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Sequential Quantitative Trait Locus Mapping
in Experimental Crosses

Jaya M. Satagopan, Saunak Sen, and Gary A. Churchill

Abstract

The etiology of complex diseases is heterogeneous. The presence of risk alle-
les in one or more genetic loci affects the function of a variety of intermediate
biological pathways, resulting in the overt expression of disease. Hence, there is
an increasing focus on identifying the genetic basis of disease by sytematically
studying phenotypic traits pertaining to the underlying biological functions. In
this paper we focus on identifying genetic loci linked to quantitative phenotypic
traits in experimental crosses. Such genetic mapping methods often use a one
stage design by genotyping all the markers of interest on the available subjects. A
genome scan based on single locus or multi-locus models is used to identify the
putative loci. Since the number of quantitative trait loci (QTLs) is very likely to be
small relative to the number of markers genotyped, a one-stage selective genotyp-
ing approach is commonly used to reduce the genotyping burden, whereby mark-
ers are genotyped solely on individuals with extreme trait values. This approach
is powerful in the presence of a single quantitative trait locus (QTL) but may re-
sult in substantial loss of information in the presence of multiple QTLs. Here we
investigate the efficiency of sequential two stage designs to identify QTLs in ex-
perimental populations. Our investigations for backcross and F2 crosses suggest
that genotyping all the markers on 60% of the subjects in Stage 1 and genotyping
the chromosomes significant at 20% level using additional subjects in Stage 2 and
testing using all the subjects provides an efficient approach to identify the QTLs
and utilizes only 70% of the genotyping burden relative to a one stage design,
regardless of the heritability and genotyping density. Complex traits are a conse-
quence of multiple QTLs conferring main effects as well as epistatic interactions.
We propose a two-stage analytic approach where a single-locus genome scan is
conducted in Stage 1 to identify promising chromosomes, and interactions are ex-
amined using the loci on these chromosomes in Stage 2. We examine settings



under which the two-stage analytic approach provides sufficient power to detect
the putative QTLs.
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Abstract

The etiology of complex diseases is heterogeneous. The presence of risk alleles in one or

more genetic loci affects the function of a variety of intermediate biological pathways, resulting

in the overt expression of disease. Hence, there is an increasing focus on identifying the genetic

basis of disease by sytematically studying phenotypic traits pertaining to the underlying biological

functions. In this paper we focus on identifying genetic loci linked to quantitative phenotypic

traits in experimental crosses. Such genetic mapping methods often use a one stage design

by genotyping all the markers of interest on the available subjects. A genome scan based on

single locus or multi-locus models is used to identify the putative loci. Since the number of

quantitative trait loci (QTLs) is very likely to be small relative to the number of markers genotyped,

a one-stage selective genotyping approach is commonly used to reduce the genotyping burden,

whereby markers are genotyped solely on individuals with extreme trait values. This approach is

powerful in the presence of a single quantitative trait locus (QTL) but may result in substantial loss

of information in the presence of multiple QTLs. Here we investigate the efficiency of sequential

two stage designs to identify QTLs in experimental populations. Our investigations for backcross

and F2 crosses suggest that genotyping all the markers on 60% of the subjects in Stage 1 and

genotyping the chromosomes significant at 20% level using additional subjects in Stage 2 and

testing using all the subjects provides an efficient approach to identify the QTLs and utilizes only

70% of the genotyping burden relative to a one stage design, regardless of the heritability and

genotyping density. Complex traits are a consequence of multiple QTLs conferring main effects

as well as epistatic interactions. We propose a two-stage analytic approach where a single-locus

genome scan is conducted in Stage 1 to identify promising chromosomes, and interactions are

examined using the loci on these chromosomes in Stage 2. We examine settings under which

the two-stage analytic approach provides sufficient power to detect the putative QTLs.
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Introduction

Complex diseases have a heterogeneous etiology. Risk alleles present in a genetic locus or

their simultaneous presence in multiple loci may affect a variety of intermediate biological func-

tions. Changes in any one or more intermediate functions results in the overt expression of

disease. Modern genetic studies are, therefore, increasingly focusing on systematically evaluat-

ing specific disease pathways in an effort to identify disease risk factors in an efficient manner

(Thomas 2005). Quantitative (or qualitative) measurements corresponding to a specific pheno-

type underlying the disease are obtained on all the study subjects. The genetic loci linked to

the phenotypic traits are identified to determine those conferring disease risk through specific

biological mechanisms. Suppose the disease of interest is heart disease. Some examples of

intermediate phenotypic traits are cholesterol level, blood pressure, body mass index, and uri-

nary free cortisol. A heart disease patient is very likely to have abnormal levels of at least one

of these phenotypic traits. Genetic loci linked to these traits may provide insights into biological

mechanisms underlying the etiology of heart disease. Due to recent developments in biotech-

nology, it is now becoming increasingly feasible to simultaneously examine a large number of

phenotypes at the molecular level (for example, gene expressions). In this paper we consider

identifying genetic loci related to a single quantitative phenotypic trait in experimental crosses.

We focus on sequential methods to identify the putative trait loci (or, equivalently, disease loci) in

an efficient manner.

Quantiative trait studies in experimental crosses proceed as follows. A desired cross (for

example, backcross or F2) is obtained using two parental strains. Genotypes at several loci

and the phenotypic trait are measured on multiple progeny from this cross. The quantitative

trait loci (QTLs) linked to the trait are identified using a relevant analytic approach such as in-

terval mapping (Lander and Botstein 1989). A one-stage genotyping approach is often utilized,

whereby an ensemble of loci (markers) is genotyped on all the n available subjects (progeny).

The genome is then scanned for the presence of QTLs by fitting a single QTL model at various

loci. The genotyping cost (or genotyping burden) of this strategy is proportional to genotyping all

the markers on the n subjects. Often the number of QTLs may be small relative to the number

of markers genotyped. It may, therefore, be pragmatic to consider a strategy that would require

fewer genotyping to identify the QTLs with adequate power.

Selective genotyping is a one-stage approach commonly used to minimize the genotyping

burden (Lander and Botstein 1989; Darvasi and Soller 1992, 1994). This is an outcome-based

sampling approach where all the markers are genotyped on subjects with extreme trait values

alone. When a single QTL is associated with the phenotypic trait, genotyping only a quarter
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of individuals from each extreme (i.e., one half of the n subjects) provides most of the linkage

information compared to genotyping all the n subjects. However, selective genotyping may not

be an efficient strategy when the variation in the trait is explained by multiple QTLs, at least one

of which has a large effect (Sen et al. 2005). In such cases, the fraction of missing information

can be as high as 50% if only one-half of the subjects having extreme trait values are genotyped.

It is, therefore, important to devise a genotyping approach, whereby all the subjects (i.e., those

with extreme as well as intermediate trait values) are genotyped, but without having to genotype

every marker on every progeny, unless warranted otherwise.

Here we propose a two-stage sequential genotyping approach that requires fewer genotyping

than a one-stage approach. Under the proposed method, several markers not related to the trait

can be eliminated early on in the study by evaluating all the markers on only a subset of the

available progeny. Only those markers showing promising evidence for association with the trait

are further genotyped on the remaining progeny to identify the QTLs. Such cost-efficient two

stage genotyping designs have been proposed to identify disease loci in human linkage analyses

and population-based association studies (Elston 1994; Elston et al. 1996, 2007; Satagopan

et al. 2002, 2004; Satagopan and Elston 2003; Wang et al. 2006). In this paper we develop this

method for QTL mapping in experimental crosses. Any sequential approach can result in loss

of power when the total sample size is fixed since a marker linked to the trait may be incorrectly

eliminated in the first stage. This issue can be addressed by genotyping an appropriate subset

of individuals in the first stage and by setting the corresponding significance level to identify the

promising markers for further evaluation in the second stage. We show that the expected Fisher

information of the two-stage design relative to a one-stage design has a simple form that can

be used to identify the sample size and significance level for the first stage such that the loss

of power and the genotyping burden relative to a one-stage design are minimized. Epistasis

or interactions between multiple QTLs form an important characteristic of complex phenotypic

traits. Conducting a genome scan using single QTL models may not be a powerful approach

to identify all the QTLs (Broman and Speed 1999). The genome must be scanned using multi-

locus models to simultaneously identify relevant QTLs, which can quickly become an arduous

task. Two-stage analysis may be useful for circumventing this issue (Marchini et al. 2005). Here

we examine a two-stage analytic approach where a genome scan using single locus models is

conducted in the first stage to identify promising chromosomal regions. Interactions between loci

in these regions alone are evaluated in the second stage using multi-locus models.

The goals of this paper are to investigate the power trade-offs between one-stage versus

two-stage methods and to evaluate the optimal strategies. In the next section we describe the
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characteristics of a one stage design by providing the overall significance level, power, and the

genotyping burden of this approach. Next we develop the two stage design, derive simple equa-

tions to obtain the optimal design parameters, and evaluate the operating characteristics. These

methods are first developed for a backcross, and subsequently described for an F2 intercross,

assuming a single locus model. This is followed by an evaluation of two stage designs for a

backcross when two unlinked QTLs are associated with the trait. Finally, we examine a two-

stage analytic approach to identify multiple QTLs conferring main effects and epistatic effects on

the trait.

One Stage Design

Consider a genome of interest with C chromosomes, and Kc markers on chromosome c (1 ≤
c ≤ C). The total number of markers is K =

∑C
c=1 Kc. Let L denote the length of the genome,

and ∆ represent the average genotyping density (i.e., distance between the markers), both in

centiMorgan units. Under a one stage design all the K markers are genotyped on all the n

available subjects. We first outline the general concept in the context of a backcross population

using a single locus model, assuming that a single QTL is associated with the trait.

Let gi and yi denote the genotype at the QTL and the phenotypic trait, respectively, in a

backcross subject i (1 = 1, · · · , n). Without loss of generality, the genotype at a locus is coded 0

or 1, each having marginal probability 1/2. The single locus model is given by:

yi = δ(2gi − 1) + εi , (1)

where δ is the effect of the QTL. Further, εi ∼ N(0, σ2) is the random error, where σ2 is the error

variance. We shall assume σ2 = 1. While σ2 is estimated in a practical data analysis setting,

the assumption of unit error variance during study design is simply a matter of scaling the QTL

effect. Hence, δ/σ is interpreted as the standardized QTL effect or the effect size. In a design

setting, the investigator strives to determine the power or sample size to detect a desired effect

δ under some assumed σ2. This is equivalent to designing a study to detect a desired effect size

δ/σ. Hence, without loss of generality, we consider σ2 = 1 throughout this paper.

The phenotypic trait is marginally distributed as Gaussian with mean 0 and variance τ 2 =

1 + δ2. We assume that the parameter estimates and test statistics are calculated based on

the interval mapping approach (Lander and Botstein 1989). In practice we observe the marker

genotypes but not the QTL genotypes. Suppose we investigate evidence for the presence of

a QTL at a locus flanked by two markers such that the recombination between the locus and
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the left flanking marker is r1. Let r be the recombination fraction between the flanking markers.

Both r and r1 can be calculated as a function of genetic distance using the Haldane mapping

function (Ott 1991). Denote φ(.) as the probability density of a standard normal distribution.

Suppose we are testing for the presence of a QTL at a particular genetic locus. Let qi denote

the conditional probability that the QTL genotype at that locus is 1, given the flanking marker

genotypes. The values of r1, r and, hence, qi can be easily obtained and treated as known

during the analysis of that locus. The log-likelihood corresponding to model (1), evaluated at the

locus under investigation, is given by:

l(δ; r1) =
n∑

i=1

log{qi φ(yi − δ) + (1− qi)φ(yi + δ)} . (2)

The score statistic, denoted Z, for testing the null hypothesis of no QTL (δ = 0) is given by:

Z =
l
′
(δ = 0; r1)√

I(δ = 0; r1, n)
, (3)

where l
′
(δ = 0; r1) is the derivative of the log-likelihood with respect to δ, evaluated at δ = 0.

I(δ = 0; r1, n) is the Fisher’s information corresponding to δ, also evaluated at δ = 0 using a

sample of n individuals. Following the general theory of likelihoods and score statistics (Cox

and Hinkley 1974), Z is distributed as N(δ
√

I(δ = 0; r1, n), 1). [The mean of Z is outlined in

the Appendix.] Hence, Z2 has a χ2 distribution with 1 degree of freedom and non-centrality

parameter

λ(δ, n) = I(δ = 0; r1, n)δ2 . (4)

Clearly, the non-centrality parameter is 0 under the null hypothesis. The information depends

upon the distance between the flanking markers and the location of the QTL within the marker

interval, and information is the least when the QTL is located in the middle of the marker interval

(Sen et al. 2005). Therefore, thoughout this paper we consider designing a QTL study under the

assumption that the QTL is located in the center of the marker interval. The Fisher’s information

is the expected value of the negative second derivative of equation (2) with respect to δ, given by

I(δ = 0; r1, n) = nQr, where Qr = [1− 4q(1− q)](1− r) and q(1− q) = r2
1(1− r1)

2/{r2
1 +(1− r1)

2}2

[see Sen et al. 2005]. Here r and r1 are the recombinations corresponding to ∆ and ∆/2

centiMorgan distances, respectively. Below we describe the overall significance level, power,

and the associated genotyping burden.

Overall Significance Level: We calculate test statistics Z2(t) at every locus t on the genome.

The overall significance level α is the probability that the genome-wide maximum test statistic,
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maxt Z
2(t), exceeds a threshold b2(α) under the null hypothesis. Denote P0(.) as the probability

of an event under the null hypothesis of no QTL. The significance level can be approximated as

(Feingold et al. 1993; Dupuis and Siegmund 1999):

α = P0(max
t

Z2(t) > b2(α))

= 1− exp
{
−C[1−X 2

1 (b2)]− 0.04 L b φ(b) v(b
√

0.04∆)
}

, (5)

where X 2
s (x) is the cumulative probability of a χ2 distribution with s degrees of freedom corre-

sponding to critical value x, and v(u) = exp{−0.583u}. We have denoted b2(α) simply as b2 in

second step of the above equation. Although this approximation was derived based on the like-

lihood ratio statistic, it is applicable to the current setting where Z(t) is the score statistic due to

the asymptotic equivalence between Z2(t) and the likelihood ratio statistic evaluated at locus t

(Cox and Hinkley 1974).

Power: Suppose our goal is to identify the QTL having effect δ on the trait with power 1 − β

using a single locus model (equation 1). Consider the following two events. Event 1 corresponds

to maxt Z
2(t) exceeding b2 in the presence of a QTL, and Event 2 corresponds to test statistic

Z2 at the QTL position exceeding b2. Let PA(.) denote the probability of an event under the

alternative hypothesis. Clearly, PA(Event 2) ≤ PA(Event 1). Our working definition of power is

the probability of Event 2 under the alternative hypothesis. Therefore, the power 1 − β can be

written as

1− β = PA(Z2 > b2(α))

≈ 1− Φ[b(α)−
√

λ(δ, n)] , (6)

where Φ(.) is the cumulative probability of a standard normal distribution.

The sample size n, significance level α and power 1 − β are related through the following

equation:

n =
1

δ2 × [1− 4q(1− q)]× (1− r)
×

{
b(α)− Φ−1(β)

}2
. (7)

Genotyping Burden: Under a one stage design a total of K markers are genotyped on n

subjects. Therefore, the genotyping burden or the amount of genotyping is:

T1 = n×K . (8)
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Two Stage Sequential Genotyping Design

First obtain the sample size n to detect a desired QTL effect with power 1 − β and significance

level α using equation (7) as if we were conducting a one-stage design. This will be our given

sample size. Obtain the trait values of these n subjects. Our goal is to detect the QTL by

genotyping these n subjects in an efficient manner without having to genotype all the markers on

all the subjects. The two stage sequential genotyping design proceeds as follows. Given the trait

values of these n subjects, genotype all the desired markers on random subset of nθ1 (0 < θ1 < 1)

individuals in Stage 1. Identify chromosomes significant at level α1. The markers on these

chromosomes are genotyped on the remaining n(1− θ1) subjects in Stage 2 and tested using all

the n individuals at level α2. The sampling fraction θ1 and the significance levels α1 and α2 are

unknown, and form the two stage design parameters. This two stage approach involves fewer

genotyping than a one stage design. Hence, if the cost of genotyping were linearly related to the

amount of genotyping, this design would provide a cost-effective genotyping approach. However,

any sequential approach would result in loss of power relative to a one stage approach. For an

appropriate choice of θ1, α1, and α2, it may be feasible to design a study involving substantially

fewer genotyping but minimum loss of power, while ensuring an overall significance level of α.

Below we investigate the operating characteristics of two stage designs to identify such θ1, α1 and

α2. Our investigations focus on addressing the following two questions: (1) Given the phenotypic

traits of n individuals, what subgroup size should be used for genotyping in Stage 1? (2) How

should the chromosomes be prioritized for further evaluation in the next stage so that the putative

QTLs can be identified efficiently with minimum genotyping burden?

Overall Significance Level of the Two Stage Design

The overall significance level α is fixed at the outset, and is the probability of finding a false

positive QTL i.e., the probability that the genome-wide maximum test statistic exceeds a signifi-

cance threshold at the end of Stage 2 under the null hypothesis. Since the C chromosomes are

unlinked, we can apply the Bonferroni correction and test each chromosome at level α/C. The

significance level α1 for testing a single chromosome in Stage 1 represents the probability that

the maximum test statistic on a chromosome exceeds a critical value b2
1 under the null hypoth-

esis. The significance level in Stage 2, denoted α2, is the conditional probability under the null

hypothesis that the maximum test statistic on chromosome c exceeds a critical value b2
2 at the

end of Stage 2, given that the chromosome was declared significant in Stage 1. The following

results are derived in the Appendix.
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Result 1 For any chromosome, the significance level for testing in Stage 1 is greater than the

overall significance level: α1 > α/C.

Result 2 The Stage 2 significance level is given by: α2 = α/(C × α1).

Result 3 When the critical value for Stage 2 is equal to the critical value of a one stage design,

i.e., when b2
2 = b2, the overall significance level of the two-stage design is at most α.

Result 1 is consistent with intuition that the study may not have sufficient power to detect

a QTL at significance level α/C when genotyping a fraction of nθ1(< n) subjects. Hence, the

significance testing must be conducted at level α1 > α/C at Stage 1 in order to have sufficient

power to identify the chromosomes containing QTLs. Result 2 suggests that α2 is determined

once α1 is known. Consequently, the only unknown parameters defining a two stage design

are θ1 (the sampling fraction for Stage 1), and α1 (the per-chromosome significance level in

Stage 1). Result 3 suggests that it is not necessary to derive a new critical value for testing the

chromosomes in Stage 2 corresponding to significance level α2. After the completion of Stage 1,

the chromosomes genotyped in Stage 2 can be evaluated using the same critical value as that

under one stage design in order to obtain a per-chromosome overall significance level of at most

α/C.

Power of the Two Stage Design

The power P ∗ of the proposed two stage design is the probability that the test statistic at the QTL

exceeds b2 at the end of Stage 2. Let Z1 and Z2 denote the score statistics calculated at the QTL

position in Stages 1 and 2 using nθ1 and n individuals, respectively. Further, Z1 ∼ N(
√

nθ1Qrδ, 1)

and Z2 ∼ N(
√

nQrδ, 1). These score statistics are equivalent to the test statistics S1 =
√

nθ1QrZ1

and S2 =
√

nQrZ2.

In a one-stage design we would observe the test statistic S2 (equivalently, Z2) at the QTL

position. Under a two-stage design, the QTL region will be evaluated in Stage 2 only if the cor-

responding chromosome is selected in Stage 1. The test statistic at the QTL position obtained

in Stage 2 is S2. If the chromosome is not selected in Stage 1, we will only calculate the test

statistic S1. A chromosome is evaluated in Stage 2 if the maximum score statistic (or the max-

imum chi-squared statistic) on this chromosome exceeds b1 (or b2
1) in Stage 1. The power of

Stage 1 is 1 − β1. Therefore, the chromosome harboring the QTL will be evaluated in Stage 2

with probability (at least) 1 − β1. With probability β1, a test statistic at the QTL will be evaluated

in Stage 1 but not in Stage 2. Therefore, the test statistic S at the QTL position obtained at the
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end of the two-stage procedure is either S1 or S2, depending upon whether the QTL position

has been evaluated in Stage 1 alone or in Stage 2 as well. Therefore, S is a mixture over S1

and S2, given by test statistic at the QTL position obtained under the two-stage procedure is

S = S1I(maxt Zt < b1

√
nQrθ1)+S2I(maxt Zt > b1

√
nQr), where I(.) is an indicator function. The

power of the two-stage procedure is P ∗ = PA(S > b
√

nQr), and requires evaluating a double

integral.

The expected value of S is E(S) = β1E(S1) + (1 − β1)E(S2), which clearly depends upon

1− β1 and θ1. The non-centrality parameter of S, denoted λ2(δ, n), is the difference between the

expected values of S evaluated under the alternative and null hypotheses. Since the expected

value of S under the null hypothesis is 0, the non-centrality parameter is E(S) = λ2(δ, n), written

as:

λ2(δ, n) = β1
λ(δ, nθ1)

δ
+ (1− β1)

λ(δ, n)

δ
, (9)

where λ(.) is the non-centrality parameter given by equation (4). Note that λ(δ, nθ1)/δ and

λ(δ, n)/δ are the expected values of S1 and S2, respectively. Since the n individuals are inde-

pendent, the test statistic S2 can be written as the sum of independent contributions from nθ1

individuals genotyped in Stage 1 and n(1 − θ1) individuals newly genotyped in Stage 2. Hence,

S2 = S1 + X, where S1 and X are independent. Further, X has a normal distribution with mean

n(1−θ)Qrδ and variance n(1−θ)Qr. The variance of S is V ar(S) = nθ1Qr +n(1−θ1)Qr(1−β1)
2.

Suppose we fix θ1. Intuitively 1 − β1 → 1 as α1 → 1. The limiting case as α1 → 1 will be a

one-stage design since increasing number of chromosomes will be genotyped in Stage 2. For a

fixed θ1, E(S) → E(S2) and V ar(S) → V (S2) as 1−β1 → 1. These imply weak convergence of S

to S2 when 1−β1 → 1 for a given θ1. Therefore, identifying a two-stage design with non-centrality

parameter close to that of a one-stage design i.e., λ2(δ, n) close to λ(δ, n) would provide a design

having power close to that of a one-stage design.

The relative non-centrality parameter or, equivalently, the relative information is defined as the

ratio of the non-centrality parameters of the test statistics at the QTL locus under the two-stage

and one-stage designs:

λ2(δ, n)

{λ(δ, n)/δ}
= β1θ1 + 1− β1

= 1− β1(1− θ1) . (10)

The right hand side does not involve δ. Since β1 ≤ 1 and θ1 ≤ 1, the relative information is ≤ 1.

Equivalently, P ∗ < 1 − β, where 1 − β = PA(S2/
√

n > b) is the power of a one-stage design.

Were we to identify θ1 and α1 (and, hence, 1− β1) such that β1(1− θ1) is small, then the relative

information will be close to 1.
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The Stage 1 sampling fraction, θ1, can be written using equation (7) as:

θ1 =
(b1 − Φ−1(β1))

2

(b− Φ−1(β))2 . (11)

The overall significance level α (and, hence, b2), and the overall power 1− β are specified at the

outset, and b1 depends upon α1. Therefore, θ1 depends upon α1 and 1−β1. Further, given 1−β1,

θ1 does not depend upon the QTL effect. Finally, the relative information (equation 10) depends

upon θ1 and β1.

Genotyping Burden

The total number of genotyping in a two stage design, denoted T2, comprises of genotyping

all the K =
∑C

c=1 Kc markers in nθ1 subjects in Stage 1, and genotyping the markers from the

promising chromosomes on the remaining subjects in Stage 2. Note that every null chromosome

has probability α1 of being evaluated in Stage 2. Further, every chromosome containing a QTL

will be evaluated in Stage 2 with probability at least 1 − β1. Let D denote the total number of

chromosomes carrying a QTL. When there is a single QTL, D = 1. Therefore, T2 is given by:

T2 = nθ1

C∑
c=1

Kc + n(1− θ1)

{
(1− β1)

D∑
c=1

Kc + α1

C−D∑
j=1

Kj

}
. (12)

The relative genotyping burden, T2/T1, is the ratio of the genotyping burdens of the two stage

and one stage designs:

T2

T1

= θ1 + (1− θ1)

{
(1− β1)

∑D
c=1 Kc∑C
j=1 Kj

+ α1

∑C−D
j=1 Kj∑C
j=1 Kj

}
, (13)

with θ1 given by equation (11). Therefore, T2/T1 is independent of the model parameters for

given α1 and 1 − β1. Clearly T2 ≤ T1 i.e., fewer genotyping is undertaken in a two stage design

relative to a one stage design.

Optimal Two Stage Design

The two stage design involves fewer genotyping than a one stage design, but incurs a loss of

power. Therefore, our goal is to identify a two stage design so that the loss of power, 1− β −P ∗,

is minimized. Equivalently, we shall identify a two-stage design such that the relative information

(equation 10) is close to 1. In doing so, we must ensure that the overall significance level is

maintained at a desired level α. The number of chromosomes C, the genome length L, the
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desired effect δ, the average genotyping density ∆, the desired overall significance level α, and

power 1 − β are specified at the design stage. First obtain the sample size n to detect some

desired QTL effect δ using equation (7) as if we were conducting a one-stage design. This

will be our fixed sample size. The phenotypic traits will be measured on all these n subjects.

Therefore, given the trait values of these n subjects, our goal is to identify α1 and 1 − β1 (and,

hence, θ1) so that (i) the overall significance level is α, (ii) 1−λ2(δ, n)/λ(δ, n) < ε for some small ε,

and (iii) T2/T1 is minimum. Here ε is a user-specified quanitity indicating the acceptable amount

of relative information loss. For example, setting ε = 0.05 would indicate that the desired relative

information is at least 95%. Following Results 1, 2, and 3, the overall significance level will be

maintained at level α by choosing α1 ∈ (α/C, 1) and setting the Stage 2 critical value equal to

that of a one stage design. The optimal parameters can be obtained through the following steps.

1. Fix a relative genotyping burden T2/T1.

2. For a value of α1 ∈ (α/C, 1), obtain the critical value b1 by setting C = 1 and using L/C in

place of L in equation (5).

3. Obtain 1 − β1 from equation (13) using the Newton-Raphson method. In order to perform

this calculation, θ1 given by equation (11) must be substituted into equation (13).

4. Obtain the sampling fraction θ1 from equation (11), and the relative information using equa-

tion (10).

5. Repeat the above steps for various values of α1 ∈ (α/C, 1), and find α1 minimizing 1 −
λ2(δ, n)/λ(δ, n).

6. Repeat this procedure for various values of T2/T1, and identify the smallest T2/T1 for which

1− λ2(δ, n)/λ(δ, n) < ε.

Since equations (10) and (13) are independent of the QTL effect δ and equation (11) is indepen-

dent of δ once β1 is given, the optimal solution is also indepdent of δ, once n is given.

We assess the operating characteristics of the two stage design under various parametric

configurations to identify the optimal design. The overall significance level and power of a one

stage design are α = 0.05, and 1 − β = 0.80, unless indicated otherwise. Figure 1 illustrates

the optimal two stage design as a function of the relative genotyping burden for a hypothetical

genome with C = 20 chromosomes, each of length 100 centiMorgans, and marker density ∆

= 1 centiMorgan. It is evident that the relative information increases as the relative genotyping

burden increases. The relative information is ≥ 95% (ε ≤ 0.05) when the relative genotyping
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burden T2/T1 ≥ 70%. Equivalently, a two stage design that utilizes only 70% genotyping burden

results in less than 5% loss of information relative to a one stage design. Likewise, less than 10%

information is lost by conducting a two stage design with 60% relative genotyping burden. This

result holds regardless of the value of ∆ (figures for other values of ∆ are similar and, hence,

not shown).

Table 1 provides the optimal two stage design parameters under various choices of ∆, and

T2/T1 = 0.60 and 0.70. When T2/T1 = 70%, the optimal parameters are approximately α1 =

0.21, 1 − β1 = 0.90, and θ1 = 0.60, and the maximum relative information is 0.96 (i.e., ε < 0.05),

regardless of the value of ∆. When the relative genotyping burden is 60%, the optimal two stage

design parameters are approximately α1 = 0.16, 1− β1 = 0.80, and θ1 = 0.50, and the maximum

relative information is 0.90 (i.e., ε ≈ 0.10) for all choices of ∆.

Figure 2 illustrates the behavior of the two stage design parameters when the relative geno-

typing burden is fixed at 70%. Choosing α1 between 10% and 35% provides a relative information

of at least 95%. The quadratic pattern for the relative information and 1−β1 can be explained as

follows. Small values for α1 (< 10%) imply that few chromosomes will be declared significant at

the end of Stage 1 for further evaluation in Stage 2. While this permits us to genotype more indi-

viduals in Stage 1 (θ1 between 65% and 70%), small α1 also implies small Stage 1 power 1− β1.

Consequently, the relative information is small. When α1 is large (for example, α1 > 50%), this

implies that more chromosomes will be declared significant in Stage 1 and, hence, genotyped in

Stage 2. Therefore, when the genotyping burden is fixed, the fraction of individuals to be geno-

typed in Stage 1 is reduced, thus compromising the Stage 1 power to detect the chromosomes

harboring the QTL. This, in turn, results in small relative information. Again, this result holds

regardless of the value of ∆.

General Guideline: These results indicate that, as a general guideline, genotyping all the

markers on θ1 = 60% of the individuals in Stage 1, and genotyping the markers on chromosomes

significant at α1 = 20% level using the remaining individuals in Stage 2 results in minimal loss

of information (ε between 0.05 and 0.10) and requires nearly 30% fewer genotyping than a

one stage design. In particular, first obtain sample size n as if a one-stage design has been

planned. Treating this as the fixed sample size, now conduct the study using a two-stage design

with the above guidelines. Similar guidelines were obtained for association studies in humans

(Satagopan et al. 2004). This general guideline is applicable to genomes of any size, and can

be used to identify a QTL via single locus models.

Before proceeding further, it will be useful to understand why ∆ does not impact the optimal
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parameters. The critical value b and the sample size n, obtained at the outset using equation (7)

to detect a desired QTL effect δ, will depend upon ∆. Suppose the desired QTL effect is δ = 0.20,

and the overall power and significance level are 1 − β = 0.80 and α = 0.05, respectively. The

critical values under ∆ = 20 and 1 are b = 3.90 and 3.95, respectively, yielding corresponding

sample sizes of n = 700 and 580. Suppose we desire a relative genotyping burden of 0.60 under

a two-stage design. When θ1 = 0.50, the sample sizes are 350 and 290, respectively. When

α1 = 0.16, the critical values to test a single chromosome with ∆ = 20 and 1 are b1 = 2.51 and

2.56, respectively. The power of Stage 1 is 1 − β1 = 0.80, relative information is approximately

0.90, and the relative genotyping burden is 0.60 under both the values of ∆. Hence, we have

the same Stage 1 power and relative information under both the values of ∆ precisely because

the underlying sample sizes are different. However, the choice of optimal sampling fraction and

significance level for Stage 1 do not depend upon the QTL effect and ∆ once n is obtained

corresponding to a given ∆ and is treated as the fixed available sample size.

F2 Crosses

We now investigate optimal two stage genotyping for F2 crosses having one of three possible

genotypes at each locus (homozygous corresponding to one of the two parental types, or a het-

erozygote). Dominant and additive effects of QTLs can be examined using F2 crosses. At any

locus, the dominant effect, denoted δd, is the difference between the trait value of the heterozy-

gotes and the average trait value of the homozygotes. The additive effect, denoted δa, is the

averge difference between the trait values of the homozygotes. Without loss of generality, the

marker and QTL genotypes are coded as -1 (homozygous for one parental type), 0 (heterozy-

gote), and 1 (homozygous for the other parental type), and have respective marginal probabilities

1/4, 1/2, and 1/4. Denoting I(.) as an indicator function, the phenotypic trait of individual i given

the QTL genotype gi is modeled as:

yi =

(
−δa −

δd

2

)
I(gi = −1) +

δd

2
I(gi = 0) +

(
δa −

δd

2

)
I(gi = 1) + εi .

A single QTL model can be fit using the interval mapping approach, and a score statistic

Z(t) can be obtained at every locus t to test the null hypothesis H0 : δa = 0 = δd against the

alternative HA : δa 6= 0 or δd 6= 0. Z(t)2 has a χ2 distribution with 2 degrees of freedom. The

non-centrality parameter under the alternative hypothesis is given in the Appendix. The overall

significance level of a one stage design for an F2 cross can be approximated as (Dupuis and
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Siegmund 1999):

α = P0(max
t

Z2
t > b2)

= 1− exp
{
−

(
C + 0.03 b2 L ν(b

√
0.06∆)

)
× exp

(
−b2/2

)}
. (14)

The power 1 − β of a one stage design is PA(Z > b2), where Z is the test statistic calculated at

the QTL position.

Under a two stage design, for α1 ∈ (α/C, 1), the critical value b2
1 can be obtained from equa-

tion (14) by setting C = 1 and using L/C in place of L. The relative information and the relative

genotyping burden have the same form as equations (10) and (13), respectively. The optimal

two-stage design parameters can be obtained using the algorithm outlined for a backcross. The

following result holds for small δa and δd when the sample size n is fixed (see Appendix for proof).

Result 4 When n is fixed and δa and δd are small, θ1 is independent of the QTL effects and

phenotypic variance.

Consider an experiment with a sample size of 320 F2 individuals segregating a single QTL

with additive and dominance effects δa = 0.33 = δd (heritability = 5%), and the hypothetical

genome consisting of C = 20 chromosomes, each of length 100 centiMorgans, with ∆ = 1 centi-

Morgan. For this configuration, the power to detect the QTL is approximately 1− β = 80% at an

overall significance level of α = 0.05 under a single locus model. Figure 3 illustrates the operating

characteristics of the two stage design. The relative information is 95% (i.e., ε = 0.05) and the

relative genotyping burden is 70% when θ1 = 60% and α1 = 0.20. Relative information of 95% is

also attained when (θ1, α1) = (0.65, 0.12). This suggests that, while the optimal two stage design

parameters can be obtained, the solution may not be unique. However, as a general guideline,

genotyping all the markers on θ1 = 60% of the individuals in Stage 1 and genotyping the chromo-

somes significant at level α1 = 0.20 on the remaining subjects in Stage 2 provides 95% relative

information with 70% relative genotyping burden. The operating characteristics of this general

guideline is illustrated in Table 2 under a variety of parametric configurations. It is evident that

the general guideline provides an optimal QTL mapping strategy, regardless of the QTL effects

and the genotyping density. That the optimal design does not depend upon the QTL effects is

consistent with Result 4. The relative information is at least 95% (ε < 0.05) for a genome with C =

20 chromosomes. For a genome with C = 10 chromosomes, the relative information is between

93% and 95%. This general guideline is consistent with the optimal design recommendation

identified for a backcross based on a single locus model.
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Two QTL Models

The methods described so far consider a single locus model at various genomic locations to

identify a QTL associated with the trait. Complex traits are very likely influenced by multiple

QTLs. Suppose two QTLs are associated with the phenotypic trait. Let Pj denote the power to

identify QTL j (j = 1, 2) using a single locus model. The power to detect both the QTLs is P1×P2.

If P1 = 0.80 = P2, then the genome scan based on single locus model has only 64% power to

detect both the loci. Genome scans using multi-locus models can provide a more powerful

approach to identify the putative loci. Here we consider the simple case where D = 2 QTLs

are associated with the phenotypic trait of a backcross individual, and examine the operating

characteristics of a two stage design. Under a one-stage design, two-locus models are fit by

considering every pair of loci on the genome. The null hypothesis of no QTL is tested against the

alternative hypothesis of two QTLs. The two-stage design proceeds as follows. In Stage 1, all

the markers are genotyped on a random subset of nθ1 individuals. A genome scan is conducted

using two-locus models. On every chromosome c, we calculate test statistics corresponding to

two-locus models where one locus is from chromosome c and the second locus is either from c

or from a different chromosome. The maximum test statistic on chromosome c is the maximum

of the test statistics from two-locus models where at least one locus is on c. Each chromosome-

specific maximum test statistic is tested at significance level α1. The markers on the significant

chromosomes are genotyped on the remaining subjects. A genome scan based on two-locus

models is conducted using these chromosomes and genotype data from all the n subjects to

identify the two QTLs.

Given the genotypes at the two QTLs, the trait of a backcross subject i is modeled as:

yi = δ1(2gi1 − 1) + δ2(2gi2 − 1) + εi . (15)

The score statistic, denoted Z(t1, t2), can be calculated based on the above model at any two

genomic locations t1 and t2 to test the null hypothesis of no QTL (δ1 = 0 = δ2) at those two

loci. The square of test statistic has a chi-square distribution with 2 degrees of freedom and

non-centrality parameter:

λ(δ1, δ2, n) = n[1− 4q(1− q)](1− r)(δ2
1 + δ2

2) . (16)

The overall significance level α is approximated as (Dupuis and Siegmund 1999):

α = P0(max
t1,t2

Z2(t1, t2) > b2)

= 1− exp

{
−(C + L/∆)2

2
×

[
τ(

√
∆b2ζ/2)

]2

×
[
1−X 2

2 (b2)
]}

, (17)
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where ζ = 2 and τ(x) = exp{−2
∑∞

s=1 Φ(−x
√

s)/s}.
The relative information and the relative genotyping burden have the same form as equation

(10) and (13). The optimal θ1, α1 ∈ (α/C, 1) (and the corresponding 1 − β1) can be obtained as

described earlier. We examined the optimal two-stage design under various parametric configu-

rations when D = 2 QTLs are associated with the trait. Heritability or the proportion of variation

in the trait explained by the two QTLs is h2 = (δ2
1 + δ2

2)/(1 + δ2
1 + δ2

2). The optimal two-stage

design was examined for various values of δ2
1 + δ2

2 (equivalently, h2). The results indicate that

regardless of the heritability h2 and the genotyping density ∆, 95% or more relative information

and, hence, near-optimal power is obtained when (θ1, α1) = (0.60, 0.20). The relative information

is at least 90% when (θ1, α1) = (0.60, 0.10). The operating characteristics of these optimal two

stage designs are described in Table 3 under various parametric configurations. Our investiga-

tions suggest that, as a general guideline, genotyping all the chromosomes on θ1 = 60% of the

subjects in Stage 1 and genotyping the chromosomes significant at α1 = 20% provides most of

the information and utilizes only 70% of the genotyping relative to a one-stage design. This is

consistent with the general guideline obtained for backcross and F2 crosses based on a single

QTL model.

Two Stage Analytic Approach

Complex traits may be a consequence of multiple QTLs conferring effects individually (main ef-

fects) or solely through epistasis (interaction effects), or both. Conducting a genome scan using

single QTL models may not provide adequate power to detect all the QTLs. Fitting multi-locus

models to identify the QTLs can, however, be a tedious task, particularly under dense genotyp-

ing. A sequential analytic strategy can be employed to identify multiple QTLs in such cases.

Here we examine a two-stage analytic approach when a dense set of markers is genotyped on

all the n available individuals.

We consider the case where the trait is generated through the following model consisting of

the main effects and interaction between two unlinked QTLs:

yi = δ1(2gi1 − 1) + δ2(2gi2 − 1) + δ3(4gi1gi2 − 1) + εi . (18)

Here δ3 is the interaction effect. The phenotypic trait has marginal mean 0 and marginal variance

τ 2 = 1+δ2
1 +δ2

2 +3δ2
3 +δ1δ3 +δ2δ3. In our investigations below, we assume δ1 = δ2. The heritability

based on the above model is h2 = h2
12 +h2

3, where h2
12 = (δ2

1 +δ2
2)/τ

2 and h2
3 = δ3(δ1 +δ2 +3δ3)/τ

2.

The quantity η12 = h2
12/h

2 can be interpreted as the fraction of heritability conferred solely by the
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main effects of the two QTLs. Therefore, η12 = 1 implies that δ3 = 0, and 1 − η12 = h2
3/h

2 = 1

implies that δ1 = 0 = δ2.

Suppose we conduct a one-stage genome scan using single QTL models. As described in

the previous section, the power to detect the two QTLs under this approach is P1 × P2. Now

suppose that we conduct a one-stage genome scan using two QTL models, where two main

effects terms and a pairwise interaction term are considered as in equation (18). In this setting,

there is no QTL under the null hypothesis, and there are two QTLs under the alternative. The

test statistic, denoted Z2, calculated at the two QTL positions using the above model has a χ2

distribution with 3 degrees of freedom and non-centrality parameter given by:

λ(δ1, δ2, δ3, n) = n×
{
δ2
1 + δ2

2 + 3δ2
3 + δ1δ3 + δ2δ3

}
. (19)

The overall significance level α is given by equation (17) with ζ = 4/3. The power of the one-stage

genome scan using two-QTL models is 1 − β = 1 − Φ[b −
√

λ(δ1, δ2, δ3, n)]. The computational

burden of this one-stage approach is the total number of chromosomes that will be considered

for the pair-wise genome scan. Since two-locus models will be fit using markers on all the

chromosomes, the computational burden is CB1 = C, the total number of chromosomes.

Consider the following two-stage analytic approach. In Stage 1, conduct a genome scan

using single QTL models and test each chromosome at significance level α1. In Stage 2, conduct

a two-locus scan by applying model (18) to pairs of loci on the chromosomes identified as being

significant in Stage 1 and test the maximum test statistic at significance level α2. Let 1− β1 and

1− β2 denote the powers to detect the chromosomes containing two QTLs in Stage 1. Different

test statistics are calculated in the two stages. The test statistic in Stage 1 is based on a single

QTL model, while that in Stage 2 is obtained using a two-QTL model. The power, P ∗, of the two-

stage approach is the joint probability that the chromosomes containing the QTLs are identified

in Stage 1, and the two locus test statistic Z2, calculated at the QTL positions, exceeds b2 in

Stage 2. Therefore,

P ∗ = PA(the two QTL chromosomes are selected in Stage 1 and Z2 > b2)

= PA(the two QTL chromosomes are selected in Stage 1)×

PA(Z2 > b2|QTL chromosomes are selected in Stage 1)

= (1− β1)× (1− β2)× PA(Z2 > b2|QTL chromosomes are selected in Stage 1)

= (1− β1)× (1− β2)× PA(Z2 > b2|test statistic is calculated at the two QTL positions)

= (1− β1)× (1− β2)× (1− β) . (20)

A two locus model will be fit at the two putative loci only when the relevant chromosomes are

selected in Stage 1. Therefore, P ∗ can be substantially smaller than 1 − β. The computational
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burden of the proposed two stage design is CB2 =
∑D

j=1(1−βj)+α1(C−D). Clearly, CB2 ≤ CB1.

Therefore, the relative computational burden is given by:

CB2

CB1

=

∑D
j=1(1− βj)

C
+ α1 ×

(
1− D

C

)
. (21)

Our goal is to identify the two stage parameter α1 so that (i) the overall significance level is

α, (ii) the loss of power, 1 − β − P ∗, is smaller than ε for some desired ε, and (iii) the relative

computational burden is minimized.

Since δ1 = δ2, we have 1−β1 = 1−β2. The optimal two-stage parameters can be identified as

follows. The values of α, 1− β, C, L, n, and the desired effect size δ1 (= δ2), and δ3 are specified

when designing the study. The value of ε is specified by the user.

1. Choose α1 ∈ (α/C, 1).

2. Obtain critical value b2
1 from equation (5) by setting C = 1 and using L/C in place of L on

the right hand side.

3. Calculate the power of Stage 1, 1 − β1, using equation (6), noting that the test statistic

at a QTL locus in Stage 1 has a marginal χ2 distribution with 1 degree of freedom and

non-centrality parameter n× δ2
1/(τ

2 − 1− δ2
1).

4. Calculate 1− β − P ∗ = 1− β − (1− β1)
2 × (1− β). Check if this value is ≤ ε.

5. Calculate the relative computational burden CB2/CB1 using equation (21).

6. Repeat the above procedure for various choices of α1 to identify that α1 providing 1 − β −
P ∗ ≤ ε and the smallest relative computational burden.

We examined the power to detect two QTLs under three methods: one-stage genome scan

using single locus models, one-stage genome scan using two-locus models with main effects

and a pair-wise interaction term, and the proposed two-stage analytic approach. Consider a

hypothetical genome with C = 20 densely genotyped chromosomes, each of length 100 centi-

Morgans. The desired overall significance level is α = 0.05. Table 4 gives the power of the three

methods. The power of the two-stage analytic approach is provided for α1 = 0.10, 0.20, and 0.25.

The results indicate that over a broad range of values of h2, the two-stage approach provides suf-

ficient power to identify both the QTLs so long as a reasonable fraction of heritability is explained

by the main effects. As a general rule, a two-stage approach with α1 = 0.25 provides sufficient

power to detect both the QTLs when η12 ≥ 0.75. The loss of power is ε ≤ 10%. This result holds
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for all of the configurations examined, regardless of the value of h2. The power of this design is

given in Column 8 of Table 4, and should be compared with the power of the one-stage genome

scan using two-locus models given in Column 9. When α1 = 0.25, the relative computational

burden is 32% i.e., this two-stage analytic approach requires evaluating 68% fewer two-locus

models to identify the two QTLs than a one-stage approach. Column 5 provides the power to de-

tect the two loci using a one-stage genome scan with single locus models. Comparing this with

Columns 6, 7, and 8, it is evident that the proposed two-stage analytic approach is substantially

more powerful than a one-stage single locus genome scan.

Discussion

In this paper we have outlined two-stage sequential methods for QTL mapping in experimental

crosses. Recent developments in molecular technology enables us conduct dense genotyping.

Sequential genotyping methods can provide a cost-efficient strategy to search for QTLs without

having to genotype all the markers on all the study subjects. Our investigations show that when

a single QTL is associated with the phenotypic trait, genotyping all the markers on only 60% of

the individuals in Stage 1 and genotyping the markers on chromosomes significant at 20% level

using additional individuals in Stage 2 provides near-optimal power to identify the putative locus

and utilizes only 70% genotyping burden relative to a one stage design. When two QTLs are

associated with the trait, this guideline continues to provide an efficient approach to identify the

QTLs when both Stages 1 and 2 involve genome scan using two locus models. The optimal pa-

rameters are independent of the heritability and genotyping density. When planning a two-stage

design, the sample size n is initially calculated to detect a QTL with some desired power and

significance level, assuming a genotyping density of ∆ centiMorgans, as if one were conducting

a one-stage design. Genotyping is then conducted using a two-stage approach by treating this

n as the fixed available sample size. Therefore, while the sample size will depend upon several

parameters including ∆, the choice of sampling fraction and significance level for Stage 1 do not

depend upon the QTL effect and ∆ once the sample size is fixed. Our investigations based on

a single QTL model indicate that the general guideline is applicable to both backcross as well

as F2 crosses. If the cost of genotyping is linear in the total number of markers, this two stage

design provides a cost-effective genotyping strategy. These guidelines have parallels to optimal

two-stage genotyping strategies for association studies in human population.

Note that once the promising markers are genotyped on additional individuals in Stage 2, the

analysis of these markers is based on the entire samples i.e., the individuals genotyped in Stage
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1 as well as Stage 2. While Stage 2 may be viewed as a replication study and the analysis may

be conducted solely based on Stage 2 data, this would result in an inefficient genetic mapping

strategy relative to a joint analysis of Stage 1 and Stage 2 samples (Skol et al. 2006). This

is consistent with intuition since the joint analysis utilizes a larger sample size than an analysis

solely based on Stage 2 data. This article implicitly assumes that the cost of genotyping a

single marker is the same in the two stages. Wang et al. (2006) examine differential costs for

genotyping a large set of markers in Stage 1 and a smaller subset in Stage 2, conclude that

two-stage designs provide an optimal genotyping strategy by examining the power function, and

provide optimal two-stage design parameters under different cost settings.

The contribution to the likelihood from each individual is based on a mixture model. A reviewer

pointed out that the asymptotic normality of the score statistic and the asymptotic chi-squared

distribution of the likelihood ratio statistic may be violated for mixture models. This violation oc-

curs when the mixing proportion qi is 1/2 for all the individuals, resulting in a singular information

matrix (see for example, Quinn et al. 1987). Consider a backcross. Note that qi = 1/2 only when

the flanking markers recombine, and qi = (1− r1)
2/(1− r) or r2

1/(1− r) when they do not recom-

bine. In fact, if we observe that qi = 1/2 for all the subjects, this is an indication that all the study

subjects have recombining flanking markers, which should not occur in a well-designed study. A

randomized study should yield both recombinant and non-recombinant pairs of markers. Hence,

qi 6= 1/2 for all the backcross subjects in a well-designed study. Any chromosome with geno-

typed markers should not have this issue, and we consider testing for the presence of a QTL at

specific locations in intervals flanked by a pair of genotyped markers. Similar argument holds

for other crosses as well. Hence, the expected information is non-singular and the asymptotic

distributions of the score statistic and the likelihood ratio statistic are valid.

We have used the approximation to the tail probability of the test statistic given by equation

(5) in our calculations. This approximation is valid for equally spaced markers, and the tail

probability would be over-estimated when the inter-marker distances are not the same (Malley

et al. 2002). Our main focus here is study design, where the investigator typically makes some

assumption about average inter-marker distances to evaluate the sample size and power. The

approximation to the significance level would be reasonable for addressing design considerations

under such settings. Since the tail probability is over-estimated when inter-marker distances vary,

the resulting sample size n would be conservative. While the approximation to the significance

level (equation 5) may be reasonable for study designs, it may be pragmatic to calculate p-values

using a resampling approach during data analysis. Resampling methods have been described

by Churchill and Doerge (1994) and Malley et al. (2002) for a one-stage design, and by Lin

21
Hosted by The Berkeley Electronic Press



(2006) for a two-stage design. In this paper we have defined power as the probability that

the test statistic at the QTL position(s) exceeds a desired critical value. This is our working

definition of power, and may have some limitations. Alternatively, one may define power as the

probability that the QTL position is within the confidence interval for the position corresponding

to the maximum test statistic. Such a definition may guarantee better likelihood of detecting the

QTL than our working definitions. Two-stage designs under this alternative definition of power is

yet to be examined, and has not been attempted here.

The number of QTLs is unknown at the outset. Further, it is unknown whether multiple loci

are associated with the trait solely through main effects or confer effects through interactions.

It is, therefore, natural to conduct an initial genome scan using single locus models to identify

the promising chromosomes in Stage 1. Multi-locus models can then be fit using the markers

on these chromosomes in Stage 2 to identify the QTLs. Our investigations indicate that this

approach provides substantial computational efficiency to identify multiple QTLs with sufficient

power so long as at least 75% of the heritability is due to the main effects of the QTLs. This

is consistent with intuition that a genome scan based on single locus models in Stage 1 may

not have sufficient power to detect the chromosomes containing the putative QTLs when two

loci confer substantial interaction effect. Posterior summaries for the presence of QTL at a

locus (for example, Sen and Churchill 2001) obtained using hierarchical models can provide a

more powerful genome scan strategy to identify QTLs. Such methods can be used for genome

scanning in Stage 1 to identify the promising chromosomes. Further research is required to

assess the efficiency of two stage designs that employ such analytic approach in Stage 1 and

the resulting cost-efficiency and gains in computational burden, and has not been attempted

here.

The proposed two stage design is conceptually similar to group sequential designs used in

clinical trials (Jennison and Turnbull 2000). In a group sequential trial, a set of individuals are

recruited into the trial and randomly assigned to have or not have the treatment. Outcomes from

the treatment and control groups are compared, and the study proceeds to the next stage if the

comparison is not statistically significant. Otherwise, the trial is stopped. Under the proposed two

stage design, the study proceeds to the next stage if a chromosome is declared significant. While

one or a few treatments are evaluated in a group sequential clinical trial, a QTL study involves

testing multiple genetic loci. The overall significance error in a group sequential clinical trial is

written as a sum of type I errors over multiple stages. Under the proposed two stage design

the probability of not finding a false positive (equation 22 in the Appendix) is written as the sum

of the corresponding probabilities in successive stages. This provides insight into the choice of
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significance level α1 for Stage 1, and the choice of significance level α2 and the corresponding

critical value in Stage 2, as given by Results 1, 2, and 3.

DNA pooling (Churchill et al. 1993) is another cost-effective genotyping strategy whereby n

given subjects are grouped into m pools consisting of k individuals each such that n = m × k.

DNA is isolated en masse from each pool. Thus, the total number of genotyping per marker

is m < n. Two-stage and multi-stage designs involving DNA pooling in Stage 1 and individual

genotyping of the promising loci in subsequent stages have been examined for population-based

association studies in humans (Zuo et al. 2006; Prentice and Qi 2007). Further research is

needed to examine the optimal properties of two-stage or multi-stage QTL mapping studies in-

volving DNA pooling. Cost-effective genetic mapping methods have also been investigated from

phenotyping perspectives, particularly when multiple phenotypes are measured and/or when

phenotyping is more expensive than genotyping. Jin et al. (2004) proposed a selective pheno-

typing strategy using a criterion that maximizes the genetic diversity of the phenotyped subjects.

Medugorac and Soller (2001) considered cost-information tradeoffs under selective phenotyping

with a main trait of interest and a correlated trait. This article focuses solely on the case where

genotyping, but not phenotyping, cost can be substantial. The role of two-stage designs under

selective phenotyping remains to be examined, and has not be considered here.

Our investigations where a single locus or multi-locus model is used in both stages make use

of the fact that the non-centrality parameter is a mixture of the corresponding quantities in the

two stages, thus providing a direct approach to evaluate optimal two stage design without the

need to examine the power. Two stage designs have been used for mapping disease suscep-

tibility loci in experimental organisims and human population. Sugiyama et al. (2001) used a

novel two stage design for mapping traits associated with salt-induced hypertension in 250 rats.

A selective genotyping approach was used in Stage 1, by genotyping all the markers on 92 mice

with extreme trait values to identify the promising chromosomal regions. In Stage 2, the recom-

binant regions were densely genotyped on all the 250 mice if the flanking markers recombined.

The rational behind this approach is that the genotypes of the intermediate loci are completely

known if the flanking markers do not recombine. The design proposed in this article assmes

that, once a chromosome is declared significant in Stage 1, all the markers on this chromosome

are genotyped on additional individuals in Stage 2. Alternatively, one may genotype markers

from only those intervals having a significant LOD score, instead of having to genotype all the

markers on that chromosome. This approach can further reduce the genotyping burden. The

proposed two stage design can be extended to encompass designs of this kind. However, the

significance level b2
2 for Stage 2 may be different from b2, and further work is needed to obtain
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the appropriate b2
2. Maraganore et al. (2005) employed a novel approach to identify genetic loci

associated with Parkinson disease using family-based as well as population-based case-control

samples. A dense set of single nucleotide polymorphisms (SNPs) were genotyped on discordant

siblings in Stage 1. The promising SNPs were genotyped in Stage 2 on unrelated case-control

samples. Data on these promising SNPs from the discordant siblings and case-control sam-

ples were used to identify the putative disease loci. The rational behind this approach is that

the use of discordant siblings reduces population stratification issues and, hence, false posi-

tive associations, and the use of case-control samples provides improved power to identify the

putative loci. Likewise, different crosses (such as backcross, F2 or recombinant inbred lines)

may be used in different stages to fine map the disease loci. The direct approach for evaluating

power loss can provide a framework for investigating the operating characteristics of such de-

signs. The efficiency of two stage designs employing different samples or crossses in different

stages remains to be explored. Computer programs written using the R programming langu-

gage (http://cran-r-project.org) are available from the authors to perform the two-stage design

calculations described in this article.
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Appendix

Mean of the score statistic: Single QTL Model

Here we describe the mean of the score statistic Z for a single QTL model based on the likelihood

given by equation (2). The first derivative of the log-likelihood with respect to δ and evaluated at

δ = 0 is given by l
′
(δ = 0; r1, n) =

∑n
i=1 yi(2qi − 1). The expected value of l

′
(δ = 0; r1, n) based

on n individuals with independently distributed phenotypic traits and independent and identically

distributed genotypes is given by:

E{l′
(δ = 0; r1, n))} = nE{(2qi − 1)E(yi|qi)}

= nδE{(2qi − 1)2}

= nδE{1− 4qi(1− qi)}

= nδ
∑

P (m1i, m2i){1− 4P (gi = 1|m1i, m2i)P (gi = 0|m1i, m2i)} .

The summation in the last row is over the four possible flanking marker genotypes (m1i, m2i) =

{(1, 1), (1, 0), (0, 1), (0, 0)}. Since the QTL is assumed to be located in the center of the marker

interval, it can be easily seen that the expected value is nδ(1− r)[1− 4q(1− q)] = δI(δ = 0; r1, n).

Hence, the mean of the score statistic is E(Z) = δ
√

I(δ = 0; r1, n).

Derivation of Results 1 - 4

Results 1 - 4 are derived below. These results are applicable to any QTL model (for example,

one-QTL or two-QTL models) and any cross (for example, backcross or F2).

Proof of Results 1 and 2:

On any chromosome c, let W
(c)
1 and W

(c)
2 denote the chromosome-wide maximum test statistic

calculated using nθ1 and n individuals, respectively. We observe W
(c)
1 in Stage 1 and W

(c)
2 in

Stage 2 (if the chromosome is evaluated in Stage 2). The significance level in Stage 1 is the

probability that W
(c)
1 exceeds critical value b2

1, under the null hypothesis. The significance level

in Stage 2, denoted α2, is the probability that W
(c)
2 exceeds b2

2 in Stage 2 conditional upon the

fact that W
(c)
1 exceeded b2

1 in Stage 1. The probability of finding no false positive association on
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a chromosome c under the null hypothesis is:

1− α

C
= P0(there is no false positive association at the end of the study)

= P0(there is no false positive association in Stage 1) +

P0(there is no false positive association in Stage 2

and there is a false positive association in Stage 1)

= P0(W
(c)
1 < b2

1) + P0(W
(c)
2 < b2

2, W
(c)
1 > b2

1)

= P0(W
(c)
1 < b2

1) + P0(W
(c)
2 < b2

2|W
(c)
1 > b2

1)× P0(W
(c)
1 > b2

1)

= 1− α1 + (1− α2)× α1 . (22)

Since α1 and α2 ∈ (0, 1), this equation indicates that 1 − α1 < 1 − α/C i.e., α1 > α/C, proving

Result 1. Further, it follows from the above equation that α2 = α/(C × α1), proving Result 2.

Proof of Result 3:

The overall significance level of the two-stage design is the probability that a chromosome is

declared significant in Stage 1 and Stage 2. Denoting b2
1 and b2

2 as the critical values in Stages 1

and 2, respectively, the overall significance level of the two-stage design is defined as P0(W
(c)
1 >

b2
1, W

(c)
2 > b2

2). Further, we can write P (W
(c)
2 ) as

P0(W
(c)
2 > b2

2) = P0(W
(c)
2 > b2

2, W
(c)
1 < b2

1) + P0(W
(c)
2 > b2

2, W
(c)
1 > b2

1)

≥ P0(W
(c)
2 > b2

2, W
(c)
1 > b2

1) .

Let b2 denote the critical value of a one-stage design. The overall significance level of a one-

stage design is α/C, and is defined as the probability that the test statistic W
(c)
2 exceeds b2 under

the null hypothesis i.e., α/C = P0(W
(c)
2 > b2). Our goal is to design a two-stage procedure to

have overall significance level of at most α/C. Equivalently, we need the right hand side of the

above equation to be at most α/C. From the above equation it can be easily seen that when the

critical of Stage 2 is set to equal b2, we have P0(W
(c)
2 > b2, W

(c)
1 > b2

1) ≤ α/C, proving Result 3.

Proof of Result 4:

Under a one-stage design, the power to detect a QTL under model is given by 1−β = PA(Z > b2
2),

where Z is a random variable distributed as chi-square with 2 degrees of freedom and non-

centrality parameter λ
.
= λ(δa, δd, n). The probability density of Z is given by (Johnson, Kotz, and
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Balakrishnan 1995)

f(z) = exp{−λ/2}
∞∑

r=0

(
λ

2

)r
1

r!
g(z; 1 + r, 1/2) ,

where g(z; 1+r, 1/2) is the probability density of a gamma distribution with shape 1+r and scale

1/2, having cumulative distribution:

G(z; 1 + r, 1/2) =

∫ z

0

1

Γ(1 + r)

(
1

2

)1+r

ur exp{−2u} du .

When the sample size is fixed and the QTL effects δa and δd are small, resulting in small non-

centrality parameter λ, β = PA(Z < b2
2) can be written as:

β =

∫ b22

0

f(z) dz

= exp{−λ/2}
∞∑
0

(
λ

2

)r
1

r!
G(b2

2; 1 + r, 1/2)

=

(
1− λ

2

)
×

(
G1 +

λ

2
G2

)
.

The second step follows by taking the integral inside the summation, since G(.) is a cumulative

distribution and hence is in the interval (0, 1). The third step utilizes the fact that λ is small

and, hence, the first two terms are used to approximate the infinite sum. In the last step G1 =

G(b2
2; 1, 1/2) and G2 = G(b2

2; 2, 1/2). For small λ, it can be easily seen that β < G1. Therefore,

solving the above quadratic equation for a given β provides:

λ =
(G2 −G1) +

√
(G2 −G1)2 + G2(G1 − β)

G2

The right hand side depends upon the power 1−β and the critical value b2
2, and is independent of

the QTL effects. Similar expression can be written for λ(δa, δd, nθ1), the non-centrality parameter

of Stage 1, as a function of Stage 1 power 1− β1 and the corresponding critical value b2
1. Define

G21 = G(b2
1; 2, 1/2) and G11 = G(b2

1; 1, 1/2). Therefore:

θ1 =
λ(δa, δd, nθ1)

λ(δa, δd, n)

=
(G21 −G11) +

√
(G21 −G11)2 + G21(G11 − β1)

(G2 −G1) +
√

(G2 −G1)2 + G2(G1 − β)
× G2

G21

The right hand side, and hence θ1, is independent of the QTL effects.
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Non-centrality parameter of F2 cross

The test statistic at the QTL position of an F2 cross has a χ2 distribution with 2 degrees of

freedom. The non-centrality parameter can be obtained using the second derivative of the log-

likelihood. The QTL is in the middle of a marker interval of length ∆ centi Morgans. Using

symbolic calculations, the non-centrality parameter is given by Aδ2
a + Dδ2

d, where:

A = [1− 4q(1− q)](1− r)

D = A2 × a1

a2

a1 = 6r4 − 12 ∗ r3 + 10r2 − 4 ∗ r + 1

a2 = 8r4 − 16r3 + 12r2 − 4r + 1
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Table Captions.

Table 1: Optimal two stage design parameters for a backcross under a single locus model

with 60% and 70% relative genotyping burden. The optimal parameters are derived for a

hypothetical genome with 20 chromosomes, each of length 100 centiMorgans. Column 1

(∆) provides the average marker distance in centiMorgan units. Column 2 (RGB) is the

relative genotyping burden. Column 3 (α1) is the Stage 1 significance level for testing each

chromosome. Column 4 (1 − β) is the Stage 1 power. Column 5 (θ1) is the sampling

fraction for Stage 1. Column 6 (RI) is the relative information. These results suggest that

genotyping all the chromosomes on θ1 ≈ 60% of the subjects in Stage 1 and genotyping

the chromosomes significant at level α1 ≈ 0.20 on the remaining individuals in Stage 2

provides nearly 95% of the information relative to a one stage design.

Table 2: Two-stage design parameters for an F2 cross based on a single locus model under

the general guideline of θ1 = 0.60 and α1 = 0.20. Column 1 (C) is the number of chromo-

somes of the hypothetical genome. The length of each chromosome is assumed to be 100

centiMorgans. Column 2 gives the additive (δa) and dominance (δd) effects of a single QTL

and the heritability h2 = κ2/(1+κ2), where κ2 = 3/16× (δa +δd/2)2 +1/16× (δd/2)2 +3/16×
(δa−δd/2)2. Column 3 (n) is the total sample size so that the power of the one stage design

to detect a QTL with heritability h2 is approximately 80% at 5% significance level. Column

4 (∆) is the average marker distance in centiMorgan units. Column 5 (1−β1) is the Stage 1

power. Column 6 (RGB) is the relative genotyping burden of the two stage design. Column

7 (RI) is the relative information of the two stage design.

Table 3: Characteristics of a two stage design based on a two-QTL model for a backcross seg-

regating two QTLs. The two stage design parameters are provided under the guidelines

(θ1, α1) = (0.60, 0.20) and (0.60, 0.10), indicated in Column 1. The length of each chromo-

some is assumed to be 100 centiMorgans. Column 2 (C) is the number of chromosomes.

Column 3 gives the heritability (h2 = κ2/(1 + κ2)), where κ2 = δ2
1 + δ2

2. The value of κ2 is

given in parentheses. Column 4 is the total sample size n, so that the power of a one stage

design is approximately 80%. Column 5 (∆) is the average marker density in centiMorgan

units. Column 6 (1 − β1) is the Stage 1 power. Column 7 (RGB) is the relative genotyping

burden. Column 8 (RI) is the relative information.

Table 4: Characteristics of the two stage analytic approach to detect two QTLs. The power

of a one-stage genome scan using two-QTL models is 1 − β ≈ 0.90. Column 1 is the

32
http://biostats.bepress.com/mskccbiostat/paper7



heritability h2, with sample size n given in parentheses. Column 2 is η12, the fraction of

heritability conferred solely by the main effects of the two QTLs. Column 3 is the main

effect of the two QTLs. Column 4 is the interaction effect. Column 5 is the power of a

one-stage analysis to detect both the QTLs based on a genome scan with single-locus

models. Columns 6, 7, and 8 are the power of the two-stage analytic approach under α1 =

0.10 (under column denoted (a)), 0.20 (b), and 0.25 (c). Column 9 is 1 − β. The relative

computational burdens are approximately 18%, 28%, and 32% for α1 = 0.10, 0.20, and

0.25, respectively, regardless of h2, n, and η12.
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Table 1.

∆ RGB α1 1− β1 θ1 RI

20 0.60 0.16 0.80 0.50 0.903

0.70 0.21 0.90 0.60 0.961

10 0.60 0.16 0.80 0.50 0.903

0.70 0.21 0.90 0.60 0.961

5 0.60 0.16 0.80 0.50 0.903

0.70 0.21 0.90 0.60 0.961

1 0.60 0.15 0.80 0.51 0.902

0.70 0.21 0.90 0.60 0.961

0.10 0.60 0.17 0.80 0.50 0.900

0.70 0.21 0.90 0.60 0.960
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Table 2.

C h2 (δa, δd) n ∆ 1− β1 RGB RI

20 0.01 (0.15, 0.15) 1500 20 0.90 0.69 0.96

1550 1 0.88 0.70 0.95

0.01 (0, 0.33) 825 20 0.90 0.69 0.96

950 1 0.87 0.69 0.95

0.04 (0.33, 0) 500 20 0.90 0.69 0.96

475 1 0.87 0.69 0.96

0.05 (0.33, 0.33) 310 20 0.91 0.69 0.96

320 1 0.88 0.70 0.95

10 0.01 (0.15, 0.15) 1400 20 0.88 0.71 0.95

1420 1 0.84 0.71 0.94

0.01 (0, 0.33) 760 20 0.87 0.71 0.95

880 1 0.84 0.71 0.94

0.04 (0.33, 0) 460 20 0.88 0.71 0.95

440 1 0.84 0.71 0.93

0.05 (0.33, 0.33) 290 20 0.88 0.71 0.95

295 1 0.84 0.71 0.94
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Table 3.

(θ1, α1) C h2 (δ2
1 + δ2

2) n ∆ 1− β1 RGB RI

(0.60, 0.20) 20 0.25 (0.33) 360 20 0.96 0.71 0.98

370 1 0.92 0.71 0.97

0.15 (0.18) 1200 20 0.96 0.71 0.98

1230 1 0.92 0.71 0.97

10 0.25 (0.33) 320 20 0.93 0.74 0.97

335 1 0.88 0.73 0.95

0.15 (0.18) 1100 20 0.94 0.74 0.97

1130 1 0.88 0.73 0.95

(0.60, 0.10) 20 0.25 (0.33) 360 20 0.92 0.67 0.97

370 1 0.87 0.67 0.95

0.15 (0.18) 1200 20 0.92 0.67 0.97

1230 1 0.87 0.67 0.95

10 0.25 (0.33) 320 20 0.88 0.70 0.95

335 1 0.82 0.70 0.93

0.15 (0.18) 1100 20 0.89 0.70 0.95

1130 1 0.82 0.70 0.93
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Table 4.

h2 (n) η12 δ1 (= δ2) δ3 P1 × P2 (a) (b) (c) 1− β

0.15 1 0.30 0 0.41 0.85 0.88 0.88 0.90

(260) 0.90 0.28 0.03 0.26 0.78 0.83 0.85 0.89

0.80 0.27 0.05 0.20 0.77 0.82 0.84 0.90

0.75 0.26 0.06 0.15 0.70 0.78 0.80 0.89

0.60 0.23 0.10 0.05 0.53 0.64 0.68 0.89

0.10 1 0.24 0 0.50 0.86 0.88 0.89 0.91

(410) 0.90 0.224 0.022 0.35 0.80 0.84 0.85 0.89

0.80 0.211 0.041 0.24 0.74 0.81 0.82 0.89

0.75 0.204 0.05 0.18 0.70 0.78 0.80 0.89

0.60 0.183 0.08 0.08 0.56 0.68 0.72 0.91

0.05 1 0.162 0 0.58 0.87 0.89 0.89 0.91

(900) 0.90 0.154 0.015 0.48 0.84 0.88 0.89 0.91

0.80 0.145 0.028 0.34 0.80 0.85 0.86 0.91

0.75 0.140 0.034 0.27 0.76 0.72 0.84 0.90

0.60 0.126 0.052 0.13 0.63 0.73 0.76 0.91
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Figure Legends.

Figure 1: Optimal relative genotyping burden of the two stage approach for a hypothetical

genome with C = 20 chromosomes, each of length 100 centiMorgans, and inter-marker

distance ∆ = 1 centiMorgan for a backcross based on a single locus model. The horizontal

axis represents the relative genotyping burden (equation 13). The vertical axis is the rela-

tive non-centrality parameter (equation 10), equivalently the relative information. The two

dashed horizontal lines indicate 90% (ε = 0.10) and 95% (ε = 0.05) relative informations.

Figure 2: Characteristics of the two stage design with 70% relative genotyping burden. The

horizontal axis represents the Stage 1 significance level, α1. The vertical axis takes value

between 0 and 1, and corresponds to the the relative non-centrality parameter i.e., relative

information (bold line), the Stage 1 power 1− β1 (dotted line), and the sampling fraction θ1

for Stage 1 (dashed line). We find that, when the relative genotyping burden is 70%, testing

all the chromosomes at 10% to 35% significance level in Stage 1 provides approximately

95% relative information. In particular, genotyping all the markers on θ1 = 60% of the

individuals in Stage 1, and conducting Stage 2 genotyping on the chromosomes significant

at level α1 = 20% provides a Stage 1 power of 1− β1 = 90% and approximately 95% of the

relative information.

Figure 3: Characteristics of the two stage design for an F2 cross with C = 20 chromosomes,

each of length 100 centiMorgans, and average marker distance ∆ = 1 centiMorgan. The

overall significance level and power of a one stage design are α = 0.05 and 1 − β = 0.80.

The heritability of the single QTL is approximately 5%. Shown are the contour plots cor-

responding to the relative information (left panel) and the relative genotyping burden (right

panel) as a function of the sampling fraction θ1 (horizontal axis) and Stage 1 significance

level α1 (vertical axis). The dotted vertical and horizontal lines indicate that 95% relative

information is attained (left panel) with θ1 = 0.60 and α1 = 0.20. This corresponds to 70%

relative genotyping burden (right panel).
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Figure 2:
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Figure 3:
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