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Penalized Spline Nonparametric Mixed
Models for Inference About a Finite

Population Mean from Two-Stage Samples

Hui Zheng and Rod Little

Abstract

Samplers often distrust model-based approaches to survey inference due to con-
cerns about model misspecification when applied to large samples from complex
populations. We suggest that the model-based paradigm can work very success-
fully in survey settings, provided models are chosen that take into account the
sample design and avoid strong parametric assumptions. The Horvitz-Thompson
(HT) estimator is a simple design-unbiased estimator of the finite population total
in probability sampling designs. From a modeling perspective, the HT estimator
performs well when the ratios of the outcome values and the inclusion probabil-
ities are exchangeable. When this assumption is not met, the HT estimator can
be very inefficient. In Zheng and Little (2002a, 2002b) we used penalized splines
(p-splines) to model smoothly -varying relationships between the outcome and the
inclusion probabilities in one-stage probability proportional to size (PPS) samples.
We showed that p-spline model-based estimators are in general more efficient than
the HT estimator, and can be used to provide narrower confidence intervals with
close to nominal confidence coverage. In this article, we extend this approach
to two-stage sampling designs. We use a p-spline based mixed model that fits a
nonparametric relationship between the primary sampling unit (PSU) means and
a measure of PSU size, and incorporates random effects to model clustering. For
variance estimation we consider the empirical Bayes model-based variance, the
jackknife and balanced repeated replication. Simulation studies on simulated data
and on samples drawn from public use microdata in the 1990 census demonstrate
gains for the model-based p-spline estimator over the HT estimator and linear
model-assisted estimators. Simulations also show the variance estimation meth-
ods yield confidence intervals with satisfactory confidence coverage. Interest-
ingly, these gains can be seen in an equal probability design, where the first stage



selection is PPS and the second stage selection probabilities are proportional to the
inverse of the first stage inclusion probabilities, and the HT estimator leads to the
unweighted mean. In situations that most favor the HT estimator, the model-based
estimators have comparable efficiency.
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  Abstract 

Samplers often distrus t model-based approaches to survey inference due to 

concerns about model misspecification when applied to large samples from complex 

populations. We suggest that the model-based paradigm can work very successfully in 

survey settings, provided models are chosen that take into account the sample design and 

avoid strong parametric assumptions. 

The Horvitz-Thompson (HT) estimator is a simple design-unbiased estimator of 

the finite population total in probability sampling designs. From a modeling perspective, 

the HT estimator performs well when the ratios of the outcome values and the inclusion 

probabilities are exchangeable. When this assumption is not met, the HT estimator can be 

very inefficient. In Zheng and Little (2002a, 2002b) we used penalized splines (p-splines) 

to model smoothly –varying relationships between the outcome and the inclusion 

probabilities in one-stage probability proportional to size (PPS) samples. We showed that 

p-spline model-based estimators are in general more efficient than the HT estimator, and 

can be used to provide narrower confidence intervals with close to nominal confidence 

coverage. In this article, we extend this approach to two-stage sampling designs. We use 

a p-spline based mixed model that fits a nonparametric relationship between the primary 

sampling unit (PSU) means and a measure of PSU size, and incorporates random effects 

to model clustering. For variance estimation we consider the empirical Bayes model-

based variance, the jackknife and balanced repeated replication. Simulation studies on 

simulated data and on samples drawn from public use microdata in the 1990 census 

demonstrate gains for the model-based p-spline estimator over the HT estimator and 

linear model-assisted estimators. Simulations also show the variance estimation methods 

http://biostats.bepress.com/umichbiostat/paper8



 2 

yield confidence intervals with satisfactory confidence coverage. Interestingly, these 

gains can be seen in an equal probability design, where the first stage selection is PPS 

and the second stage selection probabilities are proportional to the inverse of the first 

stage inclusion probabilities, and the HT estimator leads to the unweighted mean. In 

situations that most favor the HT estimator, the model-based estimators have comparable 

efficiency. 

 

Keywords: weighting, REML, empirical Bayes estimation 

 
 
 

 1. Introduction 

In a sample survey, let iy  denote the value of a survey outcome Y for unit i, and 

let S  denote the set of sampled units. The Horvitz-Thompson (HT) estimator (Horvitz 

and Thompson 1952) ∑∈
=

Si iiHT yY π/ˆ , where iπ  is the probability of selection of unit i, 

is a design-unbiased estimator of the finite population total (and of the mean when 

divided by the known population count N). It can also be regarded as a model-based 

projective estimator (Firth and Bennett 1998) for the following linear model relating iy  

to iπ : 

  iiiiy επβπ += ,  

where iε  are assumed to be i.i.d. normally distributed with mean zero and variance 2σ . 

 In Zheng and Little (2002a, b), we proposed a nonparametric model  

iii fy επ += )( , iε  ~ ind 2 2(0, )k
iN π σ  
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using penalized splines to model mean of outcome iy  as a smoothly varying function of 

the inclusion probabilities iπ . We showed in Zheng and Little (2002a) that the 

nonparametric model-based estimators are more efficient than HT for general one-stage 

probability-proportional-to-size (PPS) samples and not much less efficient than HT when 

the data are generated using a model that favors HT.  

 We now consider the case of two-stage sampling. In the first stage, a subset of m 

primary sampling units (PSU’s) is drawn from a population with H PSU’s with unequal 

probabilities h,1π , h = 1,...,H.  Let us number the included PSU’s from 1 to m. In the 

second stage, a simple random sample (srs) of hn  out of hN secondary sampling units 

(SSU’s) is drawn from sampled PSU labeled h with probability h,2π for the hth PSU. The 

overall selection probability for unit i in cluster h is 1, 2,h h hπ π π= , and the Horvitz-

Thompson estimator of the mean of an outcome Y is )/(
1

,21 1 ,1 h
m

h

n

i hhiw
h y

N
y ππ∑ ∑= =

= , 

where hiy  is the value of Y for unit i in cluster h and N is the known total number of units 

(SSU’s) in the whole population. In a commonly adopted design, the first stage selection 

probability is proportional to an estimate of the PSU size, and the second stage inclusion 

probabilities are proportional to the inverse of the first stage inclusion probabilities so 

that the overall inclusion probabilities hπ  are equal for all SSU’s. The inverse probability 

weighted mean in this case becomes the simple sample mean ∑∑ ∑ == =
=

m

h h
m

h

n

i hi nyy h

11 1
.  

In sections 2 and 3, we assume the cluster counts hN  and the values 

Hhhh ...1,, ,2,1 =ππ of the identifying variable are known for all clusters, whether sampled 

or not. In Section 4, we discuss the situation where Hhhh ...1,, ,2,1 =ππ  are known while 
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hN  are only known for sampled PSU’s, but can be estimated based on some auxiliary 

variable. 

Särndal et al. (1992) discussed model-assisted alternatives to the HT estimator for 

two-stage samples. If the auxiliary information is on PSU (cluster) level, a linear model is 

applied to regress PSU totals ht on the auxiliary variable, say, hz  ( hz  can be a vector). If 

the auxiliary information is SSU (element) level, a linear model is applied to regress 

outcome hiy  on the auxiliary variables, say, hiz . For example, if the auxiliary 

information is on the cluster level, that is hi hz z=  for all i, then the cluster totals ht  are 

assumed to be related to hz  according to a linear model: 

βT
hhh zztE =)|( , 2)( hhtVar σ= , Hh ...1=  

Särndal et al. then estimate β  by the probability weighted regression  

∑∑
=

−

=









=

m

h
hhhh

m

h
hh

T
hh tzzzB

1
,1

2*
1

1
,1

2 )/()/(ˆ πσπσ , where ∑
=

=
hn

i
hhih yt

1
,2

* /π , 

leading to the projected totals Bzt T
hh

ˆˆ = , Hh ...1= . The generalized regression (GR) 

estimator of the grand total is ∑∑
==

−
+=

m

h h

hh
H

i
hA

tt
tT

1 ,1

*

1

)ˆ(ˆˆ
π

 and the estimate for the mean is 

NTA /ˆ .  The term ∑
=

−m

h h

hh tt

1 ,1

* )ˆ(
π

 is the bias calibration term that makes the estimator design 

consistent. 

In the case where auxiliary information { }, 1,..., ; 1,...,hi hx h H i n= = on the element 

(SSU) level is known for the whole population, the relationship between the outcome and 

the auxiliary information is modeled by   
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βT
hihihi xxyE =)|( , 2)( hihiyVar σ= , hNiHh ...1,...1 == . 

The probability weighted regression estimate for β  is  

∑∑∑∑
= =

−

= =








=

m

h

n

i
hihhihi

m

h

n

i
hihi

T
hihi

hh

yxxxB
1 1

2

1

1 1

2 )/()/(ˆ πσπσ , where hiπ  is the probability  

for unit (h, i) to be included in the sample. 

The GR estimator for the grand total is ∑ ∑∑∑
= = ==

−
+=

H

h

m

h

n

i hi

hihi
N

i
hiB

hh yy
yT

1 1 11

)ˆ(
ˆˆ

π
, where 

Bxy T
hihi

ˆˆ = . The estimator for the mean is then NTB /ˆ . 

The linear models discussed by Särndal et al. (1992) do not account for the 

within-cluster correlations. The following family of models allow for within-cluster 

correlations by treating cluster means as random effects:  

2| ~ ( , ) 
          ~ ( , )

ind

hi h h

H

y N
N D

µ µ σ
µ φ

             (1)  

where 1 1( ,..., ), ,..., )H H(µ µ µ φ φ φ= = , and D is the covariance matrix. A total number of 

m PSU’s are sampled from a total of H PSU’s.  

The model-based estimator of Y  is given by 

( )∑∑ +==
+−+=

H

mh hh
m

h hhhhhh NnNyn
N

YE
11,1 ˆ]ˆ)([

1
),|( µµπy , where 

),|(),|(ˆ ,1,1 hhhhh xEYE yy µπµ == . 

 In an equal probability design, where hn  are approximately constant across 

PSU’s, the unweighted mean y  corresponds to the special model specification where hf  

are constant.  

Different assumptions about φ  and D in model (1) lead to the following models: 
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Exchangeable random effects (XRE): (Holt and Smith 1979; Ghosh and Meeden 1986; 

Little 1991; Lazzaroni and Little 1998) 

 , 1...h h Hφ µ≡ =  and HID 2τ=  

Autoregressive  (AR1): (Lazzaroni and Little 1998) 

 , 1...h h Hφ µ≡ =  and }{ ||2 jirD −= ρ  

Linear (LIN): (Lazzaroni and Little 1998) 

 , 1...h hx h Hφ α β= + =  and HID 2τ=  

Nonparametric: (Elliott and Little 2000)  

( ), 1...h hf x h Hφ = =  and 0=D  

The nonparametric models in Elliott and Little (2000) assume nonparametric 

mean function relating the outcome and the design variables. By assuming 0=D , no 

variability is allowed around the mean function. That is, the cluster means are modeled to 

pass through the overall mean function f instead of vary around it.  Nonparametric mixed 

models (Lin and Zhang 1999; Brumback, Ruppert and Wand 1999; Coull, Schwartz and 

Wand 2001) relax the assumptions on D (e.g., HID 2τ= ) and serve as a natural extension 

to both the linear mixed models and the nonparametric model in Elliott and Little (2000). 

 

 2. Estimation with the P-spline Mixed Model Method 

 The linear structure of φ  in LIN model is subject to misspecification when the 

actual mean structure is non-linear. The non- linearity problem can be partially solved by 

adding polynomial terms (e.g., quadratic or cubic terms) to the fixed effect part in the 
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LIN model. Using nonparametric functions to model the mean structureφ , p-spline 

nonparametric mixed models are even more flexible than polynomial mixed models. 

 We propose the following p-spline nonparametric mixed model for inference of 

the population mean. 

P-spline nonparametric mixed model (PMM):  

 ( ), 1...h hf x h Hφ = =  and HID 2τ= , where f  is a nonparametric function 

Methods for estimating f  are not unique. We use splines of degree 0>p  to estimate f : 

∑ ∑
= =

++ −++=
p

j

K

l

p
lpl

j
j xxßxf

1 1
0 )();(ˆ κβββ , where Kκκ << ...1  are K fixed knots, 

Kp +ββ ,...,0  are coefficients to be estimated and )0()( ≥=+ xxx pp I . 

A simple way of estimating Kp,...,ßß +0  is to treat them as fixed effects and 

estimate them together with the variance components 2σ  and 2τ  by fitting a mixed 

model similar to that used in the LIN model. However this method can yield estimates 

of f  with too much roughness and variability. To avoid overfitting, the roughness of the 

estimation f̂  is penalized by applying a factorα to the least squares so that the 

solution pββ ˆ,...,ˆ
0  is the minimizer of  

∑∑
=

+
=

+−
K

l
plh

m

h
hxf

1

22

1

)ˆ)(ˆ( βαµ . 

This is achieved in the context of the model by assigning pββ ,...,0  flat priors, 

),...,( 1 Kpp ++ ββ  a normal prior ),0( 2
βσmN , and letting 22 / βστα = . The result is a 

penalized spline (p-spline) model. 

In the case of 1=p , f̂  is piecewise linear and the coefficients 10 ,..., +Kββ  and the  
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variance components 22 , βσσ  and 2τ  are estimated by fitting the linear mixed model: 

euXßXy ++= 21 , 

where T
mn ),...,y,y(yy

m1211= , ,),ß(ßß T
10=  ,112

T
mK ),...,u,u,...,ß(ßu +=  



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=
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..
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1
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


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
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

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






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


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X ,        (2) 

where hx  in 1X  and +− )( lhx κ  in 2X  are both repeated hn  times. u  and e  are mutually 

independent and  

,G)(~N),...,u,u,...,ß(ßu mK
T

mK 0112 ++= , 







=

m

Kß

It
Is

G
2

2

0
0

. 

 Variance components 22 , βσσ  and 2τ  are estimated by fitting model (2) with the 

restricted maximum likelihood (REML) algorithm.  

 The predicted means of clusters included in the sample are given by: 

uXßXµ ˆˆˆ 21 += , where yVX)XV(Xß TT 1
1

1
1

1
1

ˆˆˆ −−−= , )ßXy(VXGu T ˆˆˆˆ 1
1

2 −= − , where 

SsGXXV T 2
22 += , 1[{1 } ]m

h hS diag /n ==  and T
m )y,...,y(y 1= .   

The predicted mean for a cluster h that is not selected in the first stage is 

*ˆˆ ßxµ T
hh = , where T

Khhhh xxxx ])( ... )(    1[ 1 ++ −−= κκ and T
Kß ]ˆ ... ˆ  ˆ[ˆ

110
*

+= βββ . 
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Using the predicted cluster means )|(ˆ hhih xyE=µ , we have the model-based 

estimator ( )∑∑ +==
+−+=

H

mh hh
m

h hhhhh NnNyn
N

x,yYE
11

ˆ]ˆ)([
1

)|( µµ . 

 

 3. Variance Estimation Methods  

 3.1 Empirical Bayes Model-based Variance 

Model (2) can be interpreted as a Bayes model in which the parameters 

2 1 1( )T
K mu ß ,...,ß ,u ,...,u+=  have multivariate normal prior (0 )K mN ,G+ , 









=

m

Kß

It
Is

G
2

2

0
0

, 

and 222
10  and  , , , τσσββ β all have the flat priors. This leads to the Bayes posterior 

variance for the vector T
mK uu ),...,,,...,,( 1110 +βββ  conditional on 222  and  , τσσ β as 

12222
1110 )(),,,|,...,,,...,,( −

+ ∆+= XXyuuVar TT
mK στσσβββ β ,  where ] [ 21 XXX =  and  



















=∆

m

K

I
I

22

22

000
000
0000
0000

τσ
σσ β

, 

where mK II  and  are K by K and m by m identity matrices, respectively. 

The empirical Bayes posterior variance for T
mK uu ),...,,,...,,( 1110 +βββ  is then 

calculated by replacing 222  and  , τσσ β  by their maximum likelihood (ML) or restricted 

maximum likelihood (REML) estimators 222 ˆ and ˆ ,ˆ τσσ β , respectively, in the above 

formula. The empirical Bayes method underestimates the true posterior variance. 
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However the underestimation is not severe. A fully Bayes solution is also possible, but is 

not covered here. 

The predicted population mean is NTpred
ˆ , where 21

ˆˆ TTTpred += , where 

∑ =
=

H

h hh ynT
11  , the total of the sample, and 2T̂  is the estimated total for those units not 

included in the sample, i.e.,  

2 0 1 1 11 1
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) [   ...   ... ]

m H T
h h h h h P P K mh h m

T N n N N X u uµ µ β β β += = +
= − + =∑ ∑ , 

1 1 1where [( ) ... ( ) ],P m m m HN N n N n N  ...N+= − −  and 

1 1 1 1

1

1 1 1 1

1

1 ( ) ... ( ) 1 0 ... 0

. . . ... . 0 1 0 0

. . . ... . . . 0 .

. . . ... . 0 0 1 0
1 ( ) ... ( ) 0 ... 0 1

 .
1 ( ) ... ( ) 0 ... ... 0
. . ... . . ... ... .
. . ... . . ... .. .
. . ... . . ... ... .
1 ( ) ... ( ) 0 ... ...

K

m m m K
P

m m m K

H H H K

x x x

x x x
X

x x x

x x x

κ κ

κ κ
κ κ

κ κ

+ +

+ +

+ + + + +

+ +

− −

− −
=

− −

− −

 .

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  (3) 

The empirical Bayes posterior variance for NTY pred
ˆˆ =  is  

212222 ))((),,,,|ˆ( NNXXXXNXXYVar T
P

T
P

T
PPP

−∆+= στσσ β . 

 

 3.2 The Jackknife Method 

 A jackknife variance estimator is developed for the PMM estimator. The 

jackknife replicates are constructed by dividing the set of PSU’s into G subgroups with 

the same number of PSU’s and computing the gth pseudovalue as )(
ˆ)1(ˆˆ

gg YGYGY −−= , 
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where Ŷ  is the original PMM estimator and )(
ˆ

gY  is the same estimator calculated from 

the reduced sample not including the elements from the PSU’s in the kth subgroup.   

The variance estimate of Ŷ  is  

∑
=

−
−

=
G

g
g YY

GG
Yv

1

2)
ˆˆ(

)1(
1

)ˆ( , 

where ∑ =
=

G

g g KYY
1

/ˆˆ
. In order to balance the distribution of the selection probabilities 

across the subgroups, sampled units are stratified into n/G strata each of size G with 

similar first stage inclusion probabilities, and the G subgroups are then constructed by 

randomly selecting one element from each stratum. To save computation, estimates 

222 ˆ and ˆ ,ˆ τσσ β  are not recomputed for each replicate. That is, we can compute 

pseudovalues of T
mK uu ),...,,,...,,( 1110 +βββ  based on the variance components estimated 

from the whole sample.  

 Miller (1974) proved the asymptotic properties of the jackknife estimator in the 

case of multiple regressions. Hinkley (1977) gave weighted jackknife with improved 

performance. Shao and Wu (1987, 1989) discussed the general properties of jackknife 

variance estimation in linear regression models. In Zheng and Little (2002), we gave a 

theoretical justification for the jackknife method for the p-spline model-based estimator 

in the simple case of one-stage designs. Numerical simulations in section  4 suggest the 

above described jackknife method also works well for the two stage design. 

 Improvements in the spirit of Hinkley (1977) are possible and will be considered 

in future work. 
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 3.3 The Balanced Repeated Replicate Method 

The BRR method can be applied when the design is stratified with two units 

sampled in each stratum. In practice, collapsing of strata and random combinations of 

units within strata (Kalton, 1977) are often employed for BRR variance estimation. In our 

application we assume in the first stage that the primary sampling units are sampled 

systematically from a randomly ordered list. This can be viewed approximately as a 

stratified design with n strata each consisting of PSU’s with cumulative measures of 

approximate size nz
N

i i∑ =1
, where iz  are the measures of size for the PSU’s . One PSU 

is sampled from each of the n strata. Assuming n is even, the design can be approximated 

by a stratified design with n/2 strata with measures of size nz
N

i i∑ =1
2 , and two units are 

sampled per stratum. Balanced repeated half samples are then constructed by selecting 

one PSU from each stratum, with the selection scheme based on Hadamard matrices 

(Plackett and Burman, 1946).  Let bŶ  be the p-spline estimator computed from the bth 

half sample, using the same knots as used in the computation using the full sample - the 

number and placement of knots needs to allow the spline model to be fitted on each half-

sample. The BRR estimator is then given by ∑
=

−=
B

b
bBRR YY

B
Yv

1

2)ˆˆ(
1

)ˆ( .  

 By treating the design as if it was stratified with two PSU’s included per stratum, 

the BRR method gives biased estimates for the true variance of the p-spline estimator. 

4. When the Cluster Counts are Unknown 

 In sections 2 and 3 we assumed that the cluster counts HhNh ...1, = for all 

sampled or non-sampled clusters are known. In this section we discuss the common 
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situation where Hhhh ...1,, ,2,1 =ππ  are known and hN  are only known exactly for the 

sampled clusters (labeled 1 through m). We also assume that values of some auxiliary  

variable HhM h ...1, =  are known for the whole population and have a close relationship 

with hN . This information may be cluster counts estimated from outside sources such as a 

census. 

 In this situation, we use an additional regression model to estimate hN  for those 

non-sampled clusters based on hM . We then replace the , 1,...,hN h m H= +  in (3) by 

estimates ˆ , 1,...,hN h m H= + . The resulting estimate of the total is 

∑∑ +==
+−+=

H

mh hh
m

h hhh NnNTT
111 ˆˆˆ)(

~
µµ . 

The variance estimate of T%  needs to incorporate the additional variability in hN̂ . In 

particular, a model-based variance for T~  is  

)),,ˆ|
~

(()),,ˆ|
~

((),|
~

( hhhhhhhh MNTVarEMNTEVarMTVar πππ += , 

where the expectations are taken under the distributions described in the superpopulation 

models. ∑∑ +==
+−=

H

mh hh
m

h hhhhhh NnNMNTE
11

ˆ)(),,ˆ|
~

( µµπ  and 

)
~

)(
~

(),,ˆ|
~

( 12 T
P

T
P

T
PPhhh NXXXXNMNTVar −∆+≈ σπ , 

where ]ˆ ˆ )( ... )[(
~

111 HmmmP N ...NnNnNN +−−= , and X , PX  and ∆  are defined in (3).  

If both models for estimating hµ  and hN  are correctly specified, the above 

variance can be estimated according to the corresponding models. 
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5. Simulations  

 5.1 Simulation Design 

 Two simulation studies are conducted to compare the inverse probability 

weighting method, the model-assisted method discussed in Särndal et al. (1992) and the 

PMM method in the case of two-stage samples. 

 In our first simulation study, artificial populations are generated with different 

mean functions )( ,1 hf π of the first stage inclusion probabilities. Four different mean 

functions are simulated: 1) NULL, a constant function; 2) LINUP, a linearly increasing 

function; 3) LINDOWN, a linearly decreasing function; and 4) EXP, an exponentially 

increasing function.  

Two combinations of values for variance components are: 1) 2.0 and 1.0 == τσ ; 

2) 1.0 and 2.0 == τσ . Only normal errors around the mean functions are simulated 

while both normal and lognormal within-cluster errors are simulated. 

The total number of PSU’s is 500. The first stage samples are systematic 

probability-proportional-to-size (PPS) with 48 PSU’s included in the sample. The size 

variables in the PPS sampling take integer values ranging from 4 to about 400. The SSU 

count in each PSU is generated with the mean equals 1.05 times the measure of size and 

with log-normal errors with standard deviation 30. 

Two types of second stage sampling plans are studied: 1) within-cluster simple 

random sampling (srs) with inclusion probabilities proportional to the inverse of the first 

stage inclusion probabilities, resulting in an equal inclusion probability for all SSU’s.; 2) 

within-cluster simple random sampling with the same sampling rate across sampled 
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PSU’s, so that the resulting inclusion probabilities for the SSU’s in PSU h are 

proportional to h,1π . 

 For both sampling plans, the following methods are computed: 

A. The HT estimator. 

B. The model-assisted estimation method. We use a linear model regressing the outcome 

hiy on the first stage inclusion probabilities, which are treated as element- level 

information. The GR estimator is computed by the formula given in Section 1. 

C. The PMM method, with the first stage inclusion probabilities h,1π  as the covariate. We 

use 20 equal percentiles of h,1π  of the sampled PSU’s as the knots for p-spline regression.  

D. The PMM method with the cluster means hµ estimated the same way as in C., but use 

estimated PSU counts from a simple linear regression model regressing hN  on the 

measures of size, which are proportional to h,1π . This simulation is conducted to study 

the method described in section 5. 

 Estimates of Y  from methods A-D are calculated for each of the 500 samples 

drawn repeatedly from the artificial populations (each artificial population is generated 

only once). For methods A-C, we also compare the variance estimation methods of the 

PMM estimator in the first simulation study. We compute the empirical Bayes, the 

jackknife (K=8) and BRR variance estimators for each repeated sample. The mean 

estimate for the variance of PMM as well as the coverage rate of the corresponding 95% 

confidence interval are used to judge the quality of inference. For method D, we study a 

model-based variance estimator, also judged by empirical bias and coverage rates. The 

computational method is given in section 5.  

http://biostats.bepress.com/umichbiostat/paper8



 16 

In the second simulation study, we use household income data from 5% public 

use microdata sample (PUMS) in 1990 US Census. We concentrate on the household 

income data in the state of Michigan and treat the 5% PUMS as the finite population. 

This population does not necessarily replicate the true distribution of household income 

in the state of Michigan, but serves as a population whose finite population quantities are 

known. This simulation is more realistic than the previous simulation in that the outcome 

values are drawn from a real rather than simulated distribution.  

 The clusters we simulate are based on the natural geographical clusters, or “Public 

Use Microdata Areas” (PUMAs). PUMAs are typically counties and places. There are 67 

PUMAs in the Michigan 5% PUMS, with counts of families ranging from around 1300 to 

over 10000. We increase the number of available PSU’s by dividing each PUMA into 5, 

resulting in 335 PSU’s. The PSU counts ranges from 134 to 3058.  Figure 1 gives the 

scatter plot of one sample of the average household income versus sampled cluster sizes 

together with the regression curve )(ˆ xf . 

 The two-stage sampling is with equal probability. The first stage sampling is PPS 

drawn with systematic sampling where the measure of size is equal to the PSU counts. 

The second stage sample is simple random sample with inclusion probabilities 

proportional to the inverse of the first stage inclusion probabilities. In the estimation of 

the mean, we use the true cluster counts. We draw 500 repeated two-stage samples. In the 

first stage, 30 PSU’s are drawn from the total 335 PSU’s. In the second stage, 20 SSU’s 

(families) are drawn from each selected PSU’s.   We apply the p-spline nonparametric 

mixed model formulated as in (2). For the knots of the p-spline function, we use 10 
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equally spaced sample percentiles of the PSU counts, i.e., the 100/11th, 200/11th, … 

,1000/11th percentiles of the sampled PSU counts.  

 

Figure 1. P-spline Regression Curve (dotted line) and the Average Household Income  (stars) in Sampled PSU’s 

 

 

 5.2 Results 

Tables 1-2 give the empirical bias and root mean squared error (RMSE) for 

populations generated with both normal within-cluster errors and two ),( τσ  

combinations . 

Tables 1-2 suggest the PMM based methods give estimators with small biases. 

From these tables, we also see in the case of equal probability sampling, the PMM 

estimator is roughly as efficient as HT estimator when the mean function f  is constant. 

In the more general cases such as LINUP, LINDOWN, where f  is linear but not 
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constant, the linear model-assisted and PMM method are comparable and both are more 

efficient in terms of root mean squared error than the HT estimator. For population EXP, 

whose mean function is not linear, the PMM method is clearly superior to both the HT 

and the linear model-assisted estimators. The improvement of efficiency requires the 

knowledge of complete design information including probabilities h,1π and PSU counts 

hN  for the whole population. When using estimated cluster counts hN̂  in the place of 

hN , the resulting estimator is slightly less efficient than in the case with known hN , but 

the PMM estimator still outperforms the HT when the mean function is non-constant. 

Tables 3 and 4 show similar findings for data with log-normal within-cluster errors.  

Tables 5-8 show, for unequal probability sampling, a similar pattern of 

comparison as in the case of equal probability sampling. This suggests that the key to 

improved efficiency is the better prediction given by the nonparametric models.  

Tables 1-8 all show that the p-spline model-based estimators have very small 

empirical design-biases. We believe this is because the flexible mean functions yield 

good predictions of the cluster (PSU) means. 

Tables 9-12 compare three proposed variance estimation methods: the empirical 

Bayes model-based method, the Jackknife method and the BRR method. These tables 

indicate the proposed PMM inference methods have coverage for the true mean close to 

the nominal value of 95%. The empirical Bayes method tends to underestimates the true 

variance of PMM estimator, resulting in under-coverage in some cases. The jackknife and 

the BRR methods tend to yield more robust estimates for the variance. In general, PMM 

allows us to draw satisfactory inference for the population mean while providing 
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estimates with improved efficiency over the traditional HT and linear model-assisted 

estimators. 

Tables 13 and 14 give the empirical variance of the PMM estimator when the 

non-sampled clus ter counts hN  are estimated. It also gives the mean estimates of the 

variance of this estimator and coverage rates. These two tables show the inference 

method discussed in section 5 tends to underestimate the true variance of PMM estimator 

using hN̂ , giving in occasional under-coverage of the population mean. It remains to be 

studied in the future whether the JRR and BRR method also give satisfactory inference 

for this method.  

 For the simulation study using 5% PUMS data, the p-spline nonparametric mixed 

model based method has bias= $-41.9 and RMSE=$2153, the simple mean has bias=$-

50.9 and RMSE=$2600. Both methods have small biases. The model-based estimator has 

an RMSE 17% less than the RMSE of the simple mean. This improved efficiency is due 

to the fact that the average household income decreases for as the number of families in 

the clusters increases (see figure 1). The PMM method exploits this relationship in its 

predictions. 

6. Discussion 

 Previous parametric model-based estimators of finite population quantities have 

been criticized mainly for their potential for large design bias when the mean structure of 

the models is misspecified. In our nonparametric models, the linearity assumption is 

replaced by a much weaker assumption of a smoothly-varying relationship. As a result, 

the model-based estimators are more robust and have small biases.   
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Design information such as inclusion probabilities and information such as cluster 

counts play key roles in the estimation of finite population quantities. Inverse probability 

weighting often corresponds to simple model assumptions about the relationship between 

the outcome variables and the design variables. In the method we propose, the gain in 

efficiency is realized by applying nonparametric models that relax these assumptions.  

Our study has an interesting finding that the model-based estimation can be more 

efficient than the simple mean estimation in an equal probability design. In other studies, 

we also find gains in efficiency from p-spline nonparametric mixed model in estimating 

post-stratum means in post-stratified samples.  

The empirical Bayes method, the jackknife and BRR methods all give sound 

coverage of the true design-based variance of the proposed estimator. This means we are 

able to draw valid inference with confidence intervals that are narrower than those given 

by the traditional methods. However, we expect the empirical Bayes method to be 

sensitive to model assumptions on the variance components (e.g., constant within-cluster 

variances). When the cluster counts are not known for the sample but not for the whole 

population, model-based estimates of the unknown counts can still provide sound 

estimates of the population mean, if the model tracks the true cluster counts precisely 

enough. The model between these counts and the auxiliary variable was treated 

parametrically here, but this could also be specified nonparametrically without much 

difficulty. 

In the future, we plan to apply p-spline nonparametric mixed models to more 

complex cases such as stratified and multi-stage designs. We also plan to consider 

generalized p-spline nonparametric mixed models for non-normally distributed outcomes.  
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Table 1. Empirical Biases and RMSE of PMM, HT, GR and PMM with estimated hN   for data with 

normal  within-cluster noise ( 2.0 and 1.0 == τσ ) and samples under an equal probability design. 
PMM 

 
Horvitz-Thompson Linear Model-

Assisted 
PMM with 

Estimated hN  
)10( 3−×  

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE 
NULL 1.1 29.7 0.8 30.0 0.8 29.9 1.3 30.1 

LINUP -3.9 29.0 -5.2 34.5 -5.1 28.9 -3.8 29.3 

LINDOWN 3.5 30.7 3.6 36.4 3.7 30.7 2.3 30.4 

EXP -4.4 29.1 -9.4 53.0 -9.5 36.7 -4.3 29.1 
 

Table 2. Empirical Biases and RMSE of PMM, HT, GR and PMM with estimated hN  for data with 

normal  within-cluster noise ( 1.0 and 2.0 == τσ ) and samples under an equal probability design.  
PMM 

 
Horvitz-Thompson Linear Model-

Assisted 
PMM with 

Estimated hN  
)10( 3−×  

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE 
NULL 5.7 22.0 6.6 22.5 6.6 22.1 5.5 22.3 

LINUP -0.9 22.2 -0.2 27.7 -1.8 22.2 -0.5 22.3 

LINDOWN 0.5 20.4 -0.6 27.1 -0.3 20.5 1.6 20.6 

EXP 0.9 23.1 1.9 50.3 -4.2 31.7 0.4 23.4 
 

Table 3. Em pirical Biases and RMSE of PMM, HT, GR and PMM with estimated hN  for data with 

log-normal within-cluster noise ( 2.0 and 1.0 == τσ ) and samples under an equal probability 
design.  

PMM 
 

Horvitz-Thompson Linear Model-
Assisted 

PMM with 
Estimated hN  

)10( 3−×  

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE 
NULL 1.7 32.3 0.9 32.3 0.7 32.3 1.5 32.5 

LINUP -0.6 30.0 -2.6 33.2 -1.4 30.4 -0.6 30.0 

LINDOWN 2.9 31.9 3.8 39.4 2.7 32.1 3.2 32.0 

EXP -0.6 28.4 -5.9 51.5 -6.9 36.4 -0.3 28.5 
 

Table 4. Empirical Biases and RMSE of PMM, HT, GR and PMM with estimated hN  for data with 

log-normal within-cluster noise ( 1.0 and 2.0 == τσ ) and samples under an equal probability 
design.  

PMM 
 

Horvitz-Thompson Linear Model-
Assisted 

PMM with 
Estimated hN  

)10( 3−×  

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE 
NULL 8.5 30.5 9.6 31.3 9.2 31.0 9.1 30.8 

LINUP 12.8 29.0 14.7 35.3 13.8 29.5 12.7 29.5 

LINDOWN 3.6 32.3 1.9 37.5 3.6 32.1 6.4 33.1 

EXP 3.9 29.0 6.8 53.8 1.0 34.4 3.7 29.4 
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Table 5. Empirical Biases and RMSE of PMM, HT, GR and PMM with estimated hN  for data with 

normal  within-cluster noise ( 2.0 and 1.0 == τσ ) and samples under an unequal probability 
design.  

PMM 
 

Horvitz-Thompson Linear Model-
Assisted 

PMM with 
Estimated hN  

)10( 3−×  

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE 
NULL -4.5 29.3 -3.7 33.6 -3.2 30.5 -4.5 29.3 

LINUP 3.2 28.6 0.4 38.9 1.3 31.2 4.5 28.7 

LINDOWN -0.9 27.0 3.7 35.5 1.8 27.7 -0.7 26.9 

EXP 5.8 32.0 1.9 56.8 0.4 39.4 14.1 34.4 
 

Table 6. Empirical Biases and RMSE of PMM, HT, GR and PMM with estimated hN  for data with 

normal  within-cluster noise ( 1.0 and 2.0 == τσ ) and samples under an unequal probability 
design.  

PMM 
 

Horvitz-Thompson Linear Model-
Assisted 

PMM with 
Estimated hN  

)10( 3−×  

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE 
NULL -7.7 21.3 -7.7 24.9 -6.6 21.1 -7.6 21.2 

LINUP -6.7 21.0 -6.2 35.8 -6.6 21.3 -8.6 21.7 

LINDOWN 1.1 20.7 3.2 30.6 1.2 20.7 3.5 21.1 

EXP -2.3 20.9 -6.5 53.3 -7.2 30.0 -3.0 20.9 
 

 Table 7. Empirical Biases and RMSE of PMM, HT, GR and PMM with estimated hN  for data with 

log-normal within-cluster noise ( 2.0 and 1.0 == τσ ) and samples under an unequal probability 
design.  

PMM 
 

Horvitz-Thompson Linear Model-
Assisted 

PMM with 

Estimated hN  
)10( 3−×  

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE 
NULL -0.5 28.5 -2.0 30.6 -2.1 29.5 -0.3 28.5 

LINUP 0.4 28.8 -0.3 43.4 1.5 30.1 -3.1 29.0 

LINDOWN 5.4 32.6 5.0 39.0 3.7 34.1 6.0 32.7 

EXP -1.3 28.6 -7.6 62.6 -7.1 36.8 -9.3 30.3 

 
Table 8. Empirical Biases and RMSE of PMM, HT, GR and PMM with estimated hN  for data with 

log-normal within-cluster noise ( 1.0 and 2.0 == τσ ) and samples under an unequal probability 
design.  

PMM 
 

Horvitz-Thompson Linear Model-
Assisted 

PMM with 
Estimated hN  

)10( 3−×  

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE 
NULL 15.4 34.1 14.0 35.1 14.9 33.5 15.2 33.8 

LINUP -2.6 23.7 -5.6 33.2 3.7 23.6 -3.3 23.9 

LINDOWN 6.0 26.8 9.3 37.5 7.5 27.3 2.5 26.0 

EXP 0.8 26.3 -2.3 50.8 -3.5 33.1 11.5 29.0 
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Table 9.  Variance estimation and empirical coverage rates of 95% C.I. using three inference 
methods for data with normal within-cluster noise ( 2.0 and 1.0 == τσ ) 

target coverage (93-97%). 
Empirical Bayes 

Model-based 
Jackknife(K=8) BRR  Empirical 

variance 

)10( 5−×  Estimate )10( 5−×  % Estimate )10( 5−×  % Estimate

)10( 5−×  
% 

NULL 88 74 92.8 94 96.4 96 94.4 

LINUP 84 64 91.2 80 94.6 82 93.4 

LINDOWN 94 73 89.6 94 94.6 98 94.2 

EXP 85 70 91.4 88 94.6 85 93.4 

 

Table  10.  Variance estimation and empirical coverage rates of 95% C.I. using three inference 
methods for data with normal  within-cluster noise  ( 1.0 and 2.0 == τσ ), 

target coverage (93-97%). 
Empirical Bayes 

Model-based 
Jackknife(K=8) BRR  Empirical 

variance 

)10( 5−×  Estimate )10( 5−×  % Estimate )10( 5−×  % Estimate )10( 5−×  % 

NULL 48 45 93.8 48 96.0 49 93.8 

LINUP 49 43 92.4 48 95.2 47 93.0 

LINDOWN 42 45 96.8 51 96.2 51 96.8 

EXP 53 54 95.0 61 97.2 59 95.2 
 

Table 11.  Variance estimation and empirical coverage rates of 95% C.I. using three inference 
methods for data with log-normal  within-cluster noise ( 2.0 and 1.0 == τσ ),  

target coverage (93-97%). 
Empirical Bayes 

Model-based 
Jackknife(K=8) BRR  Empirical 

variance 

)10( 5−×  Estimate )10( 5−×  % Estimate )10( 5−×  % Estimate )10( 5−×  % 

NULL 104 83 91.8 104 94.8 100 93.6 

LINUP 90 87 93.2 97 95.4 98 94.8 

LINDOWN 102 98 93.6 106 95.6 107 95.0 

EXP 81 77 93.4 97 96.4 89 94.8 
 

Table 12.  Variance estimation and empirical coverage rates of 95% C.I. using three inference 
methods for data with log-normal within-cluster noise ( 1.0 and 2.0 == τσ ),  

target coverage (93-97%). 
Empirical Bayes 

Model-based 
Jackknife(K=8) BRR  Empirical 

variance 

)10( 5−×  Estimate )10( 5−×  % Estimate )10( 5−×  % Estimate )10( 5−×  % 

NULL 93 97 94.2 100 96.2 99 95.2 

LINUP 84 71 95.4 78 96.6 76 95.2 

LINDOWN 104 101 93.6 106 96.0 102 92.8 

EXP 84 81 94.6 84 95.2 82 95.0 
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Table 13.  Variance estimation and empirical coverage rates of 95% C.I. using  
P-spline and estimated cluster counts, Population simulated with normal errors,  

target coverage (93-97%). 
2.0 and 1.0 == τσ  1.0 and 2.0 == τσ   

Empirical 
Variance 

)10( 5−×  

Estimated 
Variance 

)10( 5−×  

Coverage 
Rate 

Empirical 
Variance 

)10( 5−×  

Estimated 
Variance 

)10( 5−×  

Coverage 
Rate 

NULL 90 76 91.8 50 46 93.2 

LINUP 86 65 90.8 50 45 92.6 

LINDOWN 93 74 90.4 43 46 95.6 

EXP 85 72 93.0 55 56 96.2 
 

Table 14.  Variance estimation and empirical coverage rates of 95% C.I. using  
P-spline and estimated cluster counts, Population simulated with log-normal errors,  

target coverage (93-97%). 
2.0 and 1.0 == τσ  1.0 and 2.0 == τσ   

Empirical 
Variance 

)10( 5−×  

Estimated 
Variance 

)10( 5−×  

Coverage 
Rate 

Empirical 
Variance 

)10( 5−×  

Estimated 
Variance 

)10( 5−×  

Coverage 
Rate 

NULL 105 84 91.8 95 99 94.8 

LINUP 90 89 93.8 87 73 95.0 

LINDOWN 103 98 94.4 110 102 94.4 

EXP 81 79 94.6 87 83 94.2 
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