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A nested unsupervised approach
to identifying novel molecular subtypes

Elizabeth S. Garrett & Giovanni Parmigiani

Sidney Kimmel Comprehensive Cancer Center
Johns Hopkins University, Baltimore, MD

Abstract

In classification problems arising in genomics research it is common to study pop-
ulations for which a broad class assignment is known (say, normal versus diseased)
and one seeks to find undiscovered subclasses within one or both of the known classes.
Formally, this problem can be thought of as an unsupervised analysis nested within a
supervised one. Here we take the view that the nested unsupervised analysis can suc-
cessfully utilize information from the entire data set for constructing and/or selecting
useful predictors. Specifically, we propose a mixture model approach to the nested un-
supervised problem, where the supervised information is used to develop latent classes
which are in turn used for data mining and robust unsupervised analysis. Our solution
is illustrated using data on molecular classification of lung adenocarcinoma.

1 Introduction

The wide availability of high throughput assays in biological research is generating many
high-dimensional datasets that pose novel analysis questions. For example, in genomics and
proteomics, a single experiment can provide information on thousands of genes or proteins
from a single biological sample. One of the most challenging uses of such information is
the identification of novel molecular subclasses. This task has been approached using a
combination of unsupervised clustering and visualization. While these methods have led to
important progress in understanding biological phenomena, especially in the area of cancer
classification (Mohr et al., 2002), there remain at least two important limitations: first,
approaches using observed RNA or protein expression levels can be overly sensitive to noise
and outliers; second, approaches using constructs that depend on a large number of genetic
dimensions tend to generate molecular subclasses whose interpretation are tied to a specific
technological platform and is likely to be obscured from a biological standpoint.

To address these issues, we recently proposed analysis and visualization approaches for
gene expression based on three-way latent classes, representing over- under- and typical
expression (Parmigiani et al., 2002). The goals of the three-way latent class analysis are to
(1) identify variables which show variation across the sample population which is not likely
to be the result of measurement error, (2) choose subsets of variables which show similar
patterns across observations, and (3) define population sub-classes using a small number of
non-redundant variables. Class indicators replace observed expression by a scale that is both
more robust and more easily interpretable across technologies, and can facilitate expert-
based dimension reduction. Classes are identified using a Bayesian hierarchical mixture
model approach that searches for evidence of clustering of expression levels across biological
samples.
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In this article we present a generalization of this approach. The motivating application
area is molecular classification of cancer using genomic data. Even though the focus of these
analyses is the search for yet undiscovered subgroups within broad morphological classes of
cancer, studies often include both cancer and normal samples (Bhattacharjee et al., 2001),
and sometime additional cancer types. The normal samples are used in clustering of genes, to
facilitate indentification and interpretation of groups of coregulated genes. Here we pursue
a more formal way of incorporating information from normal samples in the discovery of
subclasses of cancers. Specifically, we use class membership on normals to improve the fit of
the mixture model and the reliability of the latent class assignment. The resulting three-way
scale is then used in the unsupervised analysis of the cancer, including visualization, gene
mining, and profile definition.

More broadly, there are many situations arising in molecular biology research where it is
assumed that a population is comprised of known classes (say, normal and disease) and that
within the disease class, there are undiscovered disease subtypes. Formally, this problem
can be thought of as an unsupervised analysis nested within a supervised one. We termed
this, for brevity, the “nested unsupervised” case. The class information is useful for the
nested unsupervised analysis because it allows, broadly speaking, for a better definition of
predictors.

In this article we define a latent class model for the nested unsupervised case (Section 2),
discuss data reduction and data mining techniques that make use of the supervised infor-
mation in the unsupervised analysis (Section 3), and demonstrate the methodology in the
analysis of gene expresion data on lung adenocarcinomas (Section 4).

2 Nested unsupervised analysis via supervised latent

classes

2.1 Mixture Modeling of Latent Classes

Consider a sample of I individuals, for which we collected a vector of binary class identifiers
c and a J × I matrix of predictors A with elements aji. In genomic applications, the number
of predictors J is in the tens of thousands and much larger than I. We define the goal of a
nested unsupervised analysis to be that of finding subgroups within each of the classes c = 1
and c = 0. For concreteness, we will refer to class c = 0 as normal and class c = 1 as cancer.
For simplicity of exposition we will only focus on identifying subclasses within the cancer
class.

The basic underlying assumption from which our model arises is that the distribution of
each variable (e.g., gene expression or protein expression) across individuals follows a three
component mixture model, with components indicators eji defined by:

eji = −1 variable j is abnormally low in subject i

eji = 0 variable j is at a typical level in subject i

eji = 1 variable j is abnormally high in subject i.

These components provide a scale that has lower resolution than the absolute measurements,
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but is more interpretable biologically, more likely to preserve its meaning across technologies,
and more amenable to defining class memberships that can be validated an implemented
clinically. Parmigiani et al (2002) and the associated discussion provide additional motivation
and details.

In the unsupervised setting, all the component indicators e’s are estimated using mixture
modeling techniques. In the nested unsupervised setting, we propose to consider the following
relationship between the e’s and c:

if ci = 0 then eji = 0 for j = 1, . . . , J
if ci = 1 then eji is unknown for j = 1, . . . , J

This is motivated by the desire of ensuring that the typical level category, e = 0, is inter-
pretable as the category that is expected in normal samples. In cancer samples, because
of the multiplicity of mechanisms leading to cancer and the fact that many genes are not
involved in carcinogenesis, we do not preclude the case where eji = 0. This assumption gen-
erates an asymmetry in the way the unsupervised classification is nested in the supervised
analysis, but also allows us to borrow strength from the class information in defining novel
subtypes. The efficiency of this approach will improve with the homogeneity of a predictor
within the normal samples.

For each variable j, the distributions of measurements in the low, normal and high class
are f−1,j, f0,j, repectively. That is,

aji|(eji = e) ∼ fe,j(·), e ∈ {−1, 0, 1}.

We define π+
j to be the population proportion of subjects who have a high value for variable

j and π−j to be the population proportion of subjects who have a low value for variable j.
The model assumes that the eji’s are independent conditional on the π’s and f ’s.

This approach is similar to a latent class or latent profile model (Bartholomew, 1987;
McCutcheon, 1987; Arminger et al., 1995) where the classes and subtypes are defined by
patterns of the observed variables. However, in the standard latent class and latent profile
models, the variables that define the latent classes are predetermined. In our case, one of
the challenges is facilitating gene mining and expert selection of a small number of relevant
genes from a set of thousands.

2.2 Distributional Assumptions

In our software implementation, we have used uniform (U) distributions for f−1,j and f1,j

and a Gaussian distribution for f0,j (Garrett and Parmigiani, 2003). The parameterization
is as follows:

f−1,j(·) = U(−κ+
j + αi + µj, αi + µj)

f0,j(·) = N (αi + µj, σj)

f1,j(·) = U(αi + µj, αi + µj + κ−j ).

In practice, these distributions have proven successful in capturing the categorical nature of
gene expression data in both simulated datasets and in real datasets.
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In the Gaussian distribution, αi + µj represents the mean of the typical expression dis-
tribution for gene j in sample i, with µj as the gene effect and αi as a subject-specific effect.
We include αi to adjust for the possibility that the values in sample i might be higher or
lower on average than other samples. In pre-normalized gene expression data, the main
function of the αi’s is to readjust the normalization so that it only applies to the normal
and not the regulated observations. σj is the standard deviation of the normal category in
gene j. The upper and lower limits of the high and low distributions are αi + µj + κ+

j and
αi + µj − κ−j , respectively.

There are many choices for the distributions which would likely achieve the same goals.
Our reasons for choosing the above distributions are partly mathematical convenience and
partly due to to the nature of genetic and proteomic data. For example, it can be assumed
in many cases that the error associated with measuring gene expression follows a Gaussian
distribution, justifying our use of the the Gaussian distribution for normal expression. In
our applied setting, the uniform distribution naturally lends itself to the case of differential
gene expression. In cancer applications, differential expressions are thought to be caused by
the failure of biological mechanisms. As a result, the observed expression levels may take a
broad range of values.

For estimation, choosing the uniform distributions is efficient because it requires the
estimation of relatively few additional parameters. One of the limits of each of the uniform
components is defined by µj+αi, and so only one additional parameter is required. Consider
the analogous case of a mixture of three Gaussian distributions: the Gaussian mixture model
would require six gene-specific parameters whereas our model only requires four (this does
not include the estimates of π+

j and π−j ). This property is convenient in that stable estimates
are provided even when the majority of the genes tend to fall into the normal expression
case. Additionally, because of the flat shape of the uniform, no values are assigned very low
densities. We have imposed an additional constraint that κ+

j > rσj and κ−j > rσj to ensure
that the uniforms truly represent high and low values and do not have a large portion of
their range overlapping with the Gaussian component. In our implementation, we generally
choose a value of r > 3, which ensures relatively little overlap between the Gaussian and the
uniform components.

Examples of normal/uniform mixtures for finding outliers and sparse clusters are dis-
cussed by (Fraley and Raftery, 1998). For other examples of mixture modeling applied to
microarray data see (Lee et al., 2000; McLachlan et al., 2002; Yeung et al., 2001).

As in Parmigiani et al., 2002, a Bayesian hierarchical model is used to estimate the
mixture model proposed above. The estimation approach yields posterior distributions for
each of the parameters of interest. We borrow strength across variables by assuming that the
variable-specific parameters (e.g., µj, π

+
j , etc.) follow additional probability distributions.

This is motivated by two factors: (1) due to the high variable-to-subject ratio, there is
relatively little information with which to estimate variable-specific parameters, and (2)
technological aspects of the assays would affect many or all of the variables similarly.

Specifically, we use the following hierarchical distributions to describe the variation of
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parameters across variables:

µj|θµ, τµ ∼ N (θµ, τµ)

σ−2
j |γ, λ ∼ G(γ, λ)

κ+
j |θ+

κ ∼ E(θ+
κ )

κ−j |θ−κ ∼ E(θ−κ )

logit(π+
j )|θ+

π ∼ N (θ+
π , τ

+
π )

logit(π−j )|θ−π ∼ N (θ−π , τ
−
π )

where G is the gammma distribution, and E is the exponential distribution. We assume
variable-specific parameters are independent conditional on the hyperparameters on the
right-hand side of the distributions above. Hyperparameters can be assigned dispersed,
non-informative priors, as the large number of variables allows for data-driven estimation.
An advantage of the hierarchical model is that for variables which show little or no evidence
of high or low values (i.e. π−j ≈ π+

j ≈ 0), there is essentially no information in the data
with which to estimate the parameters associated with the high and low distributions. The
hierarchical model uses information from the other genes with which to estimate parameters
for these variables. Notice that there is no hierarchical distribution for αi. The model could
easily be generalized to include this, but in practice it does not appear to be necessary or to
affect model estimates.

We fit this model using an MCMC estimation procedure, in which the data are augmented
with a trichotomous indicator, eji for each aji, with the additional constraint that eji = 0 if
ci = 0 (see also Diebolt and Robert, 1994 and West and Turner, 1994). The constraint has
important implications in the interpretation of results. In the gene expression data that we
will examine in the next section, there are 139 cancer samples and only 17 normal samples.
If there are genes which clearly delineate the cancers from the normals, we would expect
that only the normal samples would have expression values consistent with e = 0, and the
cancer samples would appear to have e = −1 or e = 1.

As in the unsupervised version, to facilitate sampling of the κ’s, we used the following
sampling sequence [κ|ω∗] [e|κ, ω∗] [ω∗|κ, e] . Symbols refer to parameter vectors or ma-
trices, brackets refer to posterior distributions. We use ω as shorthand for the full set of
parameters, and ω∗ for ω with κ removed. Given the class indicators (eji’s), the full condi-
tional distribution of the πj’s is a Dirichlet distribution, and the full conditional distribution
of the parameters of the normal component is conjugate, with the additional constraint that
σr < min(κ+

j , κ
−
j ).

For each point in the predictor matrix, the probability of latent class membership are

p+
ji = P (eji = 1|aji, ω) =

π+
j f1,j(aji)

π+
j f1,j(aji) + π−j f−1,j(aji) + (1− π+

j − π−j )f0,j(aji)
(2)

p−ji = P (eji = −1|aji, ω) =
π+
j f−1,j(aji)

π+
j f1,j(aji) + π−j f−1,j(aji) + (1− π+

j − π−j )f0,j(aji)
, (3)

The quantities in equations (2) and (3) can be interpreted as measures of the distance be-
tween observed measurements and measurements that would be expected in normal subjects.
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Values of p+
ji and p−ji that are close to 0, indicate similarity to normal subjects, while values

close to 1 indicate levels that are either high or low as compared to what is seen in normal
subjects.

A point ji can only have high positive probability of belonging to the high or to the
low category, but not both, as the two categories are not overlapping. Exploiting this fact,
we can combine p+

ji and p−ji by pji = p+
ji − p−ji. We refer to this new variable as the “poe

scale”, where poe is an acronym for “probability of expression.” The transformation from
aji to pji is useful because we have essentially made the data independent of the method
with which the measurements were assayed. For example, the aji could be expression values
from oligonucleotide arrays, or from cDNA arrays, or from other means for measuring genetic
activity. Additionally, all variables are now measured on the same scale so we can directly
compare variables across subjects. We present some specific tools for data reduction in the
next section. However, the J × I matrix of pji’s can now be used in any clustering or other
analytic method.

3 Data reduction approaches in nested unsupervised

analyses

3.1 Evaluating diagnostic characteristics of variables

The goals of the analyses that follow are to find a relatively small number of variables which
show variation across subjects, show consistent values within normals, and possibly show
evidence of subtypes within the disease class. Constistency within variables can be assessed
by examining a variable’s “specificity”, and evidence of subtypes across subjects can be
assessed by “sensitivity.” We define specificity (spj), sensitivity (sej), positive sensitivity
(se+

j ), and negative sensitivity (se−j ) for variable j to be

spj = P (subject i is classified as normal | subject i is normal)

sej = P (subject i is classified as high or low | subject i is diseased)

se+
j = P (subject i is classified as high | subject i is diseased)

se−j = P (subject i is classified as low | subject i is diseased)

To calculate specificity (spj) and sensitivities (sej, se
+
j , se−j ), we define a threshold on

the latent class membership probabilities and assign points to the high, normal and low
categories. Specifically, we estimate the true category of variable j for subject i (eji) with
êji, such that

êji = −1 if p−ji > p0

= 1 if p+
ji > p0

= 0 else

where p0 is a fixed threshold. Because the high and low class probability are strongly
negatively correlated, a natural choice is a threshold of 0.5, although other cutoffs can be
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chosen, ranging from 0 to 1. The effect of choosing a cutoff closer to 0 will tend to classify
more values as normal, decreasing sensitivity and increasing specificity. Choosing a cutoff
closer to 1 will have the opposite effect. After choosing a threshold and categorizing each
variable for each subject, we can calculate spj, sej, se

+
j , and se−j for each variable as follows:

spj =
∑
i:νi=1(1−|êji|)∑I

i=1 νi

sej =
∑
i:νi=0(|êji|)∑I
i=1(1−νi)

se+
j =

∑
i:νi=0 I(êji=1)∑I
i=1(1−νi)

se−j =
∑
i:νi=0 I(êji=−1)∑I

i=1(1−νi)

We are interested in variables which are consistent across normal subjects. This cor-
responds to choosing variables (i.e., genes) that show high specificity, spj. If we are also
interested in variables which show evidence of subtypes of disease, then we would choose vari-
ables that also had one of the levels of sensitivity away from the extremes, which suggests
that for individuals who have disease only a fraction of them show high or low expression.
If a variable has very low se+ and relatively high se−, the diseased subjects tend to have
low value relative to normals. If a variable has moderate levels of both se+ and se−, then
there is a subtype of diseased subjects that show low levels and another subtype showing
high levels.

We can now reduce our dataset by choosing variables which show sufficient specificity.
This level of specificity will depend to some extent on the dataset under consideration, but
a specificity of 0.5 will suggest that at least half of the normals are classified as normals by
the variable of interest. In the case of high throughput assays, this seemingly low threshold
will usually have the effect of weeding out a very significant portion of genes (i.e., greater
than half). For sensitivity, we use the overall sensitivity value (se), where we choose a much
lower threshold due to the hypothesis that there are subtypes within the disease categories.
For example, a threshold of 0.10 for se will sufficiently eliminate variables that show almost
no evidence of association with disease versus normal status. Note that althougth we are
interested in variables with high specificity and low sensitivity, we tend to not be interested in
variables with low specificity and high sensitivity. These variables would tend to categorize
normal subjects into the disease class.

By setting thresholds for specificity and sensitivity, we can effectively eliminate variables
which show little evidence of being related to the disease process.

3.2 Creating subsets of similar variables

Estimates of class assigment probabilities can be used for mining for genes that are likely to
provide interesting subgroups of the diseased category. In the application of Section 4 we
use the following mining approach, described in more detail in (Parmigiani et al., 2002) and
(Garrett and Parmigiani, 2003):

1. Choose an expression pattern of interest. The idea is to state a target for how many
subjects within a variable are expected to be low and how many to be high. For
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example, the pattern {0.05, 0.20} indicates that 5% of subjects should be low, and
20% of subjects should be high for a variable. The remaining 75% would then be in
the “typical” component of the mixture.

2. Sort variables according to consistency with pattern defined in step 1. For each
variable, subjects are assumed to follow the pattern from step 1. Then, using the
estimates of p+

ji and p−ji, we can calculate the probability that, for variable j, the
subjects have the specified pattern. We sort variables by this probability.

3. Calculate a J×J matrix of variable agreement, where rjk represents agreement between
variables j and k:

rjk =
I∑
i=1

(p+
jip

+
ki + p−jip

−
ki + (1− pji)(1− pki))

4. Define variable “coherence” as the diagonal of the agreement matrix. Coherence for
variable j is rjj. Identify variables as potential “seed” variables if their coherence is
above a prespecified cutoff.

5. Choose the variable with the largest score (i.e., probability) from step 2 and which is
sufficiently coherent as seed variable.

6. Choose variables that show substantial agreement with the seed variable, either as a
fixed agreement cutoff, or as a proportion of coherence of the seed variable. Add these
variables to the “group” which is seeded by variable chosen in step 5.

7. Remove the variables in group from consideration. Repeat steps 5 and 6 to identify
remaining groups.

We apply this approach to a subset of variables which have sufficient specificity and
sensitivity. For each repetition of gene mining, we find homogeneous sets of variables and,
for the purpose of defining molecular profiles, generally need to choose just one variable
to represent the group. Some of the variables within a set may be more appealing to
scientists or clinicians in terms of describing classes among subjects. In the gene expression
setting, many of the measured variables are known genes but many are ESTs (expressed
sequence tags) of unknown biological function. If given a choice as to whether to define
disease subtypes using known genes or ESTs, the known genes are generally preferable. As
a result, we can scan each variable group for the one that makes the most sense clinically
or biologically. In the settings where the idea of “preferred” variables does not apply, it is
most logical to choose the seed variable from a group as the group’s representative variable.

After a subset of variables has been identified using this method, we use the genes to
define pattern profiles. For example, if we have chosen only two variables, then for each
subject we can calculate the probability that the subject belongs to one of 8 possible profiles
((-1,-1), (0,-1), (1,-1), (-1,0), (0,0), (1,0), (-1,1), (0,1), (1,1)). Here the -1, 0 and 1 are
the true eji and ej′i values for the two chosen variables, j and j′. We use the pji value
for estimation of profile probabilities. For a set of k genes, there are 3k possible patterns.
Because the number of patterns get very large even for moderate k, it is generally preferred
to choose relatively few predictors.
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4 Identifying subclasses of lung adenocarcinoma

4.1 Data

We now illustrate the nested unsupervised methodology described so far using gene expres-
sion data that includes normal and cancerous lung samples (Bhattacharjee et al., 2001). The
specimens in this dataset include 139 lung adenocarcinomas (adeno), and 17 normal lung
(NL) specimens. Throughout, normal samples are indicated in figures with the symbol “*”.
The primary analytic goal is to indentify subgroups of adenos. Affymetrix arrays were used
to obtain gene expression data on the 156 samples for 5665 genes. This set of 5665 genes
is a subset of the original dataset and was chosen based on its overlap with a comparable
dataset from another institution. We used all 5665 genes instead of choosing a smaller
set through filtering to show the useful properties of data reduction based on our methods
and software. More detailed information about the experimental processes can be found in
Bhattacharjee et al., 2001. Data were preprocessed to remove experimental artifacts, and a
cube root transformation was performed.

4.2 Sensitivity and Specificity of Genes

We used the R library POE (Garrett and Parmigiani, 2003) to fit the mixture model de-
scribed in Section 2. POE can be obtained at http://astor.som.jhmi.edu/poe. Figure 4.2
illustrates the fit of the mixture model for gene 30. There is evidence of two subgroups in the
data. Most of the normal samples cluster in correspondence with the subgroup with lower
expression, although one belongs to the high expression component. Because the subgroups
are of similar size, a completely unsupervised analysis may have identified either class as the
“typical” class. The additional information from normal samples permits us to attribute a
more reliable interpretation to the classes.

Sensitivity and specificity of all genes can also be computed using tools in the POE
library. Results are shown in Figure 4.2. We can see that there are many genes with high
specificity, indicating that the normal samples do in fact tend to show similar expression
patterns in many of the genes. Sensitivity ranges from 0 to approximately 0.8, with 75%
of the genes having sensitivities less than 0.25. We filtered our 5665 genes by taking only
genes with specificities above 0.8 and sensitivities above 0.10. This left us with 1182 genes
remaining, a reduction in the number of variables of about 80%.

A similarity image of samples is shown in Figure 4.2. Entries are Pearson’s correlation
calculated using the pji matrix of poe scores for the 1182 selected genes. We see that the
subset of genes that we have chosen does a very good job of separating the normal samples
from the adenocarcinomas. While we could have estimated the correlation matrix and per-
formed the divisive clustering using the entire set of 5665 genes, including genes that are not
related to the phenotype of interest would have been likely to add more noise than signal to
our clustering. Generally, it can be more efficient to only include meaningful variables in a
cluster analysis, so that spurious clusters are not formed due to chance associations in the
data.

9

Hosted by The Berkeley Electronic Press



Figure 1: Estimated mixture components for gene 30. Blue vertical marks are the estimated
residuals aij − µj − αi, for the cancer samples. Black vertical marks are the corresponding
residuals for normal samples. The dotted line is a kernel density estimate of the distribution
of the residuals. The solid lines correspond to the best fitting uniform and normal compo-
nents of the mixture, multiplied by the corresponding mixture weights (green = low, black
= typical, red = high). The bottom row displays the normal quantile plot, with gray shades
proportional to the probability 1− p̂ji of being from the normal.

4.3 Gene Mining

We then used the procedure described in Section 3.2 to find a small number of genes which
will provide molecular profiling information. The target pattern sizes used for mining genes
were (0.1, 0.5), (0.5, 0.1), (0.1, 0.25), (0.25, 0.1), (0.2,0.05), (0.05, 0.20), and (0.3, 0.3). After
successively grouping genes for these patterns of expression in the data, we selected three
genes that represented different partitions of the sample space and also had high specificities
(1.00, 0.88, and 0.94) and moderate sensitivities (0.15, 0.33, and 0.58), respectively. The
genes are (1) BRCA1 (breast cancer 1), a tumor suppressor gene that is related to the
famililal breast/ovarian cancer syndrome (Szabo and King, 1997) as well as other cancers;
(2) Meis1 (myeloid ecotropic viral integration), which is a transcription factor known to be
related to oncogenesis (Moskow et al., 1995); and (3) FGF7 (fibroblast growth factor 7),
which is related to lung development (Ware and Matthay, 2002).
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Figure 2: Scatterplot of sensitivity and overall specificity of the genes analyzed. Speci-
ficity can take on only 18 values, as there are 17 normal samples. For the purpose of this
scatterplot, vertical cooridinates have been sligltly perturbed.

For each of the samples, we estimate the 33 profile probabilities and show this graphically
in Figure 4.3 with darker values representing higher probabilities. The four profiles (0,0,1),
(0,0,0), (0,-1,0), and (-1,-1,0) receive relatively high probablity in a large number of samples.
Profiles (0,1,1), (-1,0,0) and (0,-1,1) also receive high probability in some of the samples. As
expected, many normal samples belong to the normal profile (0,0,0) with high probability,
although some give high probability to other classes, as the sensitivity and specificity of the
classifier genes are not 100%.

The nonlinear transformation from the expression scale to the poe scale can be thought
of as a denoising transformation. The effects of denoising are illustrated in Figure 4.3. There
tend to be tighter clusters of points in the poe scaled data and more scatter in the raw data.
The poe scale also carries information about the uncertainty with which the trichotomization
can be applied.

In Table 1, we have assigned each sample to the most likely of the 27 possible profiles.
We find that there is good specificity of this classification, with 14 of the 17 normal samples
belonging to the normal profile (0,0,0). There is also strong evidence that other subclasses
of adenocarcinoma exist: 63 samples very strongly show the pattern (0,0,1), and 17 adeno-
carcinoma samples are classified into (0,-1,0) and another 12 into (-1,-1,0). There is some
evidence that the profiles (0,1,1), (0,-1,1), and (-1,0,0) might be meaningful, due to the high
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Figure 3: Pairwise Pearson’s correlations of samples. Normal samples are indicated by the
symbol “*” on the axes. Rows and columns have been sorted using a divisive clustering
algorithm.

probability that several adenocarcinomas (5, 7, and 4, respectively) exhibit these patterns.

5 Discussion

Genomic data analysis is posing novel challenges to high-dimensional classification. Among
the most critical is to develop methods for discovery of novel biological subtypes using molec-
ular profiles. This requires integration of complex modeling, to properly capture sources of
variation, with intuitive and interpretable visualization, to support dimension reduction with
reliably elicited biological knowledge.

One of the most promising directions for dimension reduction in unsupervised analysis
in genomics is to use known class assignment information involving the same predictors in
a similar context. In this paper we formally explore statistical modeling of this principle.
We define a nested unsupervised analysis to be the discovery of subclasses within a known
class, and we discuss a mixture-based approach that builds on earlier work on unsupervised
molecular profiling. We have extended the R library POE to handle this case and illustrated
its use.

In gene expression data analysis, a practical advantage of our approach is to help in the
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Figure 4: Molecular profiles probabilities. Each row corresponds to one of the 27 molecular
profiles defined by the expression status of genes BRCA1, MEIS1, and FGF7. Each column
corresponds to a sample. For example, the point for row (1,-1,0) for tumor 79 is the proba-
bility that the true expression indicators for tumor 79 are (1,-1,0) with regards to the genes
in question. Marks on the horizontal scale identify normal samples.

screening of genes as predictors, using simple and interpretable measures such as sensitivity
ans specificity. Presecreening of predictors is normally done based on overall expression
variability, which is prone to outliers and not sufficiently sensitive to clustering of samples.
A second advantage of incorporating the information from the normal is a more reliable
interpretation of the latent classes used in classification. Additional discussion of three-way
mixture models in molecular profiling is in Parmigiani et al., 2002.
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