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An Extended General Location Model for
Causal Inference from Data Subject to
Noncompliance and Missing Values

Yahong Peng, Rod Little, and Trivellore E. Raghuanthan

Abstract

Noncompliance is a common problem in experiments involving randomized as-
signment of treatments, and standard analyses based on intention-to treat or treat-
ment received have limitations. An attractive alternative is to estimate the Complier-
Average Causal Effect (CACE), which is the average treatment effect for the sub-
population of subjects who would comply under either treatment (Angrist, Imbens
and Rubin, 1996, henceforth AIR). We propose an Extended General Location
Model to estimate the CACE from data with non-compliance and missing data
in the outcome and in baseline covariates. Models for both continuous and cate-
gorical outcomes and ignorable and latent ignorable (Frangakis and Rubin, 1999)
missing data mechanisms are developed. Inferences for the models are based
on the EM algorithm and Bayesian MCMC methods. We present results from
simulations that investigate sensitivity to model assumptions and the influence of
missing-data mechanism. We also apply the method to the data from a job search
intervention for the unemployed workers.
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SUMMARY. Noncompliance is a common problem in experiments involving randomized

assignment of treatments, and standard analyses based on intention-to treat or treatment

received have limitations. An attractive alternative is to estimate the Complier-Average

Causal Effect (CACE), which is the average treatment effect for the subpopulation of subjects

who would comply under either treatment (Angrist, Imbens and Rubin, 1996, henceforth

AIR). We propose an Extended General Location Model to estimate the CACE from data

with non-compliance and missing data in the outcome and in baseline covariates. Models for

both continuous and categorical outcomes and ignorable and latent ignorable (Frangakis and

Rubin, 1999) missing data mechanisms are developed. Inferences for the models are based on

the EM algorithm and Bayesian MCMC methods. We present results from simulations that

investigate sensitivity to model assumptions and the influence of missing-data mechanism.

We also apply the method to the data from a job search intervention for the unemployed

workers.
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1 Introduction

Inferences for treatment effects are relatively straightforward in randomized trials with per-

fect compliance with the assigned treatments. However, for scientific experiments involving

human participants, non-compliance and partial compliance are very common in practice.

Compliance often varies according participant characteristics, and may be associated with
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effects of the treatments. For example, in a clinical trial to test the efficacy of a new drug,

severe side effects may result in lack of compliance. Misleading conclusions are likely to

result if compliance information is ignored in such settings. Missing values in the outcome

or the covariates further complicate the data analysis. This article concerns methods for

analyzing data from a clinical trial with all-or-nothing compliance and missing values in the

outcomes and covariates.

Intent-to-treat and as-treated methods provide simple estimates of treatment effects and

are widely applied in practice, but both these methods have limitations. The intent-to-

treat analysis compares the outcome distributions of the treatments as randomized, ignoring

compliance information. It provides a valid estimate of the effect of the treatment assign-

ment, but a potentially biased estimate of the effect of the treatment itself, which is often

of more interest. The as-treated analysis compares the outcome distributions between the

treatments actually received. It focuses more directly on the treatment effect itself, but is

subject to selection bias when there is noncompliance, since the randomization is violated.

An attractive alternative approach proposed by AIR is to estimate the Complier-Average

Causal Effect (CACE), the average causal effect for the sub-population of subjects who would

comply with either of the treatments if assigned to them. We call compliance under both

treatments ”principal compliance” to distinguish it from ”observed compliance”, since it is a

form of principal stratification (Frangakis and Rubin, 2000) for correct causal inference with

post-treatment variables. Unlike observed compliance, principal compliance is incompletely

observed since compliance under the treatment not assigned is unknown.

Analysis methods for the CACE have received considerable attention recently (Imbens

and Rubin, 1996, 1997; Baker, 1998; Frangakis and Rubin,1999, 2000; Yau and Little, 2001;

Robins, 1994; Robins, 1999). Building in this work, we propose an extended general location

(EGL) model for the CACE for data with non-compliance and missing values. Our model

extends methods in Little and Yau (1998) to accommodate discrete as well as continuous

outcomes, missing values in baseline covariates as well as in outcomes, and two alternative

assumptions about the compliance and missing-data mechanisms.

We motivate and illustrate our model using data from the JOBS II (Vinokur, Price, &

2
http://biostats.bepress.com/umichbiostat/paper7



Schul, 1995), a randomized trial at the University of Michigan to test a job search intervention

for unemployed workers. In this trial unemployed individuals were randomly assigned to a

control treatment consisting of a booklet describing job-search methods and tips, or an

experimental treatment group consisting of the same booklet and five 4-hour job search

seminars. Follow-up questionnaires were mailed periodically to all the participants, and

measures of outcomes such as depression, financial strain and re-employment were obtained.

We focus here on a binary outcome, re-employment at a fixed date after the intervention,

but we also consider models for a continuous outcome. The JOBS II data have missing

values, and only about one half of the individuals assigned to the experimental treatment

complied, in the sense that they attended the seminars. Since ”compliance” with the control

treatment is not an issue here, it is assumed that individuals would comply with the control

treatment, but may or not comply with the experimental treatment. Thus compliance (in

the CACE sense) is known for participants assigned to the experimental group, but is not

known for participants assigned to the control group, since their participation if assigned

the intervention is not observed. Our methods for estimating the CACE are illustrated

for this behavioral intervention, but are also directly applicable to trials involving medical

interventions with all-or-nothing compliance.

Section 2 presents our EGL model for inferences about the CACE, and inferences based

on the EM algorithm and Bayesian MCMC methods. An alternative approach based on

instrumental variables is given in Section 2.4. Section 3 presents simulation studies that

compare our likelihood-based approach with instrumental variable methods for causal infer-

ence (Goldberg, 1972; Bloom, 1984; Heckman and Hotz, 1989). In Section 4 we apply our

methods to JOBS II data. Section 5 contains conclusions and discussion.

2 Extended General Location Model

2.1 The Complete-Data Model

We define the following variables for each participant i in a randomized clinical trial:
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xi= (xi1, · · · , xip)
T = p continuous baseline covariates that are conditioned in the analysis.

While these might treated as fixed in a complete-data analysis, we assign them a normal

distribution to allow cases with missing values in these variables to be included in the analysis.

Transformations may be needed to improve the normality assumption.

bi = discrete baseline covariates. For simplicity, we assume bi is scalar and binary,

although the extension to more than two levels is immediate.

ri = randomization indicator for the treatment assigned. In the JOBS II application,

ri = 1 for the intervention, ri = 0 for the control treatment

yi = an outcome variable, which we initially assume is continuous and normal. Extensions

to vector outcomes are outlined in Section 6.

ci = principal compliance indicator, taking the value 1 if participant i would comply with

either treatment, and 0 otherwise. As noted above, in the JOBS II setting ci is observed

for participants assigned to the experimental group, taking the value 1 for individuals who

attended the seminars and 0 otherwise. There was a small amount of partial compliance in

JOBS II in that a few individuals attended a subset of the seminars but not all of them;

for the purposes of our analysis these participants are treated as compliers. For individuals

assigned to the control group, ci is missing since we do not know if they would have attended

the seminars if they had been assigned to the experimental group.

We write [A|B] to denote the distribution of A given B, N for a univariate normal

and Np for a p-variate normal distribution. We assume observations are independently

distributed given the randomization indicator ri, and factor [yi, xi, ci, bi|ri] as [yi, xi, ci, bi|ri] =

[ci, bi|ri] · [xi|ci, bi, ri] · [yi|xi, ci, bi, ri]. We then model the components of this factorization as

follows:

[ci, bi|ri] ∼ Multinomial(α), (1)

[xi|ci = c, bi = b, ri = r] ∼ Np(µcb, Σ), (2)

[yi|xi, ci, bi, ri] ∼ N(g(xi, ci, bi, ri; β), τ 2), (3)

where g(xi, ci, bi, ri; β) = β0 + βCci + βCRciri + βBbi + βXxi + βBCbici +

βXCxici + βBCRbiciri + βXCRxiciri. (4)
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The parameters of the model are thus: θ = (α, {µcb}, Σ, β, τ 2), where µcb is a (p × 1)

vector, Σ = (σij) is a (p× p) matrix, and βT = (β0, βC , βCR, βB, βX , βBC , βXC , βBCR, βXCR).

The parameterization of this model embodies the following important assumptions, described

in more detail in AIR:

(1) Parameters (α, µcb, Σ) do not depend on ri because of randomization of treatments

ensures that ri is independent of ci, bi, xi.

(2) The mean structure in (4) omits the effects of ri, biri and xiri, because we assume that

for noncompliers (ci = 0) the effect of treatment is the same whether subject i is randomized

to control (and has no access to the treatment) or randomized to the treatment (and fails to

comply). This is the crucial exclusion restriction (ER) assumption discussed in AIR. Eq. (4)

implies that the mean of yi for the non-compliers with baseline covariates (bi = b, xi = x) is

g(x, 0, b, r; β) = β0+βBb+βXx, and the CACE for compliers with covariates (bi = b, xi = x) is

then CACE(b, x) = g(x, 1, b, 1; β)−g(x, 1, b, 0; β) = βCR+βBCRb+βXCRx. An overall CACE

can be defined by averaging over the distribution p(b, x|c = 1) of B and X for compliers:

CACE =
∫

b,x
CACE(b, x)p(b, x|c = 1)dxdb. (5)

(3) The independence assumption of the model implictly requires the stable unit treat-

ment value assumption (SUTVA) that potential outcomes for each unit are unrelated to the

treatments assigned and the treatments actually received by the other units (AIR, ). While

this assumption is almost universally invoked, it is somewhat suspect in the JOBS II setting,

since the experimental treatment takes place in a group setting.

We call this an extended general location (EGL) model because the distribution of the

continuous variables [xi, yi|ci, bi, ri] is normal with a covariance matrix that depends on the

discrete variables (ci, bi, ri), rather than being a constant as in the standard general location

model (Olkin and Tate, 1961, Little and Rubin 2002, Section 14.2). As in that model,

restrictions can be imposed on the EGL model, either by assuming a loglinear model for

[ci, bi|ri], or by contraining the means µcd of the normal model for [xi|ci, bi, ri]. Restrictions

are particularly helpful in reducing the number of parameters when the sample size is small.

The distinctness of the parameters of the models for [ci, bi|ri] and for [xi|ci, bi, ri] is preserved,
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so estimation procedures are not radically different than for unrestricted models. With

appropriate restrictions on the model parameters (α, µcb, Σ) of [xi, ci, bi|ri], the EGL model

yields [ci|xi, bi, ri] similar to those in Little and Yau (1998) after re-parameterization (Peng,

2001).

Eq. (3) of the EGL model can also be adapted to a binary outcome, say y∗i . We assume

there is an underlying latent continuous variable yi for y∗i , where y∗i = I(yi > 0). The

distribution [yi|xi, ci, bi, ri] is given by equation (3) with τ 2 = 1. This implies a probit model

for y∗i , namely,
Pr(y∗i = 1|xi, ci, bi, ri) = Φ(g(xi, ci, bi, ri; β)), (6)

where Φ(·) is the standard normal cumulative probability function. When the outcome

of interest is binary, Φ(g(x, 1, b, 1; β)) − Φ(g(x, 1, b, 0; β)) is the CACE for subjects with

covariates (bi = b, xi = x), and the overall CACE can be calculated as in Eq. (5). The

probit model (6) for [y∗i |xi, ci, bi, ri] is proposed rather than the more common logit model

because it is more convenient for computation, as discussed in Section 2.3.

2.2 Missing Data Mechanisms

We now suppose there are missing values of (xi, bi, yi) in the data set, in addition to the

missing values of ci in the control group. The validity of methods for handling the missing

data depends on assumptions about mechanisms that create missing values. For subject i, let

wi = (xi, bi, yi) denote the set of values if they were fully observed, and write wobs,i for the ob-

served values of wi and wmis,i for the missing values. Also, let mi be the vector of missing-data

indicators for wi, with entries 1 if the corresponding entries of wi are missing and 0 other-

wise. The missing-data mechanism for wi is specified via a distribution Pr(mi|wi, ci, ri; φ)

for mi given wi and compliance and randomization indicators (ci, ri), indexed by unknown

parameters φ. We consider two alternative assumptions about the missing-data mechanism:

Ignorable missing-data mechanism (IMD). The missing data mechanism of wi is

said to be ignorable if the data are missing at random (MAR, Rubin, 1976; Little and

Rubin, 2002), that is: Pr(mi|wi, ci, ri = 1; φ) = Pr(mi|wobs,i, ci, ri = 1; φ), for all wmis,i,

Pr(mi|wi, ci, ri = 0; φ) = Pr(mi|wobs,i, ri = 0; φ), for all wmis,i, ci, and the parameters φ are
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distinct from the parameters θ of the complete-data model. ML and Bayes estimation under

this assumption does not require a term for the missing data mechanism to be included in

the likelihood.

Note that the mechanism is allowed to depend on ci for experimental subjects (ri =

1) since ci is observed for these subjects, but is not allowed to depend on ci for control

subjects (ri = 0) since ci is missing for these subjects. The latter may not be realistic, since

the probability of non-response for noncompliers may be systematically higher than that

for compliers, regardless of treatment. To handle such cases, Frangakis and Rubin (1999)

propose an instrumental variable estimator for an alternative missing data mechanism, which

they call latent ignorability:

Latent ignorable missing-data mechanism (LIMD). The missing data mechanism

of wi is said to be latent ignorable if the data are latent MAR (LMAR) within each level

of the latent compliance status, that is: Pr(mi|wi, ci, ri = 1; φ) = Pr(mi|wobs,i, ci, ri =

1; φ), for all wmis,i, Pr(mi|wi, ci, ri = 0; φ) = Pr(mi|wobs,i, ci, ri = 0; φ), for all wmis,i, and

the parameters φ are distinct from the parameters of the complete-data model. See also

Barnard et al. (2002). Note that LMAR is weaker than MAR since the mechanism is

allowed to depend on ci for control as well as experimental subjects. This missing data

mechanism is in general nonignorable, because ci is unknown in the control group.

As LIMD is weaker than IMD, a stronger exclusion restriction assumption is needed to

identify the parameters when the complete-data model is saturated, and inference may be

vulnerable to missspecification when the complete-data model is unsaturated. Hence, in our

LIMD models we replace the ER assumption above by the following stronger assumption:

Compound exclusion restriction (CER). The joint distribution (yi,mi) for a non-

complier randomized to the control group is the same as the distribution (yi,mi) for a

non-complier randomized to the treatment group.

Our LIMD model involves a particular form of LIMD where missingness of yi is allowed

to depend on missing values of ci, but missingness of (xi, bi) is not. Accordingly, we write

mi = (mY
i ,mXB

i ), where mY
i is the missing-data indicator for yi and mXB

i is the vector of

missing-data indicators for xi and bi, and assume for all wmis,i, ci, Pr(mY
i ,mXB

i |wi, ci, ri =

7
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0; φ) = Pr(mY
i |wobs,i, ci, ri = 0; φ1) Pr(mXB

i |mY
i , wobs,i, ri = 0, φ2), where φ = (φ1, φ2) are dis-

tinct from θ. By a straightforward extension of Rubin’s (1976) theory, only the component

mY
i of mi distribution needs to be modelled in this case. We then factor [yi, xi, ci, bi,m

Y
i |ri] =

[ci, bi|ri] · [xi|ci, bi, ri] · [mY
i |xi, ci, bi, ri] · [yi|mY

i , xi, ci, bi, ri],where (i) [yi|mY
i , xi, ci, bi, ri] =

[yi|xi, ci, bi, ri] because of the latent ignorability assumption; (ii) [ci, bi|ri], [xi|ci, bi, ri] and

[yi|xi, ci, bi, ri] can be modelled as in Eqs. (1) to (3); and (iii)[mY
i |xi = x, ci = c, bi = b, ri =

r] ∼ Bernoulli(φxcbr). To model the latter distribution, we assume there is an underlying

continuous variable xM
i for mY

i , such that mY
i = I(xM

i > 0). We then assume that, given

(xi, ci, bi, ri), xM
i follows a normal distribution with mean g(xi, ci, bi, ri; ν) and variance 1,

where g(·) is defined in (4) with regression coefficients β replaced by ν. This implies a

probit model for [mY
i |xi, ci, bi, ri]. The CER assumption implies that the mean structure

of xM
i does not include the effects of ri, xiri, biri, that is: E(xM

i |xi, ci = 0, bi, ri = 0) =

E(xM
i |xi, ci = 0, bi, ri = 1) = ν0 + νDbi + νXxi.This is also an extended general location

model for [yi, xi, x
M
i , ci, bi|ri]. The extension for binary y∗i is carried out in the same way as

before.

In next section, we consider likelihood-based estimates for the CACE in these settings.

2.3 Maximum Likelihood and Bayes Estimation

Under IMD and ER, maximum likelihood (ML) estimates for the parameters of our EGL

model can be obtained via the EM algorithm (Dempster, Laird and Rubin, 1977), and is

similar to EM for the general location model (Little and Rubin, 2002). We outline the EM

algorithm for the unrestricted extended general location model of Section 3.1. (Details of the

algorithm and codes in Splus can be found at Little’s web page). Let di = (di1, di2, di3, di4)

be the vector of indicators for the discrete variables (ci, bi), with di1 = I(ci = bi = 0),

di2 = I(ci = 1, bi = 0), di3 = I(ci = 0, bi = 1), di4 = I(ci = bi = 1), with corresponding

probabilities α = (α1, α2, α3, a4). The complete-data likelihood can be written as

Lcom(θ) ∝ ∏

i

[{
4∏

j=1

(αj
dij)} · |Σ|− p

2 exp{−1

2
(xi − µcibi

)T Σ−1(xi − µcibi
)} ·

1

τ
exp{− 1

2τ 2
(yi − g(xi, ci, bi, ri; β))2}],
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The logarithm of this likelihood is linear in complete-data sufficient statistics
∑

i ri,
∑

i dij,

∑
i dijxi,

∑
i dijyi,

∑
i dijxix

T
i ,

∑
i dijxiyi,

∑
i dijy

2
i ,

∑
i ridij,

∑
i ridijxi,

∑
i ridijyi,

∑
i ridijxix

T
i ,

∑
i ridijxiyi, and

∑
i ridijy

2
i , for j = 1, ...4. The maximization step (M-step) of EM calculates

the parameter estimates that maximize the complete-data likelihood given the sufficient

statistics calculated from the current E-step, and is straightforward. Specifically, αj is esti-

mated by the expected count in the corresponding cell formed by the discrete variables, µcb

by the sample mean of X with subjects with (ci = c, bi = b), Σ by the pooled within-cell

covariance matrix of X, β and τ 2 by the regression yi on the components of (xi, ci, bi, ri)

included in the model.

The expectation step (E-step) of EM calculates the conditional expectations of the

complete-data sufficient statistics, given the observed data and the current estimates of

the parameters from the M-step. It is easier to calculate the conditional expectations for the

sufficient statistics
∑

i di first, and then calculate the conditional expectations of the suffi-

cient statistics that involve continuous variables (xi, yi) and the interaction terms between

the discrete and continuous variables. Calculations of the conditional expectations of the

sufficient statistics that contain continuous variables (xi, yi) involve the parameters of con-

ditional distributions of the multivariate normal. They are easily computed by the SWEEP

operator (e.g. Little and Rubin, 2002). The E-step can be carried out by missing-data

pattern to avoid unnecessary SWEEP computations.

The initial values for EM cannot be computed using data from the set of complete cases,

because the values of ci are completely unknown in the control group. To avoid this, we

first estimate α by using only the data from the treatment group subjects, and then impute

values of ci for the control group subjects by the estimated α. We then calculate the sufficient

statistics, ignoring those cases with missing values in (xi, bi, yi), and do an M-step based on

the imputed sufficient statistics to obtain initial estimates for β’s. The method of moments

can also be used to provide initial estimates after imputing the compliance status for control

group subjects.

The observed data likelihood is readily computed from by-products of the E-step with

each iteration, providing a check of the computations. In addition, we can use the observed
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data likelihood to perform likelihood ratio tests for choosing between models.

For Bayesian inferences, we assume α, (µ, Σ) and (β, τ 2) are a priori independent with con-

ventional non-informative priors, p(α) ∝ ∏4
j=1 αj

−0.5, p(µ, Σ) ∝ |Σ|− p+1
2 and p(β, τ 2) ∝ 1

τ2 .

These distributions yield a complete-data posterior distribution that is Dirichlet for α,

inverse-Wishart for Σ and multivariate normal for µ given Σ, scaled inv-χ2 for τ 2 and mul-

tivariate normal distribution for β given τ 2: [α|Data] ∝ ∏4
j=1 αj

∑
i
dij−0.5,(Σ|Data, α) ∼

W−1(N −4, NΣ̂−1), (µcb|Data, α, Σ) ∼ N(µ̂cb, (Σ/
∑

i I(ci = c, bi = b)),(τ 2|Data, α, µ, Σ) ∼
τ̂ 2/χ2

N−k, (β|Data, α, Σ, µ, τ 2) ∼ N(β̂, τ 2(ZT Z)−1),where Z is the design matrix of the

regression of yi on xi, ci, bi, ri, (µ̂, Σ̂, β̂, τ̂ 2) are the ML estimates for model parameters

(µ, Σ, β, τ 2) based upon the complete data likelihood.The Gibbs sampler algorithm iterates

between the P-step and the I-step. The tth P-step of the Gibbs sampler algorithm simulates

random draws, (α(t), µ(t), Σ(t), β(t), τ 2(t)), for the model parameters based on the complete-

data posterior distribution with missing data filled in from the previous I-Step. The I-step

is very similar to the E-step of EM. Instead of calculating the conditional expectations of

missing values in terms of the sufficient statistics, random draws for the missing values in

the data set are generated from their predictive distribution, using current draws of the

parameters from the previous P-step. When the observable outcome of interest is discrete,

τ 2 = 1, and drawing values of yi involves simulating random numbers from truncated normal

distributions, since we only observe the sign of yi.

We used the method of Gelman and Rubin (1992) to assess convergence of the Gibbs

sequences. To obtain reasonably over-dispersed random numbers for the starting points for

the Gibbs draws, m bootstrap samples were generated from the original data set with a

sample size of half the size of the original data set. For each of the bootstrap samples, ML

estimates are obtained via the EM algorithm and used as the starting values for the Gibbs

algorithm.

Quite straightforward modifications of these algorithms yield ML and Bayes’ estimates

for the LIMD/CER model of the previous section. For the M-step of EM, everything re-

mains the same except that we need an additional step for estimating ν. Because the

regression models involving ν and β have the same structure, the M-step for ν is the same as
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that for β, with xM
i replacing yi in expressions involving these terms. For the E-step, condi-

tional expectations also need to be computed for complete-data sufficient statistics associated

with the model for xM
i , namely: {∑i x

M
i ,

∑
i dijx

M
i ,

∑
i x

M
i xi,

∑
i dijx

M
i xi,

∑
i rix

M
i ,

∑
i ridijx

M
i ,

∑
i rix

M
i xi,

∑
i ridijx

M
i xi}, j = 1, · · · 4.

For Bayesian inference we assume a flat prior for ν, p(ν) ∝ constant, and the priors for the

other parameters in the IMD model. The P-step is as before except that we need additional

draws for ν from its posterior distribution N(ν̂, (Z ′Z)−1), where ν̂ is the ML estimate of

ν obtained via the EM algorithm based on the imputed data set. For the I-step, we draw

the missing values in the discrete variables (ci, bi) first, then draw the missing continuous

variables in (xi, x
M
i , yi) based on the corresponding predictive distribution given the current

draws for the missing discrete variable and the observed data.

2.4 Bloom’s method and Extensions

We conducted simulation studies to compare the model-based methods in Section 3 with

Bloom’s (1984) instrumental variable (IV) approach for continuous outcomes with non-

compliance, and extensions discussed below.

With complete data and no covariates, the standard IV estimator of the CACE is

δ̂IV = (y1 − y0)/π̂c, where yj is the mean outcomes of all subjects with ri = j, and π̂c is the

proportion of compliers in the experimental group, ri = 1. When baseline covariates xi, bi

are available, Bloom’s (1984) adjusted estimate is δ̂IV n = β̂P + 1−π̂c

π̂c
· β̂NS, where β̂P and β̂NS

are the least square estimates from the regression model yi = β0 + βP (rici) + βNSri(1− ci) +

βBbi+βXxi+ε.The estimator reduces to the standard IV estimator in the absence of baseline

covariates. We call δ̂IV n the naive instrumental variable (IVn) estimator, as it implicitly

makes the strong assumption that the compliance rate πc is constant for different covariates

x, i.e., the compliance is independent of x. A better estimator can be obtained by first

estimating the CACE δ(xi, bi) for compliers with covariates (xi, bi) as, ̂δ(xi, bi) = β̂P + 1−π̂ci

π̂ci
·

β̂NS,where π̂ci is the estimated compliance rate for subjects with covariates (xi, bi), and then

estimating the overall causal effect δ as follows, δ̂IV =
∫
X,B

̂δ(x, b)p(x, b)dxdb.The method IV

in the simulation is this estimator applied to the complete cases. We also considered two
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IV estimators for the situation where the missing data mechanism for yi is latent ignorable.

The naive latent IV estimate is ̂δIV Ln = β̂P + (1−π̂c)(1−φ̂01)

(1−φ̂0)−(1−π̂c)(1−φ̂01)
· β̂NS,where φ̂01 and φ̂0

are the nonresponse rates in the treatment noncomplier and control groups, respectively.

With a homogenious compliance rate, this is a consistent estimate of the CACE given by

Frangakis and Rubin (1999) for LIMD. The IVL estimator with heterogenous compliance

rate δ̂IV L is obtained by replacing π̂c in this expression by a predicted compliance rate π̂ci

that depends on the covariates (xi, bi), and then integrating the resulting CACE estimate

over the covariates as before.

3 Simulation Study

3.1 Description of the Study

In the simulation, values of ri, ci, bi and yi were generated as follows, [ri] ∼ Bernoulli(pR),

[ci, bi|ri] ∼ Multinomial(αCB), [yi|bi, ci, ri] ∼ F (·)+0.5−0.5ci−ciri−0.5bi+cibi. To resemble

the JOBS II data, we choose (α00, α10, α01, α11) = (0.3, 0.35, 0.15, 0.20) and pR = 0.65. To

test the sensitivity of the normality assumption of yi, three distributions of F (·) are chosen:

N(0, 1), T (df = 4) and Γ(shape = 5, scale = 0.2). The random numbers from F (·) are

re-centered and re-scaled so that they have mean 0 and variance 1.

Let mB
i or mY

i be the missing data indicators for bi or yi respectively. Four missing data

mechanisms are considered: two of them (MAR1 and MAR2) are ignorable, while the other

two (LMAR and NMAR) are non-ignorable. Specifically,

(1) Missing at random (MAR1), where the probability of missingness depends on observed

values in the data set, and the missing data mechanism satisfies the latent ignorability

conditions and the compound exclusion restriction in Frangakis and Rubin (1999): Pr(mY
i =

1|C, R, X, Y ) = Pr(mB
i = 1|C,R, X, Y ) = Φ(α0 + αCRCR),where Φ(·) is the cumulative

standard normal probability function.

(2) Missing at random (MAR2), where the probability of missingness only depends on

the observed values in the data set, and the missing data mechanism satisfies the latent
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ignorability conditions but not the compound exclusion restriction in Frangakis and Rubin

(1999): Pr(mY
i = 1|ci, ri, bi, yi) = Pr(mB

i = 1|ci, ri, bi, yi) = Φ(α0 + αRri + αCRciri). Hence

Pr(mY
i = 1|ci = 0, ri = 0, bi, yi) = Φ(α0) 6= Pr(mY

i = 1|ci = 0, ri = 1, bi, yi) = Φ(α0 + αRri).

(3) Latent missing at random (LMAR) (Frangakis and Rubin, 1999), where the prob-

ability that yi is missing depends upon the compliance status ci which is unobservable

for the control group subjects. In addition, the conditional distribution (yi, mi|ci, ri) for

never-takers satisfies the CER assumption. The probability that bi is missing depends only

on ri: [yi, m
Y
i |ci = 0, ri = 0, bi] = [yi,m

Y
i |ci = 0, ri = 1, bi], Pr(mY

i = 1|ci, ri, bi, yi) =

Φ(α0 + αCci + αCRciri), and Pr(mB
i = 1|ci, ri, bi, yi) = Φ(α0 + αRri).

(4) Not missing at random (NMAR), where the probability that yi is missing depends

upon values of baseline covariate bi, which contain missing values: Pr(mY
i = 1|ci, ri, bi, yi) =

Pr(mB
i = 1|ci, ri, bi, yi) = Φ(α0 + αXbi).

For each generated data set, the following methods are applied for causal inferences:

IV n and IV are the naive IV and the IV estimators defined section 4.1, and IV nL and

IV L are the corresponding extended IV estimators assuming latent ignorable mechanisms.

For likelihood-based methods, estimates of the CACE as well as other model parameters

are obtained based on extended general location models. Specifically, MLBD (for maximum

likelihood before deletion) is the ML estimate of the CACE of the data before generating

missing values in bi and yi; MLI and BYSI are the ML and Bayesian estimates of the CACE

assuming ignorable mechanisms; MLLI and BYSLI are the ML and Bayesian estimates of

the CACE assuming latent ignorable mechanisms; and MLCC and BYSCC are the ML and

Bayesian (posterior mean) estimates of the CACE of the data after deleting observations

with missing values in bi or yi.

3.2 Results

Simulation results of the CACE parameter are summarized in Table 1 and Table 2. For

each simulation condition, biases and root mean square errors (RMSE) of the estimates of

the CACE from each method are reported, after multiplied by 1000. In addition, confidence
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intervals for each parameter are constructed from normal approximations based on estimates

for that parameter, specifically for the ith parameter, the 100P% confidence interval is

constructed as ESTi±ZP ·SEi, for P = 0.5, 0.6, 0.8, 0.9, ESTi and SEi are the sample mean

and standard error of estimates for the ith parameter, and ZP is the (100(1−P )/2)th quantile

of the standard normal distribution. Standard errors are calculated as standard deviations

from the Gibbs draws for likelihood-based methods and as standard deviations from 200

bootstrap sample estimates for instrumental variable methods. Coverage probabilities of the

confidence intervals of parameters are then obtained and compared.

As expected, estimates from the MLBD are the best, with the smallest RMSE, and es-

timates from IVn and IVnL are the worst with the largest biases and RMSEs. Naive IV

methods assume a constant compliance rate for different values X and this is not consistent

with the data generating process. Both the IV method and the likelihood-based methods

are robust for the CACE estimates based on this simulation results. We observe no evidence

that the IV methods are more robust to model misspecificaiton than the likelihood-based

methods. The RMSEs from IV are slightly larger than those from the likelihood-based meth-

ods. Probability coverages are good and consistent with the corresponding point estimates

in general.

For the likelihood-based methods, ML estimates agree closely with the Bayesian esti-

mates. RMSRs from the MLCC and BYSCC estimates are larger than the RMSEs from

MLI and BYSI estimates. Also, estimates from models with the correct mechanisms per-

form better than those with incorrect mechanisms. Specifically, they are estimates from MLI,

BYSI, MLLI and BYSLI under MAR1, from MLI and BYSI under MAR2, and from MLLI

and BYSLI under LMAR. When the missing data mechanism is NMAR, i.e., missingness

depends upon X, estimates from MLCC and BYSCC show no significant biases for N(0, 1)

and Γ(5, 0.2) cases.

For the N(0, 1) case, estimates from MLLI, BYSLI, BYSLI and IVL, which assume

latent ignorable mechanisms, have larger biases than those from MLI, BYSI and IVI when

the latent ignorability conditions are not satisfied. Estimates from MLLI, BYSLI and IVL

are significantly biased when the true underlying missing data mechanism is NMAR.
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4 Application

As described in the introduction, the JOBS II (Vinokur, Price, & Schul, 1995) intervention

project developed at the University of Michigan was to test a preventive intervention for

unemployed workers. In the JOBS (JOB Search) II intervention setting, respondents were

recruited from four offices of the Michigan Employment Security Commission in the south-

eastern Michigan. Based on the screening questionnaire (T0) data, only people who met

the screening criteria were invited, randomized to the field study and mailed pretest (T1)

questionnaires.

A total of 1801 people returned their T1 questionnaires and were enrolled in the study.

Each subject in the control group was mailed a booklet describing job-search methods and

tips, and each subject in the experimental treatment group was mailed the same booklet and

an invitation to participate in five 4-hour job search seminars. Follow-up questionnaires were

mailed to all the respondents two months (T2) and six months (T3) after the week of the job-

search seminars. Measures of depression, financial strain, assertiveness, risk score, distress

symptom, role and emotional functioning, job search self-efficacy, self-esteem, internal control

orientation, mastery, intervention process, re-employment as well as demographics variables

were obtained through the questionnaires. The re-employment outcome at T3 is the outcome

of interest here, and it is binary.

Previous analyses (Vinokur and Price, 1995; Little and Yau, 1998) demonstrate that

the intervention primarily benefited the re-employment and the mental health outcomes of

respondents who are at high risk of experiencing depression in the future. The analysis

focuses on data from the high risk group, which includes 715 subjects. Because people who

were randomized to the control group are not allowed to attend the seminars, there are only

compliers and never-takers in the study.

Table 3 presents the summary statistics of the covariates measured at baseline for the

high risk group subjects, by the randomly assigned treatment R and the compliance C (for

treatment group only, as C is unknown for control group subjects). Comparison of the

first two columns shows that the randomization did a fair job in balancing the covariate
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distributions across the two treatment groups.

About 2/3 of the high risk group subjects (481 out of 715) were randomized to the

treatment group. Among the 481 subjects in the treatment group, 58% (280 out of 481) of

them attended at least one job-search seminar and they are the compliers. The others didn’t

attend any seminar and they are the never-takers. Table 3 shows that older subjects with

more education, stronger motivation to attend the intervention, higher income and lower

assertiveness are more likely to be compliers.

Two models with exactly the same form are fitted, with different subjects included. While

the ”Partial” models include only those observations with no missing values in the baseline

covariates, 600 subjects in the high risk group, and the ”Full” models include all 715 subjects

in the analysis. The covariates involved in the model fitting are: indicator of not married,

indicator for non-white, age, school grade completed, motivation to attend, assertiveness,

economic hardship and attitude toward job search. Because of the normality assumption for

the continuous variables in the extended general location models, logarithm transformations

are applied to school grade completed and income.

Table 4 summarizes the estimation results of the probit models assuming ignorable miss-

ing data mechanism, where the standard errors of the ML estimates are calculated from

250 Bootstrap estimates. The 95% confidence intervals are estimated from the posterior

distribution from the Gibbs’ draws, by the 2.5th and the 97.5th percentiles. The CACEs

are the differences between the probability of being reemployed at T3 for the compliers who

participate in the job-search seminars and the same probability for compliers who do not

participate in the job-search seminars, evaluated at the mean values of the continuous base-

line covariates, and then taken the weighted average over the distribution of the discrete

covariates.

Table 4 shows that the ML estimates and the corresponding Bayesian estimates are very

similar for each model. Estimates from the the ”Full” models are similar to those from the

”Partial” model. The standard errors from the ”Full” model are smaller than those from

the ”Partial” model for almost all the parameters. This is to be expected, because the

”Full” model uses more of the information contained in the data set and hence increases the
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efficiency over the ”Partial” model.

From the ”Full” model that uses all the observations, the ML estimate of the probability

of being reemployed at T3 is increased by 16.1% by the intervention for a complier who has

average education (grade 13) and the average score of attitude toward the job search. It is

statistically significant with a 95% confidence interval of (0.004, 0.296). However, the ML

estimate of the same CACE parameter from the ”Partial” model is only 10% with a 95%

confidence interval of (-0.051, 0.258) and it is not statistically significant. This difference is

mainly due to the differences of the parameter estimates of the CR term, which is closely

related to the CACE parameter. The ML estimate of the coefficient for CR from the ”Full”

model is 0.41 with a 95% confidence interval of (0.010, 0.764), while the estimate of the

coefficient for CR from the ”Partial” model is reduced to 0.268 with a 95% confidence

interval of (-0.139, 0.668). Two sources may contribute to the difference between the two

estimates from the ”Full” and the ”Partial” models. First, more information is utilized

in the ”Full” model than in the ”Partial” model and leads to smaller standard error of

the estimate. This is demonstrated by both the ML inference and the Bayesian inference.

Second, the differences are also determined by the true underlying missing data mechanism

of the baseline covariates. Our model assumes that the mechanism is ignorable.

In addition, white people with more education and a higher score of attitude toward

job search have better chances to be reemployed in general. The effects of education and

attitude toward the job search are statistically significant at a 95% confidence level.

5 Conclusions and Discussion

We have proposed an extended general location model to make inference for the CACE for

data subject to non-compliance. The EGL model allows observations with missing values in

the outcome or the baseline covariates to be included in the analysis, and it yields the same

conditional distribution for the outcome and compliance conditioning on randomization and

covariates as in Little and Yau (1998), thus generalizing that analysis. Models were pre-

sented for both ignorable and latent ignorable missing data mechanisms, together with EM
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and Gibbs algorithms for computation. Simulations comparing the proposed methods with

instrumental variable methods suggest that the IV methods and likelihood-based methods

are reasonably robust to certain departures from the model assumptions, and the likelihood-

based methods are more efficient than the IV methods. An application to the JOBS II data

with a binary re-employment outcome was presented.

Bloom’s naive method (1984), which assumes constant compliance rate across different

values of the covariates, may provide very biased results when compliance varies across co-

variates. Also, estimates from our LIMD model with the compound exclusion restriction

did well when its assumptions were satisfied, but yielded estimates that were more biased

than estimates from the IMD model for the nonignorable missing data mechanism, where

missingness of the outcome depended on a partially observed covariate. However, we em-

phasize that this finding is limited to our particular choice of LIMD model and simulation

conditions. We think the LIMD assumption is likely to be more realistic than IMD in many

settings, so other models based on this assumption are worthy of further study.

In this article we focused on a single outcome. The EGL model is fairly readily generalized

to repeated measures normal data, by replacing the normal distribution of Eq. (3) by a

multivariate normal with covariance structure suited to the repeated measures. Repeated

binary outcomes can be accommodated by treating the outcomes in a normal model as latent

thresholds, as we have done in the univariate case. Compliance is assumed all-or-none here.

However, partial compliance is possible in practice. For example, in the JOBS II intervention

trial, the treatment includes five job-search seminars and some participants only receive part

of them. In a clinical trial, patients may take only a fraction of the intended dosage of

medications because of side effects. Thus models that allow for partial compliance are also

worthy of future study.
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Table 3: Summary Statistics of the Covariates by Treatment R and Compliance C, HIGH
risk group

R = 0 R = 1 R = 1 & C = 1 R = 1 & C = 0
Covariate Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Age 36.45 ( 10.08 ) 36.60 ( 10.33 ) 39.08 ( 10.18 ) 33.65 ( 9.73 )
School 13.28 ( 2.01 ) 13.35 ( 2.02 ) 13.81 ( 2.04 ) 12.82 ( 1.86 )
Motivation 5.32 ( 0.80 ) 5.31 ( 0.82 ) 5.43 ( 0.82 ) 5.16 ( 0.79 )
Income 6.59 ( 3.72 ) 6.17 ( 3.84 ) 6.67 ( 4.01 ) 5.57 ( 3.54 )
Assertiveness 3.05 ( 0.87 ) 3.11 ( 0.92 ) 3.01 ( 0.92 ) 3.23 ( 0.92 )
Not-Married 0.58 ( 0.49 ) 0.65 ( 0.48 ) 0.66 ( 0.48 ) 0.64 ( 0.48 )
Economic Hardship 3.53 ( 0.93 ) 3.62 ( 0.85 ) 3.55 ( 0.84 ) 3.71 ( 0.84 )
Non-White 0.21 ( 0.41 ) 0.22 ( 0.41 ) 0.18 ( 0.39 ) 0.25 ( 0.44 )
Attitude 5.77 ( 1.12 ) 6.01 ( 1.06 ) 6.05 ( 1.06 ) 5.96 ( 1.06 )
Social Undermine 1.83 ( 0.78 ) 1.83 ( 0.80 ) 1.79 ( 0.78 ) 1.88 ( 0.82 )
Risk(T0) 1.68 ( 0.19 ) 1.68 ( 0.23 ) 1.67 ( 0.22 ) 1.69 ( 0.24 )

Table 4: Model fitting for the HIGH risk group with the outcome of re-employment at T3,
where ”Full” indicates the results from data with all 715 observations, and ”Partial” indicates
the results from the data excluding those observations with missing values in covariates, 600
observations

Parameter MLE ± SE Gibbs ± SE 95% CI∗∗

Intercept (Full) -1.549 ± 0.508 -1.551 ± 0.459 ( -2.491, -0.694 )
(Partial) -1.566 ± 0.485 -1.564 ± 0.498 ( -2.530, -0.600 )

C (Full) -0.446 ± 0.245 -0.406 ± 0.224 ( -0.852, 0.030 )
(Partial) -0.233 ± 0.267 -0.230 ± 0.235 ( -0.692, 0.216 )

CR (Full) 0.410 ± 0.194 0.379 ± 0.194 ( 0.010, 0.764 )
(Partial) 0.268 ± 0.226 0.260 ± 0.206 ( -0.139, 0.668 )

School (Full) 0.079 ± 0.031 0.077 ± 0.027 ( 0.024, 0.132 )
(Partial) 0.086 ± 0.030 0.086 ± 0.030 ( 0.025, 0.146 )

Attitude (Full) 0.149 ± 0.053 0.151 ± 0.051 ( 0.052, 0.251 )
(Partial) 0.135 ± 0.054 0.136 ± 0.054 ( 0.033, 0.243 )

Non-White (Full) -0.220 ± 0.134 -0.218 ± 0.133 ( -0.479, 0.038 )
(Partial) -0.249 ± 0.167 -0.253 ± 0.148 ( -0.546, 0.045 )

CACE∗ (Full) 0.161 ± 0.075 0.148 ± 0.075 ( 0.004, 0.296 )
(Partial) 0.104 ± 0.086 0.100 ± 0.079 ( -0.051, 0.258 )

∗ CACE is calculated at the mean values of the school grade completed and the score of attitude
toward the job search, then averaged over the distribution of non-white.
∗∗ 95% CIs are calculated based on the 2.5th and 97.5th percentiles of the Gibbs draws.
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