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Statistical inference for infinite dimensional parameters
via asymptotically pivotal estimating functions

By M. A. GOLDWASSER, L. TTIAN anD L.J. WEI

Department of Biostatistics
Harvard School of Public Health
655 Huntington Avenue
Boston, MA 02115
mgoldwas@hsph.harvard.edu ltian@hsph.harvard.edu wei@sdac.harvard.edu

SUMMARY

Suppose that a consistent estimator for an infinite-dimensional parameter can be readily
obtained via a set of estimating functions which has a ‘good’ local linear approximation
around the true value of the parameter. However, it may be difficult to estimate the variance
function of this estimator well. We show that if the set of estimating functions evaluated
at the true parameter value is ‘asymptotically pivotal’, then the ‘fiducial’ distribution of
the parameter can be used to approximate the distribution of this consistent estimator. We
present three examples to illustrate that the corresponding inference for the parameter can
be made via a simple simulation technique without involving complex, high-dimensional

nonparametric density estimates.

Some key words: Confidence band; Estimating equation; Gaussian process; Pivotal quantity;

Quantile regression; Survival analysis.
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1. INTRODUCTION

Suppose that we are interested in making inferences about an infinite-dimensional pa-
rameter © = {0(t),t € Z} based on a system of asymptotically unbiased estimating functions
Sx(©) = {Sx(©;t),t € I}, where 7 is an interval in R, 6(t) assumes values in RP, and X is
the observable random quantity. Often a consistent estimator ©x = {fx(t),¢ € Z} for Oy,

the true value of ©, can be readily obtained by solving the equation
Sx(0) ~0. (1.1)

If Sx(O©) has a ‘good’ local linear approximation around Oy, the standardised 5) X converges
weakly to a Gaussian process (van der Vaart, 1995). However, the variance-covariance
function of this limiting process can be prohibitively complex. It is rather difficult, if not

impossible, to study the large sample properties of ) x analytically via this Gaussian process.

In a recent technical report from the University of Washington, J. A. Wellner and Y. Zhan
provided a formal justification of Efron’s bootstrap method (Efron & Tibshirani, 1993) for
making inferences about ©¢ via a specific type of estimating function, which is a sum of
independent, identically distributed random quantities. In this article, we deal with a much
wider class of estimating functions and derive a relatively simple resampling method for

studying the properties of ) X-

Suppose that {Sx(©y;t),t € Z} converges weakly to a Gaussian process W = {W (t),t €
T}, whose distribution may depend on ©g. The process Sx(©q) is ‘asymptotically pivotal’
if for any observed = of X one can generate, without knowing ©y, a random process W, =
{W,(t),t € T} which converges weakly to the same limiting process W. Let ©% = {6%(t),t €

Z} be a random function which is a solution to the system of stochastic equations

(S.(0:t) ~ W, (t),t € T}. (1.2)
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Under a set of regularity conditions on Sx(©) given in § 2, the distribution of (@ x —Og) can
be approximated by the conditional distribution of (©% — @z) It is interesting to note that,
if © is a finite-dimensional parameter and the distribution of W is free of ©, ©} generates

the so-called fiducial distribution of ©.

We use a simple example to illustrate the concept of an asymptotic pivot. Let X be a ran-
dom sample {Y;, - - , Y} from a distribution function {6, (t), —co < t < oo}, let fx(-) be the
empirical distribution function, and let Sx(0;t) = n'/?{fx(t) — 6(t)} = n V27 {I(Y; <
t) — 6(t)}, where I(-) is the indicator function. Then {Sx(Og;t),t € I} converges weakly
to a zero-mean Gaussian process W. Note that the covariance function of this limiting pro-
cess still depends on ©g. Let Wy(t) = n~ 23" {I(y; < t) — 0,(t)}Gs, where y is the
observed value of Y, and {G;,i = 1,--- ,n} is a random sample from the standard nor-
mal distribution, which is independent of the data. By the uniform consistency of @w and
the conditional multiplier central limit theorem (van der Vaart & Wellner, 1996, Lemma
2.9.5), W, converges weakly to W. The distribution of W, is free of any unknown param-
eters; this implies that {Sx(Og;t)} is asymptotically pivotal. It follows from (1.2) that
0% (t) = 0,(t) —n " 3.7 {I(y; < t) —8,(t)}G;. Since the processes (Ox —©p) and (67 — 6,)
are tight and asymptotically have the same mean and covariance function, it follows that

they have the same limiting distribution.

In practice, one may generate a large number, M say, of realisations from W,, and
for each realisation obtain a ©% via (1.2). If it is relatively easy to solve equation (1.2),
inferences about ©y can be made based on the empirical distribution constructed from these

realisations.

In § 2, we demonstrate that the conditional distribution of (O} — @z) can be used to

approximate the distribution of (@ x — ©g) under certain regularity conditions. In § 3, three
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extensive examples are given to illustrate the new proposal. For the first example, we revisit
the one-sample, nonparametric estimation of the cumulative hazard function with censored
data, and show empirically that the confidence intervals and bands constructed using the
above approach are practically identical to those derived analytically from standard mar-
tingale theory (Fleming & Harrington, 1991, Ch. 6). In the second example, we deal with
a brand new problem in predicting the percentiles of the subject-specific survival function
based on the Cox regression model (Cox, 1972; Lin et al., 1994). For the third problem,
we derive confidence bands for the regression coefficients under a quantile regression setting
without making any parametric assumptions about the error distribution or involving non-
parametric density estimates, in contrast to the existing inference procedures for quantile

regression in the literature (Koenker & Machado, 1999).

For the case of a finite-dimensional parameter ©, various resampling methods that per-
turb an estimating function or its equivalent have been proposed and justified by Arcones
& Gine (1992), Parzen et al. (1994), Hu & Kalbfleisch (2000), Jin et al. (2001) and the

aforementioned technical report by Wellner and Zhan.

2. CONDITIONAL DISTRIBUTION OF OF

Note that © and Sx(©) are mappings from Z to RP. For a generic function A(©) =
{A(©;t),t € T}, whose value is a mapping from Z to RP, let || A(©)|| be suptery||A(O;t)|| re,
where || - ||ge is the standard Euclidean norm for RP. Assume that the distribution of W,
is generated by a random element G whose distribution is free of x. This implies that the
unconditional distribution of Wy is defined under a product probability measure P of two
measures Px and Pg;, where Px and Py are generated by X and G, respectively. For the
simple example of the empirical distribution function mentioned in § 1, G is the random

sample {G;,i = 1,--- ,n} from the standard normal distribution. In this section, we also
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assume that both © x and ©% are uniformly consistent estimators for ©,. For the three
cases discussed in § 3, we show that it is relatively easy to justify the consistency of these
estimators. To study the large sample properties of 5) x and ©%, we further impose the

following conditions.
Condition C.1. ||Sx(©x)|| = op, (1).

Condition C.2. There exists a continuously invertible, bounded linear operator D, which is

a mapping from the set of bounded functions into itself, such that, for [ = 1,2,

sup 1Sx(©2) — Sx(©1) = D{n'*(©; —©)}|| _
101—60|<en 14 nl/2|©, — O]

OPX(l)’

where ©; is a non-stochastic element, n is the sample size and {e,} is any sequence of

constants which converges to 0.
Condition C.3. ||Sx(0%) — Wx|| = op(1).

Conditions C.1 and C.3 provide a formal interpretation of the roots of equations (1.1)
and (1.2). An estimator satisfying C.1 is called an asymptotic, generalised functional M-
estimator by Bickel et al. (1993). Furthermore, Condition C.2 indicates that the set of

estimating functions has a good linear approximation near the true parameter value.

With the consistency of G) x, C.1 and C.2, it follows from van der Vaart’s generalised

version of Huber’s theorem (van der Vaart, 1995) that

n'2(Ox — ©g) = —D " H{Sx(00)} + 0p, (1 + n*/?||Ox — Ogl|).

By the continuous mapping theorem, the right-hand side of the above equation converges

weakly to —D~'(W). Furthermore, for § > 0 and a sequence of constants {¢,} converging
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to 0, such that n'/?¢,, — oo, under C.1

or [ 18x(8%) = D{n'/2(6% — Ox)
1+ nl/2|©% — Ox]|

}H > 5) < pr (||(3)X — Oy| > €, ||O% — B0l > en) +

|Sx(©2) — Sx(©1) — D{n'/*(0; — ©1)}|]
T su >4 ).
’ (H@z—@oHSIf)m 1=1,2 1+ n'/2(|©; — 6]

Since Oy and ©% are consistent, under C.2 the right hand side of the above inequality goes

to 0, as n — oco. This implies that
n?(Ox—0%) = —~D HSx(0%)}+op(1+n||Ox—O%|) = —D ' (Wx)+op(1+n'/?|0x—O%])).

The right-hand side of the above equation converges weakly to —D~! (W) in probability with

respect to the product probability measure P. It follows that
sup | [{n**(0 —8x)}| X| — B [n{n**Bx ~ €0)}]| = 0r, (1),

where h(-) is any uniformly bounded and Lipschitz continuous mapping and the first ex-
pectation E inside the above absolute value is conditional on the data X. Although this
type of approximation is weaker than the almost sure version, it has been used frequently
to justify the validity of resampling methods in the literature (Hall, 1988). For the present
case, this means that, for large n, there is a reasonably high probability with respect to
Px that the distribution of (0% — @X), conditional on X, provides a good approximation
to the unconditional distribution of (©x — ©g). More generally, if g(-) is a continuously
differentiable function, the distribution of {vx(t) [g{éx(t)} — g{6o(t)}],t € I} can be ap-
proximated by the conditional distribution of {v,(t) [g{6}(¢)} —9{6,(t) },t € I}, where vx(-)
is a known, positive weight function which converges uniformly to a deterministic function,

as n — oo. Inferences about g{6y(¢)} can then be made based on the empirical distribution

of {u,(t) [9{65(D)} — 9{6:(t)}], t € T}.

3. EXAMPLES
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3.1. Estimation of the cumulative hazard function

Let T be a failure time with the cumulative hazard function ©y = {(t),t € T C
[0,00)}. One can only observe T = min(T®,C) and A = I(T® < ), where C is the
censoring variable. The data consist of n independent, identical copies of (T, A); that is,
X = {(T3,Ai),i = 1,--- ,n}. To estimate {0y(t),t € Z = [t1,t2]}, where ¢; and ¢, are
predetermined constants such that both pr(7 < ¢;) and pr(T > t,) are positive, consider the

system of estimating functions

Sx(@38) = S {Ni(e) - /0 I(T: > 5)db(s)},

where N;(t) = A;I(T; <t). Then

-3 s e

which is the well-known Nelson-Aalen estimator. By the martingale central limit theorem
(Fleming & Harrington, 1991, Ch. 5; Andersen et al., 1993), Sx(0,) converges weakly to a
zero-mean Gaussian process V. Note that the distribution of W depends on the unknown
cumulative hazard function. Let Wx(t) = n~ Y237 | N;(t)G;, where {G;,i = 1,--- ,n} is
a random sample from the standard normal distribution, which is independent of the data.
Note that the variance of W,(¢) is n=* Y ; N;(t), which converges to the variance of W (t).
Furthermore, it follows from Lin et al. (1993) that, conditional on the data z, W, converges
weakly to the same limiting process W, and can be generated without knowing ©,. This

implies that Sx(©,) is asymptotically pivotal.

The root of equation (1.2) is

NI(T; < )(1 - Gy)
Z 211 T>T) ’

Using the martingale central limit theorem again, one can easily show that both Ox and 0%

are uniformly consistent for {6,(t),t € Z}. Since Sy(O,;t) and S,(O%;t) — W, (t) are exactly

7
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zero for t € Z, Conditions C.1 and C.3 are satisfied. Furthermore, it follows from Example 1
of § 5 in the technical report by Wellner and Zhan that Condition C.2 is satisfied. Therefore,

the conditional distribution of {g(©%) — 9(0,)} is a good approximation to the distribution
of {g(éx) —9(©0)}.

The above approximation can be used to derive confidence bands for g(©y). A (1 — «)

confidence band for g{6y(t)} is

g{0x(t)} £ cougt(t), (3.1)

where ¢, is a cut-off point such that

pr (sup [ox()lo10x (0} — o860} <o) =10 (32)

The ¢, can be approximated by c,, which is obtained from

prg (sup [s2(0lo16:0) - 900 ] < ) =1~ (5.3

The ¢}, can be estimated empirically from M realisations from g¢(©}). To obtain the so-
called equal-precision confidence band for g{fy(¢)}, we let v '(¢t) be an estimate of the
standard error of g{fx(t)}. A good candidate for this estimate is the sample standard error
estimate based on those M independent realisations of {g{6:(¢)},t € I}. Note that the
pointwise confidence intervals for g{6y(¢)} can also be obtained using this specific standard
error estimate with ¢, in (3.1) replaced by the 100(1 — a;/2)th percentile of the standard

normal distribution.

We illustrate the above simultaneous confidence interval estimation procedure using the
well-known Mayo Clinic dataset of patients with primary biliary cirrhosis disease. The data
are given in Appendix D of Fleming & Harrington (1991). Although this was a placebo-
controlled trial to evaluate the drug D-penicillamine, the drug was not found to have any

significant benefit on patient survival. Therefore, in our analysis we use the failure times
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from all 418 patients who met the eligibility criteria of the study, as used in Fleming &
Harrington (1991, Ch. 6). To construct interval estimates for the survival function of 7,
we let g(z) = exp(—z) in (3.1)-(3.3). In order to compare our results with those in the
literature, we let the weight function v;1(t) be exp{—0,(¢)}{1 + né2(t)}, where 6x(t) is an
estimated standard error of fx(¢), which corresponds to the Hall-Wellner confidence band
(Fleming & Harrington, 1991). Note that the Hall-Wellner band is one of very few confidence
bands for the survival function which can be constructed analytically. On the other hand,
our technique is applicable to the case with any weight function vx(-). Figure 1 shows the
estimate exp{—éw(t)} for the survival function, given by the solid line, the 0.95 pointwise
confidence intervals, given by the dotted lines, and a 0.95 confidence band (3.1), given by
the dashed lines. Our band is practically identical to the Hall-Wellner band displayed in
Fig. 6.3.5a of Fleming & Harrington (1991). For this example, Z = [t1,ts] = [0.1,11.5],
whose bounds correspond to the first and last observed death times in years. The intervals

and band are constructed with M = 1000 realisations of ©}.

3.2. Predicting the percentile process of the subject-specific failure time distribution

In this section we consider a more complex case using censored failure time data. Here,
for each failure time T there is a covariate vector Z. Assume that the data X consist of n
independent, identical copies {(T;, A;, Z;),i = 1,--- ,n} of (T, A, Z). Furthermore, assume
that 7' is related to Z via the Cox proportional hazards model, with the vector of regression
coefficients By (Cox, 1972) and a continuous and positive nuisance hazard function. Let [5’
be the maximum partial likelihood estimator for ;. Now, suppose that we are interested in
predicting simultaneously the tth percentiles, 6y(t),t € Z = [t;, t2] C [0, 1], of the failure time
distribution for subjects with a specific covariate vector z, where both pr{T < 6y(¢;)} and

pr{T > 6y(t2)} are positive. First, let A(s) be the underlying cumulative hazard function
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for the proportional hazards model at time point s. The Breslow estimator for A(s) is

A - I(T; < s)A,
A(s) = Z n T < 5) -~ (Breslow, 1972).
o 2o [(T > T;)eP 7

To estimate O = {6y(t),t € Z}, consider the estimating function
Sx(©;t) = n'*[A{8(1)} — A{fo(t)}] = n'/*[A{6(t)} + log(1 — )].

Since the Breslow estimate is a step function, the estimating function Sx(©;t) is not con-
tinuous in 6(t). To obtain a well-defined root Ax(t) of the estimating equation (1.1), one
may replace the Breslow estimate with a continuous process by connecting the midpoints of
every two consecutive steps with a straight line. This simple modification has the same large
sample properties as the Breslow estimator. In the Appendix, we show that ) x is uniformly

consistent for {6y(¢),t € Z}.

It follows from Andersen & Gill (1982) and Lin et al. (1994) that Sx(©,) is asymptotically

pivotal: Sx(©y,t) is asymptotically equivalent to the process

) n [ o0 V(8w
W{eo<t>}:n-1/2zlfo o+ Hme [z %}dmwl,
where

M;(u) = Ni(u) — /Ou I(T; > 5)ePoZidA(s),

V(T)(ﬂ, ’U,) =nL ZI(E > u)eﬁ’ZiZi@’" r=20,1,2,

i=1

7z =1,2%" =7, 2% = Z,Z,
v /(1)
H(u) = _/ wd/x(s)’
o V

(0)(50’3)
VO (By,u) (VOB u) %] o)
QT / V(o (Bo, v {W} (Bo, u)dA(u).

It can be shown via the standard martingale central limit theorem that the above process

converges weakly to a zero-mean Gaussian process W.
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We now replace {M;(u),i = 1,---,n} in W{8(t)} with {N;(u)G;}, where {G;,i =
1,---,n} is a random sample from the standard normal distribution, which is independent
of the data, and also replace other unknown quantities in W{6y(t)} with their respective

estimators. This results in the process

n

Wx(t)=n"12>" [(@5‘”)—11{:5 < Ox()}A; + HOQ'A{ Z; — Zi}] G,  (3.4)

i=1

n

o) =n 1Y ITy > TP B2, v =0,1,2,

J )
i=1

Zi= ("), Ht)=-ntY HT < 0x()}AZi(00) 7,

i=1
Q=n' > Ao @) " - 22},
i=1
It follows from the same argument as in Lin et al. (1994) that, conditional on X = z, the

distribution of W, converges weakly to W.

In the Appendix, we show that ©% is consistent and Conditions C.1-C.3 are satisfied. It
follows that the distribution of the process (©% — @x) is a good approximation to that of
(©x — ©p). A (1 — ) confidence band for O, can then be obtained via (3.1)-(3.3). Since,
for any fixed ¢, Sx(©;t) = n*/2[A{6(t)} +log(1 —t)] is an increasing function of A(t), solving
(1.1) and (1.2) numerically is a trivial task. To predict the percentiles of the failure time
distribution for a specific covariate vector z, we simply replace {Z;,i = 1,--- ,n} by {Z; —

z,i=1,---,n} and use this modified dataset to obtain @X and ©%.

We continue to use the Mayo Clinic data from § 3.1, but include covariate values from each
patient to illustrate our simultaneous interval estimation procedure. Dickson et al. (1989)
and Fleming & Harrington (1991) analysed this dataset extensively and established a Cox
model with five baseline covariates to predict patient survival with primary biliary cirrhosis

disease. The five covariates are age, log(albumin), log(bilirubin), oedema and log(protime).

11
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Based on this model, Lin et al. (1994) constructed confidence bands for the subject-specific
cumulative hazard function by generating a large number of realisations from a process
similar to {W,(¢)} defined in (3.4). For a hypothetical patient aged 51 years, with 3.4 gm/dl
serum albumin, 1.8 mg/pl serum bilirubin, no oedema and 10.74 seconds of protime, Lin et
al. (1994) presented a 0.95 confidence band for this patient’s survival function (Lin et al.,

1994, Fig. 1).

Now we construct confidence bands for the corresponding percentile function {6(t),t € Z}
of this patient’s failure time distribution. The last observed death time in the dataset is 11.47
and its estimated survival probability is 0.3. Thus, we construct a simultaneous band for
the ¢th percentiles for t € Z = [t;,t5] = [0.05,0.6]. Figure 2 shows the point estimate 6,(¢),
given by the solid line, 0.95 pointwise confidence intervals, given by the dotted lines, and
an 0.95 equal-precision confidence band, given by the outside dashed lines. Here, g(-) in
(3.1)-(3.3) is the identity function and v;'(t) is the estimated standard error of fx(¢). The
co and v () were estimated using M = 1000 realisations of {#%(¢)}. Note that the point
and interval estimates were approximated numerically by discretising {8, (¢)} and {6%(¢)} for

t from 0.05 to 0.6 with increments of 0.001.

The plots in Fig. 2 are quite informative. For example, the estimated median failure
time is 9.3 years, with a 0.95 confidence interval of (8.2,10.3) and the corresponding band
of (7.4,11.2). The estimated lower quartile failure time for this patient is 5.6 years, with a
0.95 confidence interval of (4.6, 6.6) and the corresponding band of (3.9, 7.4).

3.3. Sitmultaneous inferences for the heteroscedastic quantile regression model

In this section, we consider the case in which a fully observed, continuous response
variable T is related to its p X 1 covariate vector Z via a quantile regression model (Koenker

12
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& Bassett, 1978). The 100¢th percentile of T is 0y(t)' Z, where {6y(¢)} is a function from 7 C
[0,1] to RP. Note that the first component of Z is 1 and that no parametric structure on the
distribution of the error terms is assumed, nor is there any parametric assumption about
the joint distribution of {T' — 6y(¢)'Z} and Z. We are interested in making inferences about
©¢ = {bo(t),t € 7} and also in predicting the tth percentiles of the distribution of T for a
future subject. Recently, Koenker & Machado (1999) derived a novel inference procedure for
the quantile regression model, but with a specific parametric assumption about the variance

of the error distribution given Z (Koenker & Machado, 1999, Model (12)).

To estimate the regression coefficient function {6y(¢)}, consider the system of estimating

functions

Sx(0;t) =n1/2 zn: ZAI(T; — 0(t)' Z; < 0) — t}. (3.5)

Although the estimating function (3.5) is not continuous in 6(t), a consistent root ©x of
the corresponding equation can be obtained by minimising the convex function ) ;. | p{T; —
6(t)'Z;} by the standard linear programming technique, where p;(u) = u{t — I(u < 0)}
(Koenker & Bassett, 1978; Koenker & d’Orey, 1987).

If {6o(t),t € I} is continuously differentiable, it follows from the arguments in Lai &

Ying (1988) that {Sx(Oo;t)} converges weakly to a Gaussian process. Let
Wx(t) =n"'?Y " Z{I(T; — 6x(t)'Z; < 0) - t}Gi.
i=1

By Lemmas 2.6.15 and 2.6.18 of Van der Vaart & Wellner (1996), it follows that the class
of functions of (z,y,9g) : {zI(y — 0’2 < 0)g}, indexed by 6 in a compact set, is Donsker; see
Definition 2.1.1 of Van der Vaart & Wellner (1996). Therefore, one can replace Oy in the
above Wx (t) by ©9 without affecting the resulting limiting distribution. This, coupled with
the conditional multiplier central limit theorem, implies that the distribution of W, can be

used to approximate the limiting distribution of Sx ().

13
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In the Appendix, we show the consistency of Ox and O% and the validity of Conditions
C.1-C.3 under rather mild assumptions that the covariate vector Z is bounded, E(ZZ') is a
strictly positive definite matrix, and the density function fi(-; Z) of {T — 6¢(t)'Z} given Z is
continuous and positive on its entire support. It follows that the distribution of (@ x — ©y)

can be approximated by the conditional distribution of (0% — ©,). Note that, in practice,

the solution © of equation (1.2) can be obtained by minimising the convex function

Z p{T:i = 0(t)' Z:} + p{Tos1 — 6(t) Znsa(8)}

with the linear programming technique, where 7,,,; is an extremely large, artificially gener-
ated number and Z,,,(t) = n'/2W,(t)/t. This minimisation procedure has been successfully
used by Parzen et al. (1994) for a finite-dimensional parameter under a median regression
model. Suppose that we are interested in constructing confidence bands for a specific re-
gression coefficient of {6y(¢),t € Z}. Such bands can be obtained via formulae (3.1)-(3.3).
Moreover, for predicting the percentile process {6y(t)'z,t € I} of T for a future subject with
the covariate vector z, this process can be consistently estimated by {Ax(t)'z}. The distri-
bution of {Ax (t)'z — 6y(t)'z,t € I} can be approximated by that of {8%(t)'z — 0,(t)'z,t € T},
and a (1—a) confidence band for 6y(t)'z can then be obtained by replacing each 6(¢) quantity

in (3.1)-(3.3) with its corresponding 6(¢)'z counterpart.

We illustrate the above method using a dataset from a recent HIV clinical trial conducted
by the AIDS Clinical Trials Group (Hammer et al., 1997). This randomised, double-blind
trial compared a three-drug combination therapy of indinavir, zidovudine and lamivudine,
n = 423, to a two-drug combination of zidovudine and lamivudine, n = 429. For illustration,
we consider an additive, heteroscedastic quantile regression model with week 24 CDA4 cell
count as the response 7', and the covariate vector Z consisting of the baseline CD4 count, a
treatment indicator equal to 1 for the three-drug group, months of prior zidovudine treat-

ment, age, a gender indicator equal to 1 for male, and two race indicators, equal to (1,0) for
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‘black’ and equal to (0,1) for ‘Hispanic’. In our analysis, each covariate was standardised by

subtracting its empirical mean and dividing by its sample standard deviation.

Figure 3 gives the point estimates, denoted by the solid lines, and 0.95 equal-precision
confidence bands, represented by the dashed lines, for each regression coefficient of the vector
6o(t) for t € [0.1,0.9]. These bands were constructed from M=1000 realisations of ©%. Note
that 6,(t) and 6%(t) were approximated numerically by discretising ¢ between 0.1 and 0.9
with increments of 0.01. From Fig. 3 it appears that the standard location-shift, linear
regression model does not fit the data well. The coefficients of the baseline CD4 count and

the treatment indicator increase significantly over 0.1 < ¢ < 0.9.

We also used this fitted quantile regression model to predict the ¢th percentiles of the
distribution of week 24 CD4 count for a 38-year-old, white male patient with a baseline
CD4 count of 71 and twenty-two months of prior zidovudine usage. Figure 4(a) shows the
point estimates, given by the solid line, and 0.95 equal-precision confidence band, given by
the dashed lines, for {6y(t)'2z} when the patient is treated with the three-drug combina-
tion. In Fig. 4(b), we present the corresponding estimates when that patient is treated with
the two-drug combination. Together, Figs. 4(a) and (b) indicate substantial heterogeneity
of treatment effects between subjects with the above covariate values. For example, the
estimated 20th percentile of week 24 CD4 count for the above subject in the two-drug com-
bination group is 59, with 0.95 confidence band (48, 69), and in the three-drug combination
group the estimate is 89, with 0.95 confidence band (72, 106), indicating a significant but
relatively small treatment effect. In comparison, the estimated median week 24 CD4 count
in the two-drug combination group is 79, with 0.95 confidence band (70, 88), whereas the
estimated median in the three-drug combination group is 144, with 0.95 confidence band

(123, 165).
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4. DISCUSSION

When one is interested in drawing inferences about ©( based on a non-smooth estimat-
ing function Sx(©), a common approach is to ‘perturb’ S,(0) directly via, for example,
the standard bootstrap method, and to solve the resulting estimating equation S¥(©) = 0
repeatedly, thereby obtaining a large number of © which can be used to approximate the
unconditional distribution of (8 — ©g) (Efron & Tibshirani, 1993; Hu & Kalbfleisch, 2000).
In their recent technical report, Wellner and Zhan elegantly justified the validity of such an
approximation when Sx(0) is a sum of independent and identically distributed quantities.
Our resampling procedure, which does not alter S;(©), rather perturbs W,, whose distribu-
tion is an approximation to that of Sx(©y), and solves the equation S,(0) = W, repeatedly.
For the cases in which the bootstrap is applicable, we find empirically that the results from

both approaches are practically identical.

It is important to note that the new resampling method works well in practice when there

are efficient numerical algorithms available for solving (1.1) and (1.2).
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APPENDIX

Justification of conditions

Justification of conditions for § 3.2. Since we obtained the estimator using a continuous

version of the estimating function, C.1 and C.3 are trivially satisfied. Next, if the estimator
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is not uniformly consistent, we show that ||Sx(©x)|| — co. To this end, suppose that there
is © such that ||© — ©q|| > § > 0. Then we can find a t € Z such that |6(t) — 0o(t)| > 6 > 0.

It follows that

Sx(©,8)] = |n'[A{6()} — A{6()}] + n'2[A{6()} — A{bo(t)}]]

> —|n'?[A{8(t)} — A{B@®)}]| + n'/2cs = Opy (n'/?),

where ¢ > 0 and the hazard function A(¢) is assumed to be bounded away from 0. Thus,
ISx(®)|| > Opy(n/?) — oo. Since ||Sx(Ox)|| = 0, this implies that Ox is uniformly
consistent with respect to probability measure Px. Using similar arguments, one can show

that ©% is also uniformly consistent for ©, with respect to probability measure P.

Lastly, we show that Condition C.2 is satisfied. It follows from the tightness of the

process n'/2{A(s) — A(s)} that, for any sequence of {e,} — 0,

sup  |A(s3) — A(s1) — A(ss) + A(sy)| = opy (n71/2).

|s2—s1/<en

Therefore, if ||©; — O] < €,, | = 1,2,
sup [A{6a(6)} — A{61(6)} — M)} + MO} = op (n772).
te

Furthermore, since

sup [A{82()} — A{61(1)} — Mo() HE(t) — 61(1)}] = o(]|(©2 - ©1)]),

it follows that for [ = 1, 2,

s I *{A(©2) — A(©1)} — A(©9)n' (O — ©1)|

= Op 1).
e~ T+ 120, — 0y <(1)
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Justification of conditions for § 3.3. To show that C.1 is satisfied, recall that we define
Ox(t) = argmin 37, p,{T; — 6(t)'Z:}. With some elementary algebraic arguments, one can

show that, for any fixed t € Z,

18x(8;8)||me < en™2 " I{T; - 6(2)' Z: = 0},

i=1
where ¢ is a positive constant. Furthermore, since it is assumed that E(ZZ') is strictly
positive definite and f;(-; Z) is continuous, the right-hand side of the above inequality is

0py (1). Condition C.3 can be verified with the same argument.

Next, we show the consistency of Ox. Suppose that there is a © such that ||© — ©q]| >

d > 0. Then we can find a ¢t € Z such that |0(t) — 6o(t)| > 6 > 0. For this specific ¢,

1Sx(6;t)] = [Sx(0;t) — Sx(B;t) + Sx(O0;1)|

> gl Zz [I{T; — 6(t)'Z; < 0} — I{T; — 8o(t)' Z; < 0}] |

—|n"1/? Zn: Z;i [I{T; — 6o(t)' Z; < 0} — 1] |.

i=1
By the central limit theorem, the second term on the right-hand side of the above inequality
is Op(1). Furthermore, using the central limit theorem again, one can show that the cor-
responding first term is [n ™27 | f,(0; Z;) Z; ZL {0(t) — 6o(t)} | + 0px (1), which is greater
than n'/2cd + op, (1), where ¢ > 0. It follows that ||Sx(©)|| > Op, (n'/?) — co. Therefore,
with C.1, 5) x 1s uniformly consistent with respect to probability measure Px. Using similar
arguments, one can show the uniform consistency of ©% with respect to probability measure

P.

Lastly, C.2 can be justified using the results presented by Lai & Ying (1988). For any
e, —0,1=1,2,
sup  |[Sx(02) — Sx(©1) — E{Sx(©2)} + E{Sx(©1)}|| = op, (1).

1©:—O0l|<en
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Moreover,

E{Sx(©2t)}—E{Sx(©1;t)} = {”_1 > £ Zi)Zz'Zf} '/ {6,(t) — 61(t)}+0(n'/?||©:—61])).
i=1
Therefore, for any €, — 0,1 = 1,2,

sup |Sx(©2) — Sx(01) — {n~1 >0, £:(0; Z)Z: 2 nl? (05 — ©1) || — op.(1).
[1©;—B0]|<en 1+ n1/2||®2 - G)1” *
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Figure 1: Estimation of the survival function with the Mayo Clinic data. Point estimate
shown by the middle solid line; 0.95 pointwise intervals, the dotted lines; 0.95 simultaneous

band, the dashed lines.

Figure 2: Prediction of the percentile process of the failure time distribution for a patient
aged 51 years, with 3.4 gm/dl albumin, 1.8 mg/pl bilirubin, 10.7 seconds of protime, and
no oedema. Point estimate, the middle solid line; 0.95 pointwise confidence intervals, the

dotted lines; 0.95 confidence band, the outside dashed lines.

Figure 3: Simultaneous estimation for quantile regression coefficients with the HIV
dataset. Point estimates, the solid lines; 0.95 confidence bands, the dashed lines. (a) baseline
CD4, (b) treatment, (c) months of prior zidovudine use, (d) age, (e) gender, (f) black vs.

white, (g) Hispanic vs. white

Figure 4: Simultaneous prediction of percentiles of the week 24 CD4 distribution for a
white male subject, aged 38.45 years, with 70.75 baseline CD4 cells/mm?, and 22 months
of prior zidovudine use. Point estimates, the middle solid lines; 0.95 confidence bands, the

dashed lines. (a) for three-drug combination therapy, (b) for two-drug combination therapy
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