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A Note on the Consistency and Interpretation of Bayes Factors Based
on Test Statistics

Valen E. Johnson

A method for defining Bayes factors based on the sampling distribution of test statistics
was proposed in Johnson (2005). To implement this method, it is necessary to specify the
sampling distribution of test statistics under alternative hypotheses. For Bayes factors
based on χ2 and F statistics, these distributions can be naturally defined as noncentral
versions of the null distribution. In this note, I describe criteria for setting hyperparameters
that determine these noncentral distributions so that the resulting Bayes factors achieve
consistency.

Let BF (1|2) denote the Bayes factors between models 1 and 2, i.e. the ratio of the
marginal density of the data under model 1 to the marginal density of the data under
model 2. For present purposes, BF (1|2) will be called consistent if (a) BF (1|2)

p→ ∞ as
the sample size n →∞ when model 1 is true, and (b) BF (1|2)

p→ 0 as n →∞ when model
2 is true.

For the remainder of this note, ‘J5” refers to Johnson (2005) and, unless otherwise
stated, notation and regularity conditions stated in J5 apply here also.

χ2 tests for multinomial data. Let p denote a multinomial probability vector which
satisfies a given null hypothesis, and suppose that under the alternative hypothesis the
multinomial probability vector q is drawn from a Dirichlet distribution with parameter
cp. Letting K − s − 1 denote the degrees of freedom of the χ2 statistic xn (as defined in
Sec. 2 of J5), the logarithm of the Bayes factor between the alternative hypothesis (model
2) and null hypothesis (model 1) may be written[

nxn

2(1 + c + n)

]
+

(
K − s− 1

2

)
log

(
1 + c

1 + c + n

)
. (1)

Under the null model, the distribution of xn is χ2
K−s−1. In this case, the first term of (1)

is bounded in probability, while the second tends to −∞ as n →∞. Thus, BF (2|1)
p→ −∞

under the null model.
Under the alternative hypothesis, the distribution of xn is noncentral χ2

K−s−1(λ) with
noncentrality parameter λ = nκ′κ, κ = {(qi − pi)/

√
pi}. If this hypothesis pertains, the

first term in (1) dominates and BF (2|1)
p→∞ as n →∞. It follows that the Bayes factor is

consistent for constant c. Note that if marginal maximum likelihood estimation (MMLE) is
used to estimate α = (c+1)/n, the resulting Bayes factor tends to ∞ under the alternative
hypothesis, but remains bounded under the null hypothesis and so is not consistent.

It is worth noting that Lemmas 1–4 of J5 assume that (q − p) = Op(1
√

n). Under
the alternative hypothesis, this assumption is required for xn to converge to a noncen-
tral χ2 distribution as n → ∞. For (q − p) = Op(1) (the case of finite samples), the
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distribution of xn under the alternative model falls between mini{qi/pi} and maxi{qi/pi}
times the noncentral χ2 distribution that would be obtained by replacing

√
npi by

√
nqi in

the denominator of the normal deviates used in the definition of xn. Thus, provided that
the values of qi/pi are not too different from 1, the non-central χ2 approximation to the
distribution of the test statistic under the alternative model will often be adequate.

F tests for linear models. Suppose that

y |β, σ2 ∼ Nn(Xβ, σ2I),

where y is an n× 1 observation vector, β is an r × 1 regression parameter, X is an n× r
matrix of rank r, and σ2 is a scalar variance parameter. Assume further that under the
null hypothesis, H′β = ξ, where H is an r × k matrix of rank k whose range space is
contained in the range space of X′, and let fn denote the standard F statistic for testing
the null hypothesis against the alternative that β does not satisfy this constraint. Under
the alternative hypothesis, if β is drawn from an r-variate normal distribution centered on
a value that does satisfy the null constraint and having covariance matrix τσ2(X′X)−1,
then the logarithm of the Bayes factor in favor of the alternative, say log(BF (2|1)), can
be written

−K

2
log(1 + nτ∗) +

k + m

2
log

(
1 +

kfn

m

)
− k + m

2
log

(
1 +

kfn

m(1 + nτ∗)

)
, (2)

where m = n− r and nτ∗ = τ .
Under the null hypothesis, fn = Op(1). This implies that the first term in (2) dominates

the sum, so that BF (2|1)
p→ −∞ as n →∞.

Under the alternative hypothesis, fn/(1 + nτ∗) has a Fk,m distribution. Consequently,
f/m = Op(1) and f/m > 0 with probability 1. The second term in (2) is thus linear in
m; the remaining terms are Op(log(n)) or less. It follows that BF (2|1)

p→ ∞ under the
alternative hypothesis. Therefore, the Bayes factor based on the F statistic is consistent
for fixed values of τ∗ (but not for fixed values of τ).

Stomach cancer data revisited. White and Eisenberg (1959) provided a cross-classification
of stomach cancer site with blood type for 707 cancer patients (Table 1). The purpose of
their study was to determine whether there was an association between blood type and
cancer site. The χ2 test for independence for these data is 12.65 on 6 degrees of freedom.

Because White and Eisenberg did not specify an alternative model for these data,
it is not clear what value of c should be used to define the distribution of the χ2 test
statistic under the alternative hypothesis. Without an explicit alternative hypothesis, this
difficulty can be circumvented by reporting test results for a range of alternative models.
This strategy is particularly appealing if the “weight of evidence” criteria suggested in
Kass and Raftery (1995) are used. According to their scheme (which represents a variation
on criteria proposed by Jeffreys (1961)), relative evidence in favor of one of the tested
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Blood Group
Site O A B or AB
Pylorus and antrum 104 140 52
Body and fundus 116 117 52
Cardia 28 39 11
Extensive 28 12 8

Table 1: White and Eisenberg’s classification of cancer patients

hypotheses is classified according to the value of twice the natural logarithm of Bayes
factors. Based on this value, experimental evidence can be classified as “not worth more
than a bare mention” (0-2), “positive”’ (2-6), “strong ” (6-10) or “very strong” (> 10).

Using these classifications, the Bayes factor based on the χ2 statistic suggests that
White and Eisenberg’s data provide (a) very strong evidence against alternative hypotheses
generated from values of c in (0,16.5); (b) strong evidence against alternatives generated
from values of c in (16.5,35.9); (c) positive evidence against alternatives generated from
values of c in (35.9,86.0); and (d) evidence not worth mentioning for alternative models
generated from values of c in (86,412) or values of c > 1050. There is positive evidence for
alternative models generated with c in the range (412,1050), and the maximum evidence
in favor of the alternative hypothesis occurs when c=636. These domains of support are
illustrated in Fig. 1.

When c = 636, the Bayes factor in favor of the alternative hypothesis is slightly less
than 3 (twice the log of the Bayes factor is 2.17). Standard deviations of cell probabili-
ties generated from this alternative hypothesis are

√
pi(1− pi)/25, where {pi} denotes a

probability vector satisfying the independence assumption. Such deviations (≈ 4%) may
or may not be regarded as substantively important.
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Figure 1: Domains of relative support for null (independence) and alternative hypotheses
for White and Eisenberg data.
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