes it a mainstay of the design-based approach. But (5) has two 

major deficiencies. First, the choice of variance estimator is problematic for some 

probability designs (e.g. systematic sampling). Second, the HT estimator can have a high 

variance, for example, when an outlier in the sample has a low selection probability, and 

hence receives a large weight. Basu’s (1971) famous circus elephant example provides an 

amusing, if extreme example: 

 “The circus owner is planning to ship his 50 adult elephants and so he needs a rough estimate of the 

total weight of the elephants. As weighing an elephant is a cumbersome process, the owner wants to 

estimate the total weight by weighing just one elephant. Which elephant should he weigh? So the 

owner looks back on his records and discovers a list of the elephants' weights taken 3 years ago. He 

finds that 3 years ago Sambo the middle-sized elephant was the average (in weight) elephant in his 

herd. He checks with the elephant trainer who reassures him (the owner) that Sambo may still be 

considered to be the average elephant in the herd. Therefore, the owner plans to weigh Sambo and take 
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50y (where y is the present weight of Sambo) as an estimate of the total weight 1 2 50...Y Y Y Y= + +  of 

the 50 elephants. But the circus statistician is horrified when he learns of the owner's purposive 

sampling plan. "How can you get an unbiased estimate of Y this way?" protests the statistician. So, 

together they work out a compromise sampling plan. With the help of a table of random numbers they 

devise a plan that allots a selection probability of 99/100 to Sambo and equal selection probabilities of 

1/4900 to each of the other 49 elephants. Naturally, Sambo is selected and the owner is happy. "How 

are you going to estimate Y?", asks the statistician. "Why? The estimate ought to be 50y of course," 

says the owner. "Oh! No! That cannot possibly be right," says the statistician, "I recently read an article 

in the Annals of Mathematical Statistics where it is proved that the Horvitz-Thompson estimator is the 

unique hyperadmissible estimator in the class of all generalized polynomial unbiased estimators."What 

is the Horvitz-Thompson estimate in this case?" asks the owner, duly impressed. “Since the selection 

probability for Sambo in our plan was 99/100," says the statistician, "the proper estimate of Y is 

100y/99 and not 50y.” “And, how would you have estimated Y,” inquires the incredulous owner, “if 

our sampling plan made us select, say, the big elephant Jumbo?” “According to what I understand of 

the Horvitz-Thompson estimation method," says the unhappy statistician, “the proper estimate of Y 

would then have been 4900y, where y is Jumbo's weight.” That is how the statistician lost his circus job 

(and perhaps became a teacher of statistics!)” 

 The practical bent of survey samplers is illustrated by the fact that Basu (a 

Bayesian) makes fun of the frequentist position by placing it in the domain of 

“mathematical statistics”. On the other side, Leslie Kish, an avid design-based advocate, 

similarly criticizes mathematical statisticians for focussing on i.i.d. models that fail to 

account for the complex sample design (Kish 1995, Section 9). 

 Randomization inference suffers from ambiguity about the appropriate reference 

distribution in certain problems. This issue arises in sample survey settings, as in the 

following example: 
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Example 5. Post-stratification. Another form of weighting arises in design-based 

inference with post-stratification. Sometimes, the population distribution is known (from 

external data such as a Census) for a variable that is not observed for all population units 

prior to sampling, and hence cannot be used as a stratifier.  In this case, it is still possible 

to use the distribution to adjust estimates of the outcome in the analysis using the 

technique known as post-stratification. Suppose the quantity of interest is Q = Y = 

1

J
j jj

P Y
=∑ , where /j jP N N=  is now the proportion of the population in post-stratum j. 

We assume that a random sample of size n is selected from the population, and jn  of the 

jN  units in post-stratum j are included in the sample; unlike stratification, the 

distribution of { }jn  is now not under the control of the sample, and varies from sample to 

sample. The usual estimator of Y  is then the post-stratified mean 

 ps
1

ˆ
J

j j
j

q y P y
=

= ≡ ∑ , (6) 

where jy  is the sample mean in post-stratum j. The estimator (6) has the same form as 

the stratified mean (1), and is also a weighted mean of the sampled units, where units in 

post-stratum j are given the post-stratification weight /j jN n . More generally, in complex 

sample designs, a post-stratification weight is often applied as a multiplicative factor, 

after weighting for sample selection and nonresponse.  

 Since psy  has the same form as sty , one might expect design-based inferences to 

be analogous. However, the design-based variance of psy  is changed by the fact that { }jn  

are now random functions of the sampling distribution I. In fact, in repeated sampling of 

I, there is a non-zero probability that 0jn =  for some j, in which case psy  is undefined! 
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Hence the design-based variance of psy  is undefined, or maybe infinite! The usual 

resolution of this problem is to condition on { }jn  observed in the realized sample, on the 

grounds that these counts are a form of ancillary statistic, and modify the post-strata to 

ensure that { }jn  are all greater than zero. The fact that psy  is design-unbiased 

conditionally on{ }jn  might be construed as a form of ancillarity, but a formal frequentist 

theory on when and how to choose ancillary statistics is lacking for classical parametric 

models (Cox and Hinkley 1974, Example 2.28), and is even less developed in the finite 

sampling setting. Also, the sample mean 
1

/
n

j jj
y n y n

=
= ∑ , the standard estimator in the 

absence of the post-stratum counts, is not design-unbiased conditionally on { }jn ; it seems 

awkward to vary the reference distribution according to whether the post-stratified or 

unweighted mean is used to estimate Y . 

 Conditioning on { }jn  leads to the variance 2 2
ps 1

/
J

j j jj
v P S n

=
= ∑ , where 2

jS  is the 

population variance of Y in post-stratum j, ignoring finite population corrections. A 

practical issue stemming from the lack of control of { }jn  is that we may be unlucky and 

draw a sample where 2
jS  is large and jn  is small in one or more post-strata, yielding a 

large psν , a practical illustration of the problem caricatured in Example 4. From a 

prediction point of view, the problem lies in the lack of information with which to 

estimate jy  in these sparse cells. A method is needed for “borrowing strength” from Y-

values in other post-strata. In practice, this problem is often mitigated by combining post-

strata with small counts with neighboring post-strata. A more systematic approach to 

borrowing strength is to base it on a model for Y, as discussed in Example 9 below. 
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 Another limitation of design-based inference is that it is strictly inapplicable to 

situations where the randomization distribution is corrupted by non-sampling errors, such 

as nonresponse or measurement errors; modeling assumptions are needed to address these 

problems. Kalton (2002) reviews these limitations of design-based inference. 

 

4. Model-assisted design-based inference 

 Superpopulation models are not the basis for inference in the design-based 

approach, but they can be useful to motivate the choice of estimator; in particular many 

of the classical estimators for incorporating covariate information, such as the ratio 

estimator or the regression estimator (e.g. Cochran 1977), can be motivated as arising 

from linear superpopulation models. The next example views the HT estimator from this 

perspective. 

 

Example 6. A model for the Horvitz-Thompson estimator (Example 4 continued). 

The HT estimator can be regarded as a model-based estimator for the following linear 

model relating iy  to iπ : 

 iiiiy επβπ += , (7) 

or equivalently, 

 /i i i iz y π β ε= = + , (8) 

where iε  in Eqs. (7) and (8) are assumed to be i.i.d. normally distributed with mean zero 

and variance 2σ . Models (7) or (8) lead to 1ˆ / /i i HTi S
n y t nβ π−

∈
= =∑  where n is the 
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sample size. The corresponding prediction for unit i is ˆˆi iy βπ= , and the prediction 

estimator of the total is thus  

 pred
1

ˆ ˆˆ ˆ ˆ( ) ( )
N

i i i HT i i
i i S i S

T y y y t y y
= ∈ ∈

= + − = + −∑ ∑ ∑ ,  

which differs from the HT estimator by a quantity that tends to zero with the sampling 

fraction n/N. This analysis suggests that the HT estimator is likely to be good estimator 

when (7) or (8) is a good description of the population, and it may be inefficient when it 

is not. A formal explanation for the poor properties of the HT estimator of the elephants’ 

total weight in Example 4 is that the model (7) is clearly inappropriate, given the way the 

weights are chosen.  

 

Example 7. The Generalized Regression Estimator.  In situations where the HT model 

is not reasonable, a model-assisted modification is to predict the non-sampled values 

using a more suitable model, and then apply the HT estimator to the residuals from that 

model. Specifically, the generalized regression estimator of T takes the form: 

 gr 1
 sampled

ˆ ˆ ˆ( ) /
N

i i i ii
i

T y y y π
=

= + −∑ ∑ , (9) 

where ˆiy  is the prediction from a linear regression model relating Y to the covariates. The 

second term on the right side of (9) conveys it with the useful property of design 

consistency (Brewer 1979, Isaki and Fuller 1982), which means informally that the 

estimator converges to the population quantity being estimated as the sample size 

increases, in a manner that maintains the features of the sample design. Design-based 

statisticians usually weight cases by the design weights iw  when computing this 
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regression, but the estimator (9) is also design consistent if the regression is variance 

weighted. For discussions of generalized regression estimator and alternatives, see for 

example Cassel, Särndal and Wretman (1977), Särndal, Swensson, and Wretman (1992). 

 Another general approach to design-based inference incorporate models by basing 

inference on “pseudo- likelihoods” that reflect survey design features (Binder, 1983; 

Godambe and Thompson, 1986). Suppose a superpopulation model is posited for the N 

population units of the form: 

 
1

( | , ) ( | , )
N

i i
i

p y z p y zθ θ
=

= ∏ , (10) 

which assumes independence across units. If the whole population were sampled, 

standard model-based inference would be based on the loglikelihood 

 pop inc
1

( | , ) log ( | , )
N

i i
i

y z p y zθ θ
=

∝ ∑l . 

Under mild conditions the ML estimate would be obtained by solving the score equations 

obtained by differentiating the loglikelihood with respect to θ , that is 

 pop
1

( ) log ( | , ) / 0
N

i i
i

sc p y zθ θ θ
=

= ∂ ∂ =∑ . (11) 

For any value of θ , pop ( )sc θ  is a finite population quantity that can be estimated from the 

sample. The “pseudo-likelihood” approach estimates the score by a design-consistent 

estimator, and solves the resulting “estimated” score equation. For example one might 

apply HT weighting to (11), yielding the estimated score equation 

 ( )
1

( ) log ( | , ) / / 0
N

HT i i i i
i

sc I p y zθ θ θ π
=

= ∂ ∂ =∑ . (12) 
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In the special case of normal linear regression, maximizing ( )HTsc θ  yields least squares 

estimates with sampled unit i weighted by the sampling weight 1
iπ − . Eq. (12) generalizes 

the HT estimator, but does not overcome its potential lack of efficiency noted above. The 

approach is not prescriptive about how to estimate the score, particularly in settings 

where the assumption of independent observations in Eq. (11) is not warranted, as in 

multistage sampling. Pfeffermann et al. (1998) discuss how this approach might be 

adapted to multilevel models, but their suggestions lack general guiding principles.  

 

5. Model-based inference 

 I now turn to inferences based on superpopulation or Bayesian models. Some 

advantages of this approach are: 

(1) it provides a unified approach to survey inference, aligned with mainline statistics 

approaches in other application areas such as econometrics. 

(2) In large samples or for models with uninformative prior distributions, results can 

parallel those from design-based inference, as we have seen in the case of 

stratified sampling in Examples 2 and 3.  

(3) The Bayesian approach is well equipped to handle complex design features such 

as clustering through random cluster models (Scott and Smith 1969), stratification 

through covariates that distinguish strata, nonresponse (Little 1982; Rubin 1987; 

Little and Rubin 2002) and response errors.  

(4) The Bayesian approach may yield better inferences for small sample problems 

where exact frequentist solutions are not available, by propagating error in 

estimating parameters. For example, the posterior distribution of the mean for 
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inference from normal stratified samples in Example 3 is a mixture of t 

distributions that propagates uncertainty in estimating the stratum variances. On 

the other hand, the standard design-based inference based on the normal 

distribution assumes that the stratum variances are estimated without error from 

the sample.  

(5) The Bayesian approach allows prior information to be incorporated, when 

appropriate; and  

(6) The Bayesian approach avoids the ambiguities in the choice of reference 

distribution discussed in Example 5, and has useful features of coherency not 

shared by frequentist approaches, such as satisfying the likelihood principle.  

(7) Likelihood-based approaches like Bayes or maximum likelihood have the 

property of large-sample efficiency, and hence match or outperform design-based 

inferences if the model is correctly specified.  

 The challenge with the modeling approach lies in the last phrase: how exactly to 

specify the model? All models are simplifications and hence subject to some degree of 

misspecification. The major weakness of model-based inference is that if the model is 

seriously misspecified it can yield inferences that are worse (and potentially much worse) 

than design-based inferences. The following example might serve as a design-based 

statistician’s rejoinder to the “Basu elephant” disaster in Example 4: 

 

Example 8: a non-robust model for disproportionate stratified sampling. In the 

setting of disproportiona te stratified sampling (Example 3), models are needed that 

condition on stratum in order for the sample design to be unconfounded. Suppose a 
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normal model is posited that assumes the distribution of Y is the same for all strata, that 

is: 

 
2 2

2

( | , ) ~ ( , ); { , }

( ,log ) .
ji ji iidp y z j G

p const

θ µ σ θ µ σ

µ σ

= =

=
 (13) 

The posterior mean of Y  under this model is the unweighted sample mean 

1
/

J
j jj

y n y n
=

= ∑ . This is the same as the stratified mean in equal probability samples, 

but differs when the probabilities of selection vary across the strata. If the model (13) 

were known to be true, as for example if the strata were created using random numbers, 

then the unweighted mean is a better estimator than the stratified mean. However, in 

practice strata are never created in this way, but rather are based on characteristics likely 

to be related to the survey outcomes. If the sample size is large, even a slight 

misspecification in (13) caused by minor differences in the distribution of Y between 

strata can induce a bias in y  that dominates mean squared error and corrupts confidence 

coverage. Hansen, Madow, and Tepping (1983) show in a related example that the bias 

can be serious even when diagnostic checks for differences between strata are negative. 

Modelers have questioned Hansen et al.’s the choice of diagnostics (Valliant, Dorfman, 

and Royall 2000), but my view is that a model such as (13) that ignores stratum effects is 

too vulnerable to misspecification to be a reliable basis for inference, unless there are 

convincing reasons to believe that stratum effects are not present. For more discussion of 

the adverse effects of model misspecification on survey inference, see Kish and Frankel 

(1974), Holt, Smith, and Winter (1980), and Pfeffermann and Holmes (1985). 

 Inferential disasters can be avoided by selecting models that are attentive to 

design features such as stratification and clustering. Since the design of the sample in a 
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passive observational study has no effect on the population values, in principle the choice 

of model should not be affected by the sample design. However, in practice all models 

are simplifications, and the features of the population that are important to include in the 

model do vary according to the choice of design. In particular, for inferences about a 

population mean in Example 8, it is important to model stratum differences when the 

sample is selected by disproportionate stratified sampling, but modeling these differences 

becomes unimportant when the sample is selected by simple random sampling. It is 

important to incorporate spatial correlation into the model when the sample design 

involves spatial clustering, but spatial correlation is not an important feature of a model 

for an unclustered sample. I think choosing a model that incorporates important design 

features is conceptually more satisfying than fixing a deficient model using the methods 

in Section 4. 

 One way of limiting the effects of model misspecification is to restrict attention to 

models that yield design-consistent estimates. This limitation is not as restrictive as it 

may seem; a number of strategies are discussed in Firth and Bennett (1998). In the 

context of surveys with non-constant inclusion probabilities, a key is to model differences 

in the distribution of outcomes across classes defined by differential probabilities of 

inclusion (Rubin 1985; Rizzo 1992). The following model leads to a number of 

interesting special cases. Let jiy  denote the outcome for unit i in inclusion class j, within 

which the inclusion probability is constant.  Suppose for simplicity that the proportion of 

the population in inclusion class j, jP , is known; in cases where it is unknown a 

supplemental model is needed to allow estimation of these proportions from the sample. 

Consider the mixed effects model: 
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2 2
1

2 * 2 *
2

2 2

[ | , ] ~ ( , )

[ | , , , ] ~ ( , ), ( , ; )

[ ,log ,log ] ~ .

ji j j ind j j j

j j j ind j j j j j

i

y G k

P C G y k y f P C

const

µ σ µ σ

µ β τ τ β

β τ σ

=  (14) 

Here 1 jk  and 2 jk  are known constants that model heteroskedasticity, and f(.) is a known 

function of jP  and covariates jC  characterizing the inclusion classes, indexed by 

unknown regression parameters β . Two extreme forms of this model are noteworthy. 

When 2τ = ∞  we obtain a fixed-effects version of the model that estimates the mean in 

each inclusion class j by the sample mean jy . The resulting estimate of the population 

mean (ignoring finite population corrections) is 
1

J
j jj

P y
=∑ , which is equivalent to the 

design-weighted estimator. When 2 0τ = , *
j jyµ = , and we obtain a direct regression 

version of the model. The resulting estimate of the population mean (ignoring finite 

population corrections) is 
1

ˆJ
j jj

P y
=∑ , where ˆˆ ( , , )j j jy g P C β=  is the prediction of the 

mean in inclusion class j from the regression model. Estimates from (14) with 20 τ< < ∞  

shrink the sample mean from fixed-effects model towards the prediction from the 

regression model. The degree of shrinkage goes to zero as the sample increases, which 

implies that estimates from the model are design consistent. On the other hand the 

regression feature allows borrowing of strength for the predicted means of small 

inclusion classes. The next two examples concern special cases of model (14).  

 

Example 9. A model for improving the stratified or post-stratified mean. Suppose the 

inclusion classes are strata with differential inclusion probabilities { : 1,... }j j Jπ = , where  
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1 2 ... Jπ π π< < < , and consider the model (14) with 1 2 1j jk k= =  and *
jy µ= , a constant. 

A standard random-effects model analysis yields 

 2 2

1

( | ,{ }, ) { (1 ) }
J

j j j j j
j

E data P y yλµ σ τ λ λ
=

= + −∑ , 

where 2 2 2/( )j j jn nλ τ τ σ= +  and 
1 1

/
J J

j j j j jj j
y n y nλ λ λ

= =
= ∑ ∑ . This estimate shrinks the 

(post)stratified mean 
1

J
j jj

P y
=∑  towards the unweighted mean, and yields a form of 

empirically-based weight smoothing. In practice the variance components can be 

estimated, or a fully Bayesian analysis carried out using the Gibbs’ sampler (Gelfand et 

al, 1990).  

 Better models adopt a more realistic regression structure. For example, Elliott and 

Little (2000) shrink the (post)stratified means towards a smooth function of the selection 

probabilities, determined by a spline function. This approach yields gains in precision 

when the sample weights are variable, and is robust to model misspecification since the 

form of the model is weak.   

Example 10. A model for improving the HT estimator in PPS samples.  In the case of 

sampling with probability proportional to size, inclusion classes often contain at most a 

single sample value, and estimation of the between-class variance  2τ  is not feasible. The 

direct regression version of the model (14) with 2 0τ =  can be applied in this setting. 

Robustness can still be achieved by positing regression models that make weak 

parametric assumptions (Breidt and Opsomer 2000; Zheng and Little 2002a). In 

particular, Zheng and Little (2002a, 2002b) consider a penalized spline approach based 

on the model 

http://biostats.bepress.com/umichbiostat/paper4



 25 

 ( , )i i iy f π β ε= + , iε  ~ iid 2 2(0, )k
iG π σ , (15) 

where iπ  is the selection probability for unit i, the exponent k (usually taking values 0,1/2 

or 1) models error heteroskedasticity, and the function f is a p-spline written as a linear 

combination of truncated polynomials: 

 
0

1 1

2

ˆ ( , ) ( ) , 1,..., ,

~ (0, ), 1,..., .

p m
j p

i j i l p i l
j l

l p iid

f i N

N l m

π β β β π β π κ

β τ

+ +
= =

+

= + + − =

=

∑ ∑
  (16) 

where the constants mκκ << ...1  are selected fixed knots and ( ) ( 0)p pu u I u+ = ≥ . The 

effect of treating { , 1,..., }l l p p mβ = + +  as normal random effects is to add a penalty 

term 2 2
1

ˆ /
p m

ll p
β τ

+

= +∑  to the sum of squares that is minimized in a least squares fit, thus 

smoothing their estimates towards zero.  

 The ability of inferences from this weak model to match or improve on the HT 

and the GR estimator is illustrated in Tables 1 and 2, which summarize a subset of the 

simulations in Zheng and Little (2002a,b). Five artificial populations are simulated by 

adding independent errors with variance 0.2 to the following mean functions relating 

outcome iy  and the inclusion probabilities iπ :  

(NULL) ( ) 0.30if π ≡ ,  

(LINUP) ( ) 3i if π π= , linearly increasing function with a zero intercept  

(LINDOWN) ( ) 0.58 3i if π π= − , linearly decreasing function with positive intercept 

(EXP) ( ) exp( 4.64 26 )i if π π= − + , an exponentially increasing function 

(SINE) ( ) sin(35.69 )i if π π= . 
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A sixth population is generated to yield an “S” shaped function with heteroskedastic 

errors: 

(ESS)       10.6logit (50* 5 ), ~ (0,1)
iid

i i i iy Nπ ε ε−= − + . 

Plots of samples from these populations are provided in Figure 1.  

 Table 1 presents root mean squared error (RMSE) of point estimates from the 

following methods: HT, the Horvitz-Thompson estimator of the mean; GR, the 

generalized regression estimator with predictions from a simple linear regression of iy  

on iπ , assuming a constant error variance; and P0_15, a p-spline prediction estimator 

based on (15) and (16) with  k =0 and 15 knots. For each of the six mean structures, the 

RMSE’s are based on estimates for 500 systematic samples of size 96 drawn with 

probability proportional to iπ . Table 1 suggests that P0_15 has smaller empirical RMSE 

than HT or GR for the populations with nonlinear mean structures (SINE, EXP and ESS). 

P0_15 has similar RMSE to GR when the mean function is linear (NULL, LINUP and 

LINDOWN). P0_15 has similar RMSE as HT for the population LINUP, which favors 

the HT estimator.  

 Table 2 shows that P0_15, with standard errors computed using the jackknife, 

yields narrower confidence intervals with coverage properties comparable to that of HT 

and GR. The only case where P0_15 has poor coverage is the SINE model, and this 

problem is resolved by increasing the number of knots for the spline. For more details 

and additional simulation results, See Zheng and Little (2002a, b).  

 Generalizations of this approach to two-stage sampling are considered in Zheng 

and Little (2002c). Interestingly, these models lead to improved inferences for two stage 
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samples where the overall probability of selection across the two stage is constant, and 

the standard estimator is the unweighted mean.  

 

Example 11. Weights in regression revisited.  I now return to the question of design 

and model weights in Example 1, and describe a model that leads to an approximate 

Bayes estimate that weights by the product of the design and model weights. The basic 

idea can be conveyed for the simple case of inferences about a mean with no covariates. 

Assume stratified sampling and the notation in Examples 3 and 8. I first consider a target 

model that is used to define the parameter of interest. This target model assumes the 

outcomes { }jiy  in stratum j have a mean that does not depend on stratum, but a non-

constant variance, namely 

 2( | , ) ~ ( , / )T ji ji jip y z j G uθ µ σ= , (17) 

where the notation Tp  denotes “target”. The target quantity of interest is assumed to be 

the result of applying this model to the whole population with an uninformative prior, 

namely the precision-weighted mean: 

 ( )

1 1 1 1

/
j jN NJ J

u
ji ji ji

j i j i

Y u y u
= = = =

   
=       

   
∑∑ ∑∑ . (18) 

If 1jiu =  for all i, j, this is the usual finite population mean, but other choices of { }jiu  

lead to other useful target quantities. For example, if /ji ji jiy x u=  then Eq. (17) defines 

the ratio model, and Eq (18) is the population ratio 

 ( ) ( )1 1 1 1
/j jJ N J N

ji jij i j i
x u

= = = =∑ ∑ ∑ ∑ , 
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which is often of substantive interest. A design-based approach might estimate the 

numerator and denominator of Eq. (18) by design-unbiased estimates, weighting cases in 

stratum j by the sampling weight /j j jw N n= . This yields the estimator 

 ( *) * *

1 1 1 1

/ /
j j j j

J J J J
w

j ji ji j ji ji ji ji
j i s j i s j i s j i s

y w u y w u w y w
= ∈ = ∈ = ∈ = ∈

       
= =              

       
∑∑ ∑∑ ∑∑ ∑∑ , (19) 

where *
ji j jiw w u=  is the product of the sampling weight and the variance weight. This 

estimator can also be motivated as an approximate posterior mean under a Bayesian 

model, as follows. The target model (17) does not reflect the stratified nature of the 

sample, and as discussed in Example 3, inference for (18) under this model is vulnerable 

to misspecification, if the means of Y and selection rates vary across the strata. Thus for 

inference about (18), we assume an inference model that allows different stratum means, 

namely 

 
( )

2

2

( | , ) ~ ( , / )

{ ,log }

I ji ji j j ji

j j

p y z j G u

p const

θ µ σ

µ σ

=

=
. (20) 

The possibility of different stratum means is a key feature of the population given the 

stratified sample design. The inference model yields a posterior predictive distribution for 

the nonsampled values and hence for the target quantity (18). The resulting inference is 

not sensitive to violations of the assumptions that the stratum means are constant.  

 If { }jiu  are known for all units of the population, a standard Bayesian calculation 

yields 

 ( ) ( )

1 1 1 1

( | ,{ }) / ,
j jN NJ J

u u
ji j ji ji

j i j i

E Y data u y u u
= = = =

   
=       

   
∑ ∑ ∑∑  
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where ( ) /
j j

u
j ji ji jii s i s

y u y u
∈ ∈

= ∑ ∑  is the precision-weighted mean of the sampled units 

ji s∈  in stratum j. If { }jiu  are only known for sampled units of the population, a model is 

also needed to predict values for nonsampled units. A variety of models for { }jiu  that 

involve distinct means in each stratum yield a posterior mean of the total in stratum j of 

the form  

 
1

|
j

j

N

ji j jii s
i

E u data w u
∈

=

 
  
 
∑ ∑B , 

where /j j jw N n=  is the sampling weight for stratum j. Then  

 

( ) ( )

1 1 1 1

( )

1 1 1 1

( )

1

( | ) / |

| / |

/

j j

j j

j j

N NJ J
u u

j ji ji
j i j i

N NJ J
u

j ji ji
j i j i

J
u

j j ji j ji
j i s i s

E Y data E y u u data

y E u data E u data

y w u w u

= = = =

= = = =

= ∈ ∈

    
=             

         
                  
 

=   
 

∑ ∑ ∑∑

∑ ∑ ∑ ∑

∑ ∑ ∑

B

* * ( *)

1 1 1

/ ,
j j

J J J
w

ji ji ji
j j i s j i s

w y w y
= = ∈ = ∈

 
= =  

 
∑ ∑∑ ∑∑

 

the estimator (19). The approximation in the second line of this expression results from 

approximating the posterior expectation of a ratio by a ratio of posterior expectations, 

which ignores terms of order (1/ )O n . Hence under this formulation, the model-based 

approach and design based approach both lead to multiplying the model and design 

weights together, unifying the two approaches to inference.  

 An extension of this analysis yields estimates for regression coefficients. Consider 

more generally the target regression model 

 1 2( | , ) ~ ( , )Y X G X Uβ β σ− , (21) 
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where Y consists of the population elements as an ( 1)N ×  vector, X  is an ( )N p×  matrix 

of covariates, and U is a ( )N N×  diagonal matrix with the value { }jiu  on the diagonal. 

The target quantities are the precision-weighted least squares estimates: 

 ( ) 1( )u T TB X UX X UY−= . (22) 

For inference about (22), we assume an inference model that allows different stratum 

regression coefficients, namely 

 
( )

1 2

2

( | , , ) ~ ( , )

{ ,log }

j j j j j j j

j j

Y X G X U

p const

β θ β σ

β σ

−

=
. (23) 

where jY , jX  are the components of Y and X in stratum j, with dimension ( 1)jN ×  and 

( )jN p×  respectively. An approximation to the posterior mean of ( )uB  under (23) is 

obtained by writing (22) as a function of sums  

( )
1( ,..., )u

LB g T T= , 

where 
1 1

{ , 1,..., }jJ N
ji jij i

T u h L
= =

= =∑ ∑l l l , for difference choices of { }jihl  represent the set 

of sums, sums of squares, and sums of cross products of the covariates and outcome. 

Then  

( ) ( )( )
1 1( | ) ( ,..., ) | ( | ),..., ( | ) (1/ )u

L LE B data E g T T data g E T data E T data O n= +; , 

by a linearization argument similar to that used for design-based inference. Also, 

 *

1

( | ) ,
j

J

ji ji
j i s

E T data w h
= ∈

∑∑l l;  

where *
ji j jiw w u=  and jw  is the sampling rate in stratum j, applying an argument similar 

to that for the mean model to { }jihl . Hence: 
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 ( ) * 1 *( | ) ( )u T T
s s s s s sE B data X W X X W Y−; , (24) 

where the subscript s denotes sample quantities. This analysis generalizes the results in 

Little (1991), who considers the constant variance case where 1jiu =  for all i, j. 

 Can sampling weights be ignored when interest lies in “analytic” inference for the 

parameters β  of the target model (21), rather than in the finite population quantity (22)? 

I would say no, Eq. (24) should still be used to estimate β  . The inference differs only in 

the omission of finite population corrections, which follows directly from the application 

of Bayes theorem. My reason is that the finite population is assumed a random sample 

from the superpopulation under the superpopulation model, so β   differs from the finite 

population quantity ( )uB  by a (small) quantity of order (1/ )O N . Since ignoring the 

sampling weights yields a poor estimate of ( )uB , it also yields a poor estimate of β . 

 A design-based statistician might ask what is gained by modeling if the “robust” 

model (23) merely recovers the design-based estimator. My answer is that as in Examples 

3 and 9, the Bayesian paradigm allows for better small-sample inferences, by propagating 

error in estimating the variances, and by allowing the possibility of shrinkage of the 

weights by mixed models such as (14). An examination of these gains is a topic for future 

research. 

6. Conclusion 

 In this article I have reviewed some aspects of the debate between design-based 

on model-based inference for sample surveys. An interesting question is the extent to 

which we are now in (or entering) an “age of reconciliation” between design-based and 

model-based approaches (Smith 1994) after the “hundred years war” (Kish 1995). In 

practical terms this may be true, particularly in large-sample settings. Modelers are more 
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focused on the impact of the design, and design-based survey samplers are paying more 

attention to models, as in the methods in Section 4. Models that take into account design 

features will tend to yield similar results to design-based methods that are sensitive to the 

implied model for the population values.  

 On the other hand, the theoretical underpinnings of the two approaches remain 

strikingly different, and I think theory matters. My own position is that the Bayesian 

paradigm is flexible enough to provide practical and useful inferences for data collected 

by sample surveys, as with data collected by other selection mechanisms. However, 

models need to properly reflect features of the sample design such as weighting, 

stratification and clustering, or inferences are likely to be distorted. 

 In this article I focused mainly on point estimation, and have not discussed 

estimation of precision. In principle I prefer estimates of precision to be based on the 

Bayesian posterior distribution for a carefully specified model, but other methods of 

precision estimation that trade efficiency for robustness, such as replication methods and 

the “sandwich” estimator, have some appeal in the production survey setting, where 

sample sizes are large and detailed model assessment is not practical. Emphasis should be 

on the properties of inferences themselves, such as confidence intervals or P-values, 

rather than on intermediate quantities such as variance estimates.  

 I conclude by addressing two other criticisms of the model-based approach by 

advocates of design-based inference. The first is that modelers don’t believe in random 

sampling, since the sampling distribution is not the basis for inference. As noted in 

Section 2, a model-based approach that ignores the sampling mechanism is not valid 

unless the sampling distribution does not depend on the survey outcomes. Otherwise, the 
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sampling mechanism needs to be modeled, and appropriate modeling in such cases is at 

best difficult. Probability sampling is amply justified within the modeling paradigm by 

the need for robustness to model misspecification 

 Another criticism of the model-based approach is that it is impractical for large-

scale survey organizations: the work in developing good models, and the computational 

complexity of fitting them, is not suited to the demands of “production-oriented” survey 

analysis. However, attention to models is needed in model-assisted approaches, even 

when the basis for inference is the sample design. Also, computational power has 

expanded dramatically since the days of early model versus randomization debates, and 

much can be accomplished using software for mixed models in the major statistical 

packages (SAS 1992; Pinheiro and Bates 2000) or Bayesian software based on MCMC 

methods such as BUGS. (Spiegelhalter, Thomas, and Best 1999). Bayesian software 

targeted at complex survey problems would increase the utility of this approach for 

practitioners. Also, guidance on “off- the-shelf” models for routine application to standard 

sample designs would be useful, although no statistical procedure, design or model-

based, should be applied blindly without any attention to diagnostics of fit to the data. 
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Figure 1. Six simulated populations (N=300) X-axis: pi(i); Y-axis: y(i) with normal 

errors 
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Table 1.  RMSE of three point estimators: P0_15, HT and GR 
N=1000,n=96 

 
 HT GR P0_15 

NULL 35 24 22 
LINUP 27 34 26 

LINDOWN 63 35 27 
SINE 113 95 45 
EXP 35 54 27 
ESS 11 30 10 

 

Table 2. Average Width (AW) and Noncoverage rate (NC) of  95% C.I.s over 1000 
samples (target 50 +/- 20). Comparisons of HT = Horvitz Thompson with random 
groups variance estimate, GR = Generalized Regression with Yates-Grundy 
variance estimate, P0_15 = P-spline with Jackknife variance estimate. N = 1000, n = 
100. 
 

 
 HT GR P0_15 
 AW NC AW NC AW NC 

NULL 131 68 88 80 89 28 
LINUP 109 42 123 64 98 48 

LINDOWN 230 82 124 82 94 62 
SINE 446 60 340 74 145 86 
EXP 135 42 193 96 105 54 
ESS 48 14 109 84 37 66 
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