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Abstract

Mapping genes for complex human diseases is a challenging problem due to the
fact that many such diseases are due to both genetic and enviromental risk factors
and many also exhibit phenotypic heterogeneity, such as variable age of onset.
Information on variable age of disease onset is often a good indicator for disease
heterogeneity and incorporation of such information together with enviromental
risk factors into genetic analysis should lead to more powerful tests for genetic
analysis. Due to the problem of censoring, survival analysis methods have proved
to be very useful for genetic analysis. In this paper, I review some recent method-
ological developments on integrating modern survival analysis methods and hu-
man genetics in order to rigorously incorporate both age of onset and enviromental
covariates data into aggregation analysis, segregation analysis, linkage analysis,
association analysis and gene risk characterization. I also briefly discuss the issue
of ascertainment correction and survival analysis methods for high-dimensional
genomic data. Finally, I outline several areas that need further methodological
developments.
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Abstract

Mapping genes for complex human diseases is a challenging problem due to the fact that many

such diseases are due to both genetic and environmental risk factors and many also exhibit phe-

notypic heterogeneity, such as variable age of onset. Information on variable age of disease onset

is often a good indicator for disease heterogeneity and incorporation of such information together

with environmental risk factors into genetic analysis should lead to more powerful tests for ge-

netic analysis. Due to the problem of censoring, survival analysis methods have proved to be very

useful for genetic analysis. In this paper, I review some recent methodological developments on

integrating modern survival analysis methods and human genetics in order to rigorously incorpo-

rate both age of onset and environmental covariates data into aggregation analysis, segregation

analysis, linkage analysis, association analysis and gene risk characterization. I also briefly dis-

cuss the issue of ascertainment correction and survival analysis methods for high-dimensional

genomic data. Finally, I outline several areas that need further methodological developments.

1 Introduction

The major burden of ill health in western society, and to a growing extent in developing societies,

is due to complex chronic diseases such as coronary heart disease, stroke, breast cancer, prostate

cancer, and diabetes. It is believed that both genetic and environmental factors contribute to

both the risk of developing many of these common human diseases and also the responses to

treatments. Because multiple genetic and environmental factors may play important roles in the

susceptibility of individuals to develop these diseases and in the variation in treatment responses

they are often referred to as complex traits. While the data necessary to study different complex

traits are trait specific, the underlying principles and statistical methods of analysis of the genetic

component are applicable to a variety of traits.

One important feature of many complex human diseases is disease heterogeneity due to genetic

and other etiological factors. For example, many complex diseases exhibit variability in age of
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onset, and early age of onset has been a hallmark for genetic predisposition in many diseases that

aggregate in families. Therefore, age of onset outcomes such as age at diagnosis, are frequently

gathered in genetic and epidemiological studies, including both genetic association and linkage

studies. An important feature of age of onset data is the censorship resulting from being too

young to develop the disease or death before developing the disease. This makes it possible for

some of the unaffected siblings to share the disease gene with the affected siblings, who might be

too young to exhibit the trait. In fact, affected relatives with different ages of onset may also be

the result of different genetic etiologies. Age of onset data have been used to distinguish between

two sub-forms of breast cancer (Claus et al., 1990; Hall et al., 1990) and prostate cancer (Carter

et al., 1992). For these adult onset cancers, carriers of high-risk alleles were estimated to have

an earlier onset of cancer than noncarriers (sporadic cases). Taking into account age of onset

information has been shown to be important in studying disease correlation and aggregation (Li

et al., 1998; Li and Thompson, 1997), in parametric linkage analysis (Morton and Kidd, 1980;

Haynes et al., 1986), in segregation analysis (Li and Thompson, 1997; Li et al., 1998), and in

allele-sharing based linkage analysis (Li and Zhong, 2002; Zhong and Li, 2004; Li et al., 2002).

A study by Li and Hsu (2000) also indicates that ignoring age of onset can reduce the power of

both the allele-sharing-based linkage test and the transmission/disequilibrium test (TDT).

Another important feature of many complex traits is that many of these traits are known or

suspected to be influenced by various environmental risk factors and interactions between genetic

and environmental risk factors (G x E), e.g., breast cancer (Andrieu and Demenais, 1997) and

rheumatoid arthritis (Brennan et al., 1996). From a statistical standpoint, ignoring existing

gene-environment interactions can result in underestimation of both genetic and environmental

effects (Ottman, 1990), in incorrect conclusions with regard to the mode of inheritance and

the magnitude of genetic effects in segregation analysis (Tiret et al., 1993), and lower power in

detecting genetic linkage (Towne et al., 1997; Guo 2000a, 2000b).

Information on variable age of disease onset is often a good indicator for disease heterogene-

ity and incorporation of such information together with environmental risk factors into genetic

analysis should lead to more powerful tests for genetic analysis. Due to the problem of cen-

2

Hosted by The Berkeley Electronic Press



soring, survival analysis methods, which are particularly developed for handling censoring, have

proved to be very useful for genetic analysis. In this paper, I review some recent methodological

developments in genetic epidemiology in order to rigorously take into account age of onset and

environmental risk factors in aggregation analysis, segregation analysis, linkage and family-based

association analysis and in gene risk characterization in the population. I also briefly discuss the

issue of ascertainment correction and survival analysis methods for high-dimensional genomic

data. Although I attempt a full and balanced treatment of most available literature, naturally

the presentation leans in parts towards my own work. At the end of this review, I outline several

areas that I think need further methodological developments, in particular, in the areas when

high-throughput genomic data such as the genome-wide single nucleotide polymorphisms (SNPs)

data are available.

2 Survival Analysis Methods for Aggregation Analysis

The purpose of aggregation analysis is to test whether disease aggregates within a family after

some known environmental risk factors are taken into account. The ideal design is to collect

a random sample of N families from the study population and to collect both age of disease

onset/age at censoring data and the environmental risk factors of all the individuals within the

families sampled. Then test of disease aggregation within family is equivalent to testing whether

ages of onset of family members are correlated after adjusting for environmental risk factors.

I first define some notations that are used throughout this review. Suppose we have a col-

lection of N families collected randomly or by some ascertainment criteria. Let the subscript ik

indicate the ith individual in kth family, i = 1, · · · , mk, k = 1, · · · , N . Tik is the age at onset, Cik

the censoring age, tik=min(Tik, Cik), and δik = I(tik = Tik), where I(.) is the indicator function.

The observed data are (tik, δik, Xik), where Xik is a p-dimensional vector of covariates that are

independent of the genotype.
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2.1 Shared frailty models based on random sample of families

The most commonly used model for assessing disease aggregation is the shared frailty model,

which assumes the following conditional hazard function,

λik(t|Zk) = λ0(t) exp(Xikβ)Zk, (1)

where λ0(t) is the baseline hazard function, Xik is the individual-specific covariate vector, β is

the corresponding risk ratio parameters, and Zk is the family-specific random effect or shared

frailty. If Z1, · · · , Zk, · · · , ZN are assumed to be i.i.d from a gamma distribution Γ(ν, η), where ν

is the shape parameter and η is the scale parameter, the model is also called the gamma frailty

model, Clayton or Clayton-Oakes model (Clayton, 1978; Oakes, 1982). For identifiability of

λ0(t), it is assumed that ν = η so that E(Z) = 1. Estimation of such a model has been a subject

of active research since the mid-eighties (Clayton and Cuzick, 1985; Self and Prentice, 1986;

Klein, 1991; McGilchrist, 1993; Murphy, 1994; Nielsen et al., 1992; Glidden and Self, 1999). The

most common nonparametric maximum likelihood estimates (NPMLE) of the parameters can be

obtained by the EM algorithm. Other assumptions on the frailty distribution include positive

stable distribution (Hougaard, 1995) and log-normal distribution. Different distributions induce

difference dependency structures of the age of onset within family. Glidden (1999) provides a

model checking procedure for the gamma frailty model.

Under the shared frailty model (1), the null hypothesis of no disease aggregation can be

formulated as testing

H0 : var(Z) = ν = 0.

For randomly sampled families, the standard inference procedure for the shared frailty model is

based on the EM algorithm and likelihood ration test for H0 (Klein, 1991; Nielsen et al., 1992).

The theoretical development was given by Murphy (1994) for the shared gamma frailty models.

2.2 Multivariate frailty models

The limitation of the shared frailty model for investigating disease aggregation within a family is

that such a model assumes the same degree of dependency for any pairs of individuals within a
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family, which is likely to be violated when disease aggregation is due to genetic segregation within

the families. One way of extending the shared frailty model is to assume an individual specific

additive frailty. For example, Peterson (1998) defined the following additive frailty model,

λik(t|ηk) = λ0(t) exp(Xikβ)Zik, (2)

Zik = Zk0 + Zi, (3)

where Zik is the individual-specific frailty, the frailty Zk0 is the shared frailty by family members

in the kth family and is assumed to follow a Γ(ν0, η), Zi are the individual specific frailties and

assumed to follow Γ(ν1, η). For the purpose of identifiability of λ0(t), it is often assumed that

ν1 + ν0 = η so that E(Z) = 1. Under this additive gamma frailty model (2), the null hypothesis

of interest is

H0 : ν0 = 0.

Peterson (1998) presented an EM algorithm to obtain the NPMLE for the parameters and Parner

(1998) developed the asymptotic theorem for the estimators and likelihood ratio test for H0.

If the main goal is to test for disease aggregation due to genetic segregation, one should

explicitly model the family dependence. Extensions of the frailty models to account for kinship

relationship have been developed in recent years. One approach by Korsgaard and Andersen

(1998) is in the framework of additive gamma frailty models, where the additive individual-

specific frailties are explicitly defined based on gene segregation. Another approach is to assume

that the log of the family-specific frailty vector log(Zk) = {log(Z1k), · · · , log(Znkk)} follows a

multivariate normal distribution MV N(0, Σ), where the variance-covariance matrix is defined

by the kinship coefficient matrix. Estimation of such multivariate normal frailty models includes

the Monte Carlo or approximate EM algorithm (Palmgren and Ripatti, 2002) or the penalized

partial likelihood approach (Ripatti and Palmgren, 2000).

2.3 Familiar aggregation based on case-control family design

As an alternative to family cohort design for assessing disease aggregation, the case-control sam-

pling design is often used for rare diseases because a sufficient number of cases can be ascertained.
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In family studies, investigators use the case-control design to enroll relatives for more detailed

information, obtain medical records to validate reported disease, and obtain biospecimens for

studies of genetic markers associated with the disease. Case-control family studies allow a direct

examination of the disease outcomes in relatives and collection of both risk factor and expo-

sure data on each individual, and with measured genetic markers, permits a more complete

assessment of genetic and environmental factors through segregation and linkage analysis. Such

a case-control study identifies a sample of diseased cases, and for each case, an independent

sample of age-matched disease-free controls. For each identified individual (the proband), his

environmental covariates, his family structure, and the disease status, age of onset (or age at

censoring) and environmental covariates of his relatives are obtained.

When analyzing such case-control family data, one has to account for both the sampling issue

and also the dependency of age of onset within the family. Estimating the marginal hazard func-

tion from the correlated failure time data arising from casecontrol family studies is complicated

by non-cohort study design and risk heterogeneity due to unmeasured, shared risk factors among

the family members. By assuming a Clayton multivariate survival model, Li et al. (1999) de-

veloped a procedure based on Prentice and Breslow’s (1976) retrospective likelihood formulation

assuming a parametric baseline hazard function. The method provides a way to combine the

information relating disease incidence to risk factors in relatives with the information contained

in the case-control contrasts in order to obtain more precise estimates of the effects of the puta-

tive risk factors. Shih and Chatterjee (2001) developed a similar estimation procedure but leave

the baseline hazard function unspecified. Hsu et al. (2004) proposed a two-stage estimation

procedure. At the first stage, we estimate the dependence parameter in the distribution for the

risk heterogeneity without obtaining the marginal distribution first or simultaneously. Assuming

that the dependence parameter is known, at the second stage we estimate the marginal hazard

function by iterating between estimation of the risk heterogeneity (frailty) for each family and

maximization of the partial likelihood function with an offset to account for the risk heterogeneity.
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3 Survival Analysis Methods for Segregation Analysis

The goal of genetic segregation analysis is to develop a genetic model that best describes the

disease aggregation within a family. Often it is assumed that a major gene with/without poly-

genes is involved in disease segregation. Segregation analysis based on parametric distributional

assumptions on age of onset distribution is simple; instead, I review two semiparametric models

developed for segregation analysis.

3.1 The Cox-Gene model for gene segregation

Assuming that a single major Mendelian diallelic locus governs the age-specific disease rate and

the corresponding alleles are a and A, where A is the dominant disease allele with allele frequency

P (A) = q, let gik be the genotype of ikth individual, taking one of three values aa, Aa, or AA. Li

and Thompson (1998) developed the following Cox-Gene model. They assume that conditional

on the unobserved major genotypes gik, ages of onset are assumed to be independent with a

hazard function for the ikth individual:

λik(t|Xik, gik) = λ0(t)exp(β′Xik + µik) (4)

where

µik =

 0 if gik = aa

µ if gik = Aa or AA

under the assumption of a dominant mode of inheritance. The vector parameter β specifies the

log of the risk ratios associated with the covariates, and λ0(t) is an unspecified baseline hazard

function. Let Λ0(t) =
∫ t

0
λ(s)ds be the cumulative hazard function. Since A is the disease allele,

we assume that µ ≥ 0. Li and Thompson (1998) further developed a Monte Carlo EM algorithm

for estimating the parameters, especially for large pedigrees when the exact computation of the

EM algorithm is not feasible.

Similar models were also developed and studied by Gauderman and Thomas (1994) and

Siegmund and McKnight (1999). Chang et al. (2005) established the asymptotic properties
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of the NPMLE from the EM algorithm. Chang et al. (2006) developed a faster algorithm for

computing the NPMLE than the EM algorithm.

3.2 Cox model with major gene and random environmental effects

for age of onset

The Cox-Gene model (4) assumes that the disease aggregation is due to segregation of one major

gene, which accounts for all the correlation among the family members. To account for possible

shared environmental effects, Li et al. (1997) defined a model to allow for both major gene

effects and shared environmental effects by introducing a family-specific gamma random effect.

Specifically, conditional on individual-specific major genotype gik and family-specific random

environment εk, ages of onset are independent with the hazard function for the ikth individual:

λik(t|Xik, gik, εk) = λ0(t)εk exp(β′Xik + µgik
), (5)

where µgik
= 0 if gik = aa or µ if gik = Aa or AA, is the genetic effect. The vector parameter β

specifies risk ratios associated with the covariates Xik, and λ0(t) is an unspecified baseline hazard

function; Λ0(t) =
∫ t

0
λ(s)ds is the cumulative hazard function. The family effect, εk, is assumed

to be i.i.d. gamma variate with mean 1 and unknown variance ν. This model incorporates

the dependencies due to gene segregation and to shared environment. It is appropriate only

for data on many families; variance ν is estimable only with a set of at least 3 families. The

full model is specified by Θ = (µ, q, θ, β, Λ0(t)). If θ = 0, εk = 1.0 with probability 1 for all

families, and model (5) reduces to the Cox-Gene model (4). If µ = 0 or q = 0, model (5)

reduces to the gamma frailty model. The parameters associated with the frailties are {µ, q, θ}.

The genetic effects are measured by two parameters q and µ, where q measures the frequency

of genetic susceptibility and µ measures the extent of genetic effects. The family-specific effects

are measured by parameter ν; a larger value of ν corresponds to a stronger familial dependence

due to common environmental effects and greater heterogeneity between families. Mendelian

dependence of µgik
makes it possible in theory to separate the genetic effects from the shared

environmental effects and thus to identify and estimate the model parameters.
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Li et al. (1997) developed an MCEM algorithm for estimating the model parameters and

applied this model to analysis of a breast cancer family data set. The null hypothesis of interest

includes H0 : ν = 0; when rejected, it implies that the major gene segregation cannot explain

all the correlation of disease risks within families and additional genes or shared environmental

factors may exist.

4 Survival Analysis Methods for Linkage Analysis

Linkage analysis examines the co-segregation of disease locus and markers or genomic loci within

a family. Model-based linkage analysis often assumes a penetrance function and a specific mode

of inheritance and tests whether the recombination fraction between the candidate disease locus

and the marker locus is 0.5. Model-free allele-sharing-based linkage analysis is based on test-

ing whether the probability distribution of identity-by-descent (IBD) among affected sib pairs

deviates from the null probability or whether the distribution of the inheritance vector at a pu-

tative disease locus deviates from the null distribution under Mendelian segregation among the

affected relatives (Kruglyak et al., 1996). Incorporating age of onset or covariate data into para-

metric model-based linkage analysis is easy, simply by introducing age-dependent and covariate-

dependent penetrance functions. In the following, I only review the survival analysis methods

for allele-sharing-based linkage analysis based on the inheritance vectors.

4.1 Construction of genetic frailties for sibship

In order to adequately model the within-family dependency of age of onset variable to segregation

of genes, the genetic frailties should be defined according to the law of Mendelian segregation.

Li (2002) gave the following construction of the genetic frailties based on the concept of inheri-

tance vectors (Kruglyak et al., 1996; Lander and Green, 1987). Consider a sibship with n sibs,

1, 2, · · · , n, and denote their parents as F for the father and M for the mother. Assuming that the

father and mother are unrelated, there are only four unique alleles that are distinct by descent at

a given locus. Consider the setting of Kruglyak et al. (1996), where we have a series of markers
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on a chromosomal region that may harbor the disease-causing locus/loci. Suppose d is a point in

this test chromosomal region. We are interested in testing whether there is a disease-susceptible

(DS) gene linked to locus d. Arbitrarily label the paternal chromosomes containing the locus of

interest by (1,2), and label the maternal chromosomes by (3,4). The inheritance vector (Kruglyak

et al., 1996; Lander and Green, 1987) of a sibship at the d locus is the vector

Vd = (v1, v2, · · · , v2j−1, v2j, · · · , v2n−1, v2n),

where v2j−1 = 1 or 2, v2j = 3 or 4 for j = 1, 2, · · · , n. The inheritance vector indicates which

parts of the genome at locus d are transmitted to the n children from the father and the mother.

Li and Zhong (2004) define the additive genetic frailties due to the gene linked to locus d for

the father and mother as

ZdF = Ud1 + Ud2,

ZdM = Ud3 + Ud4,

where Ud1 and Ud2 are used to represent the genetic frailties due to part of the genome on the

two chromosomes of the father at locus d; Ud3 and Ud4 are analogous though for the mother. For

a given inheritance vector vd at the d locus for a sibship, we define the frailty for the jth sib as

Zdj = Udv2j−1
+ Udv2j

for j = 1, 2, · · · , n. This definition is based on the fact that it is the parts of the genome of the

parents that are transmitted to the sibs, and the inheritance vectors indicate which parts are

transmitted. We further assume that the Ud1, Ud2, Ud3 and Ud4 are independently and identically

distributed across different families as Γ(νd/2, η), where the parameter η is the inverse scale

parameter, and νd is the shape parameter. Then Zdj is distributed as Γ(νd, η), for j = 1, 2, · · · , n.

Taking into account possible genetic contributions to the disease not due to the single disease

locus linked to d, e.g., due to loci unlinked to locus d, or contributions to shared familial effects,

we add another random frailty term, Up, to the genetic frailty, and define the genetic frailty for

the jth sib as

Zj = Zdj + Up

10
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= Udv2j−1
+ Udv2j

+ Up.

We assume that Up is distributed as Γ(νp, η) over different sibships. Then Zj follows a Γ(νd+νp, η)

distribution. It is easy to verify that both the conditional (on Vd) and the marginal means of the

frailties are

E(Z1) = E(Z2) = · · · = E(Zn) =
νd + νp

η
,

and both the conditional and the marginal variances of the frailties are

V ar(Z1) = V ar(Z2) = · · · = V ar(Zn) =
νd + νp

η2
.

So the parameter νd can be interpreted as the proportion of the variance of the genetic frailty

that can be explained by the gene linked to the locus d.

The frailties for a sibship can be written into a matrix form as

Z = HU, (6)

where

Z = {Z1, Z2, · · · , Zn}′,

H =


a11 a12 a13 a14 1

...

an1 an2 an3 an4 1

 ,

U = {Ud1, Ud2, Ud3, Ud4, Up}′ ,

where aj1 = I(v2j−1 = 1), aj2 = I(v2j−1 = 2), aj3 = I(v2j = 3), aj4 = I(v2j = 4) for j =

1, 2, · · · , n, where I(.) is the indicator function.

4.2 The additive genetic gamma frailty model for sibship data

Consider a sibship with n sibs. Let Tj be the random variable of age at disease onset for the

jth sib. Let (tj, δj) be the observed data where tj is the observed age at onset if δj = 1, and
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age at censoring if δj = 0. We assume that the hazard function of developing disease for the jth

individual at age tj is modeled by the proportional hazards model with random effect Zj,

λj(tj|Zj) = λ0(t) exp(X
′

jβ)Zj, for j = 1, 2, · · · , n, (7)

where λ0(t) is the unspecified baseline hazard function, Xj is a vector of observed covariates for

the jth sib, and β is a vector of regression parameters associated with the covariates. Zj is the un-

observed genetic frailty constructed by equation (6) in the previous section. Since Z1, Z2, · · · , Zn

are dependent due to gene segregation and shared frailty, T1, T2. · · · , Tn are therefore depen-

dent. Finally, to make the baseline hazard λ0(t) identifiable, we let νd + νp = η, which sets

E(Zj) = 1, j = 1, 2, · · · , n, and prevents arbitrary scaling in model (7). Under this restriction,

there are two free parameters, νd and νp, and Zdj ∼ Γ(νd, νd+νp), and Zp ∼ Γ(νp, νd+νp). We may

also consider reparameterization in terms of the two frailty variances, σd = V ar(Udj) = νd/η
2,

and σp = V ar(Up) = νp/η
2. Let σdp = σd + σp denote the variance of Zj. We then have

Zdj ∼ Γ(σdσ
−2
dp , σ−1

dp ), and Zp ∼ Γ(σpσ
−2
dp , σ−1

dp ).

Based on this additive genetic gamma frailty model, Li and Zhong (2004) derived the joint

survival function of age of onset data within a family as a function of the baseline hazard function,

the covariate effects and the parameters related to the frailty. In addition, the null hypothesis

that the disease locus is not linked to the candidate locus d can be reformulated as

H0 : νa = 0,

which is equivalent to assuming that the additive variance due to the gene linked to locus d is zero.

In order to test this hypothesis, an estimate of the baseline hazard function is often required.

However, the data collected for linkage analysis such as affected sib pairs or affected relatives

do not often provide enough information for estimating such population-level baseline hazard

functions. Instead, Li and Zhong (2004) developed a retrospective likelihood ration test for this

null hypothesis assuming that the baseline hazard function can be estimated from external data

such as the SEER database for various types of cancers.

Zhong and Li (2004) further extended the additive genetic gamma frailty model to simultane-

ously consider linkage to two unlinked loci and demonstrated that simultaneously searching for
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two loci can result in increased power to detect linkage when the disease risk is affected by two un-

linked genes. Instead of assuming gamma frailty models, one can also assume a log-multivariate

normal frailty where the variance-covariance matrix is specified by kinship coefficients and pair-

wise IBD-sharing proportions (Pankratz et al., 2005). Further, Pankratz et al. (2005) proposed a

procedure using Laplace approximation for estimating model parameters and for testing linkage,

i.e., testing whether the additive variance due to a given locus is zero.

5 Survival Analysis Methods for Family-based Genetic

Association Analysis

Association studies look for specific alleles at a marker locus that are more frequent in affected in-

dividuals (cases) than in the unaffected population (controls). Population-based studies compare

allele frequencies in cases and controls, but this methodology has been criticized as prone to false

positives due to population admixture. To eliminate the effect of disequilibrium created by pop-

ulation stratification, and therefore to eliminate the false positive mapping results, family-based

association methods such as haplotype relative risk (Falk and Rubinstein, 1987), the transmis-

sion disequilibrium test (TDT) (Spielman and Ewens, 1995; Spielman and Ewens, 1996), and

a likelihood-based method (Schaid, 1996; Schaid and Li, 1997) using affected and family-based

controls are often used. Li and Hsu (2001) demonstrated the importance of incorporating age of

onset data into family-based genetic association analysis.

5.1 Survival analysis methods for family-based association tests

There are several approaches that extend the TDT to handle age of onset or age at censoring. Li

and Fan (2000) proposed a linkage disequilibrium-based Cox (LDCox) model for nuclear family

data and used a robust Wald’s test for association. Mokliatchouk et al. (2001) and Shih and

Whittemore (2002) developed likelihood-based score statistics to test for association between

a disease and a genetic marker. The score statistic can be written as a weighted sum over

family members of their observed minus expected genotypes. Age of onset data can be used
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in the weight, which is the difference between the observed and expected value, δi − Λ0(ti) for

individual i, where Λ0(ti) is the cumulative hazard function at age ti, which is assumed to be

known from external data sources. Both methods of Li and Fan (2002) and Shih and Whittemore

(2002) assume that the genetic effects on the risk of onset are proportional in the framework of

the Cox regression model. Jiang et al. (2006) developed a family-based association test for time-

to-onset data assuming time-dependent differences between the hazard functions among different

genotype groups by using the weighted logrank approach of Flemming and Harrington (1981).

5.2 Test of genetic association in the presence of linkage

It is well known that genetic linkage induces within family association of phenotypes such as

disease onset or age at disease onset. A limitation of most family-based association tests is that,

although they remain valid tests of linkage, they are not valid tests of association if related nuclear

families and or sibships from larger pedigrees are used. The allele-sharing-based linkage analysis

only considers allele sharing by descent pattern among the sibs within a sibship. However, it

does not differentiate which allele they share as long as they share it by descent. In other words,

linkage analysis does not consider which particular allele is shared by the sibs. On the other

hand, the association that we are interested in is the association due to LD. For association

analysis and LD analysis, the particular allele that an individual carries determines his/her risk

of developing disease, since different marker alleles have different coupling frequencies with the

disease variant if LD exists. In typical tests of association, it is very rare that the genetic marker

itself is the disease susceptible locus (DSL). When the marker locus is not the DSL but is in

LD with it, all sibling resemblance or lack of resemblance and within sibship correlation of age

of onset cannot be fully accounted for by the genotypes at the marker locus. Motivated by this

key difference between linkage and LD, Zhong and Li (2004) defined a joint model for the risk

of disease to account for both the allele sharing information and the genotype information at

the candidate marker locus by including the genetic frailties derived from the inheritance vector.

Specifically, consider a candidate marker d in the linked region and let g = (g1, · · · , gn) denote

the vector of genotypes at marker locus d of the n sibs of known age at onset or censoring. Zhong
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and Li (2004) assume that the hazard function of developing disease for the jth individual at

age tj is modeled by the proportional hazards model with random effect Zj,

λj(tj|Zj) = λ0(tj) exp(Xgj
β)Zj, for j = 1, 2, · · · , n, (8)

where λ0(t) is the unspecified baseline hazard function and Xgj
denotes some function of the jth

offspring’s marker genotype in the family. For example, for additive model, Xgj
= l, l = 0, 1, 2,

counts the number of the putative high-risk marker allele and corresponds to the genotype of

jth member in the family who carries l copies of the putative high-risk marker allele. Zj is the

unobserved genetic frailty, which is defined as in equation (6).

When β = 0, the hazard function (8) and the joint survival function for a sibship do not

depend on the genotype at the marker locus d; therefore, tests of allelic association between

locus d and the disease or the null hypothesis that the genotype at the marker locus is not

associated with the risk of the disease can be formulated as testing

H0 : β = 0.

Zhong and Li (2004) developed a score test for H0 based on a retrospective likelihood function,

which is a weighted sum over family members of their observed minus expected genotypes, where

weights depend on both age of onset and also the IBD sharing between the sibs within a family.

Different from score tests for linkage and association, the score test for testing association in the

presence of linkage is also a function of allele-sharing IBD among the sib pairs or the inheritance

distribution among the sibships. Zhong and Li (2004) demonstrated by simulations that such a

score test indeed results in correct a type 1 error rate when testing for association in the linked

region.

6 Survival Models for Haplotype Effects Based on Co-

hort, Case-Cohort and Nested Case-Control Designs

The most commonly used design for population-based haplotype analysis is the case-control

design. Although case-control studies can potentially identify disease-predisposing variants, such
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studies have certain limitations. This includes the tendency for clinically diagnosed cases to

represent more severe ends of the whole disease spectrum and difficulty in selecting unbiased

controls. In addition, such designs may suffer recall bias in disease status and other covariates

such as family history (Doll, 1964; Collins, 2004). In contrast, large-scale population -based

cohort studies can overcome these limitations. The prospective population cohorts can also enable

the studies of many complex diseases in the same cohort. Large cohort studies are designed to

learn about gene and environmental effects for relatively rare diseases. However, since many of

the environmental covariates of interest are expensive to obtain, to reduce the cost of large cohort

studies, several alternative sampling schemes within the framework of cohort studies have been

suggested and well-studied and widely applied in the traditional epidemiological investigations.

Among these, the most popular ones are the case-cohort design proposed by Prentice (1986) and

the nested case-control design proposed by Thomas (1977) and Liddell et al. (1977). I review

some recent methods for haplotype association analysis for cohort data, case-cohort data and

nested case-control data. In order to account for variable age of onset, survival analysis methods

are required for testing the haplotype effects for cohort, case-cohort and nested case-control

designs.

6.1 Survival model for haplotype inference based on cohort data

Assume that N individuals are collected from a cohort and are type over K SNP markers.

Consider the proportional hazards model to relate the disease risk to haplotype. Specifically, for

the ith individual in the cohort, we assume the following Cox proportional hazards model

λ(ti|Xi, Hi) = λ0(ti) exp(β
′F(Xi, Hi)) (9)

to relate the hazard function to the covariates vector Xi and the haplotype Hi, where F(Xi, Hi)

is a known function to parameterize the covariates and the haplotype. Here the haplotype Hi

can be over a set of SNPs in a candidate gene or SNPs in a sliding window in the whole-genome

study. Depending on the model we choose, there are many different ways to parameterize the

function F(Xi, Hi). For example, if h0 is a particular haplotype of interest, we can assume the

16

Hosted by The Berkeley Electronic Press



following multiplicative model with haplotype and covariate interaction,

F(Xi, Hi) = β1(I(hl = h0) + I(hm = h0)) + β2Xi + β3Xi(I(hl = h0) + I(hm = h0)),

where (hl, hm) are the pair of the haplotype of Hi.

Lin (2004) proposed a likelihood-based approach and EM algorithm for estimating the param-

eter β and for haplotype inference for the proportional hazards model (9) in full cohort studies

of unrelated individuals. Chen et al. (2004) derived a score test based on the partial likelihood

function for testing the null hypothesis H0 : β = 0, which is much easier to implement than the

likelihood-based approach of Lin (2004). However, although the method of Lin provides estimate

of the haplotype risk ratio parameters and the baseline hazard function, the method may suffer

computational instability due to possible many rare haplotypes.

6.2 Test of haplotype association for case-cohort and nested case-

control designs

Liddell et al. (1977) and Thomas (1977) suggested an alternative design called nested case-

control design, in which a cohort is followed to identify cases of some disease of interest and then

controls are selected for each case from within the cohort (i.e., controls are a random sample of

unaffected individuals from the risk set in the cohort at the event time). Cases and controls can

be matched on some covariates. In a such design, the covariates of interest are only measured

for the cases and controls. For nested case-control data, Chen et al. (2004) developed a score

test for H0 : β = 0 in model (9). Alternatively, if the disease onset information is available for

the full cohort, one can develop an EM algorithm for obtaining the NPMLE for the parameters

associated with the model (9). An alternative design to the nested case-control design is the

case-cohort design, as proposed by Prentice (1986) for large survey studies such as the Women’s

Health Study, where the population size makes it infeasible to collect data on all of the individuals

in the cohort. If there is a concurrent registry that can be used to identify all of the subjects

who experience an event, then it is possible to collect covariates data on only a sub-cohort of the

subjects, randomly sampled from the population at large, and (perhaps at a later date) on those
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subjects who experience an event. The sub-cohort in a given stratum constitutes the comparison

set of cases occurring at a range of failure times (Prentice, 1986).

Since detailed procedures for haplotype analysis for case-cohort data have not been seen in

literature, I provide some details on estimating the parameters under the case-cohort setting for

the haplotype-disease risk model (9). For a case-cohort design, the data for individuals in R+

(including case set R1 and controls in the sub-cohort) are Di = (ti, δi, Mi, Zi). However, the

haplotype Hi may not be known for all individuals in R+. Let S(Mi) be the set of haplotype

pairs consistent with genotype Mi. For individuals in R− (those in the cohort but not in R+),

we only observe Di = (ti, δi), and for these individuals, let S(Mi) be the set of all possible

haplotypes. Denote D = {D1, · · · , DN} as the observed data, N is the number of individuals in

the full cohort.

Let f(Z) be the marginal distribution of the covariates Z in the population, and G(t) =

Pr(T > t). The likelihood function of the observed data is given by

L(θ) =
∏

i∈R+

{∑
l,m

I(Hi(l,m) ∈ S(Mi))
(
λ0(ti)e

β
′F(Zi,Hi(l,m))

)δi

exp
(
−Λ0(ti)e

β
′F(Zi,Hi(l,m))

)
πlπm

}
×f(Zi)×

∏
i∈R−

G(ti) (10)

where πl, πm are the haplotype frequencies of the haplotypes hl and hm, Hi(l,m) represents the

two haplotypes hl and hm for the ith individual, and θ = {Λ0(t), f(Z), πl, πm, β}. Note that here

we assume that the Hardy-Weinberg equilibrium holds for the haplotypes, although this can be

relaxed by introducing additional parameters. Instead of assuming a particular distribution of

the covariates, we propose to deal with the distribution of Z nonparametrically as in Wellner

and Zhan (1997) and Scheike and Juul (2004).

Since there are two nonparametric terms in this likelihood function, it is difficult to maximize

it directly. We can develop an EM-algorithm instead. To write down the full data likelihood, we

define Wj as the observed jth distinct combinations among the set {Zi : i ∈ R+} for j ∈ j =

1, · · · , J , and the corresponding point mass as p1, · · · , pJ such that
∑

j pj = 1. Then the missing

data are the phases of the haplotypes for some individuals in R+ and both the haplotypes and
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covariates for individuals in R−. The corresponding log full-data likelihood is

l(θ) =
N∑

i=1

{
δi(log λ0(ti) + β

′F(Zi, Hi))− Λ0(ti)e
β
′F(Zi,Hi) + log f(Zi) + log Pr(Hi)

}
=

N∑
i=1

{
δi(log λ0(ti) + β

′F(Zi, Hi))− Λ0(ti)e
β
′F(Zi,Hi)

}
+

J∑
j=1

N∑
i=1

I(Zi = Wj) log pj +
∑
l,m

N∑
i=1

I(Hi = (hl, hm)) log(πlπm). (11)

E-Step: To implement the EM algorithm, we need to obtain the expectation of the equation

(11), which requires the following expectations. First, for an individual i ∈ R+, (Mi, Zi) are

known, but Hi may not be known,

E[I(Hi = (hl, hm))|Di] =
I(Hi(l,m) ∈ S(Mi)) exp{δi(β

′F(Zi, Hi(l,m)))− Λ0(ti)e
β
′F(Zi,Hi(l,m))}πlπm∑

Hi(l′,m′)∈S(Mi)
exp{δi(β

′F(Zi, Hi(l′, m′)))− Λ0(ti)eβ′F(Zi,Hi(l′,m′))}π′lπ′m
,

and with this probability, E(F(Zi, Hi)) and E(exp(F(Zi, Hi))) can be derived. For an individual

i ∈ R−, we only observe (ti, δi = 0),

E[I(Zi = wj, Hi = (hl, hm))|Ti > ti] =
pj exp{−Λ0(ti)e

β
′F(Wj ,Hi(l,m))}πlπm∑J

j′=1 p′j
∑

Hi′ (l,m) exp{−Λ0(ti)e
β′F(Wj′ ,Hi′ (l

′m′))}πl′πm′

,

with this probability, E(F(Zi, Hi) and E(exp(F(Zi, Hi))) can be derived.

M-Step: It is easy to see that the EM equations in the M-step are

p̂j =

∑N
i=1 E[I(Zi = Wj)|D]

N
, for j = 1, · · · , J

π̂l =

∑N
i=1

∑J
j=1 E[I(Zi = Wj)|D]

∑
Hi(l,m)∈S(Mi)

E[I(Hi = (hl, hm))|D]

2N

Λ̂0(t) =
N∑

i=1

I(ti ≤ t)δi∑
j∈Y (ti)

∑J
j′=1 E[I(Zj = Wj′)|D]

∑
Hj(l,m) E[Hj = (hl, hm)|D]eβ′F(Wj′ ,Hj(l,m))

where Y (ti) is the set of individuals who were at risk at time ti. Finally, the estimator of β is

the root of the estimating function,

U(β) =
N∑

i=1

δi

{ J∑
j=1

E[I(Zi = Wj)|D]
∑
l,m

E[I(Hi = (hl, hm))|D]F(Zi, Hi)
T

−
∑

j∈Y (ti)

∑J
j′=1 E[I(Zj = Wj′)|D]

∑
Hj(l,m) E[Hj′ = (hk, hl)|D]eβ

′F(Wj′ ,Hj(h,k))(F(Zj, Hj)
T∑

j∈Y (ti)

∑J
j′=1 E[I(Zj = Wj′)|D]

∑
Hj(l,m) E[Hj = (hk, hl)|D]eβ′F(Wj′ ,Hj(h,k))

}
.
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This is the score equation corresponding to a Cox model with an individual-specific offset term,

which can be easily solved by using the Newton-Ralphson iteration.

Based on different ways of parameterizing the haplotype effects, the test of haplotype effects

can be in general formulated as testing H0 : β1 = 0, where β1 is a sub-vector of β = {β1, β2}.

Similar to Lin (2004) and Scheike and Juul (2004), the likelihood ratio test can be applied for

this null hypothesis.

7 Survival Analysis Methods for Gene Characterization

After the genetic variants related to the risk of disease are identified, it is important to esti-

mate the penetrance of the variants and other population based parameters such as the allele

frequencies. Cohort or case-control family designs can be used for gene characterization and for

estimating population parameters such as genotype relative risk and age-dependent penetrance

functions. For rare diseases, often a large cohort is required for estimating such population pa-

rameters. For case-control family designs, if the genotypes of the disease variants are available

for all the family members, the methods by Li et al. (1998) and Shih and Chatterjee (2002) can

be used for estimating the age-dependent penetrance functions.

When genotypes of the family members are not available, the kin-cohort design (Wacholder

et al., 1998) is a promising alternative to traditional cohort or case-control family designs for

estimating penetrance of an identified rare autosomal mutation. In such a design, a suitably

selected sample of participants provides genotype and detailed family history information on the

disease of interest; however, the genotypes of the family members are not known. Gail et al.

(1999) used the term ”genotyped probands” to emphasize that the probands are genotyped in

kin-cohort design. To estimate penetrance of the mutation, Chatterjee and Wacholder (2001)

considered a marginal likelihood approach that is computationally simple to implement, more

flexible than the original analytic approach proposed by Wacholder et al. (1998) and more robust

than the likelihood approach considered by Gail et al. (1999) to the presence of residual familial

correlation. Chatterjee et al. (2005) further extended the approach of Shih and Chatterjee
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(2002) for data from the kin-cohort design with both cases and control probands and the kin-

cohort design with only cases in order to account for residual correlations. In order to allow for

residual familial aggregation given genotypes, Chatterjee et al. (2005) consider a copula models

(Genest and MacKay, 1986) for specifying joint risks of the disease among the proband and

his/her family members. The key of these various approaches is to make inference based on the

likelihood function that corrects for ascertainment.

8 Ascertainment Correction

Different from traditional multivariate survival analysis, one of the most difficult problems in

analyzing family data in genetic studies is that the families for genetic analysis are often not

random samples from the population; rather, they are often ascertained because of one or more

of the family members are affected with the disease of interest. This ascertainment problem

makes statistical inferences for the proposed models in this paper difficult. For the ascertained

family samples, estimating the population baseline hazard function becomes even more difficult.

One way to go around this problem is by using a retrospective likelihood, which is defined as the

probability of marker data given the observed age of onset data. In order to maximize such a

likelihood function, the baseline hazard function is often assumed to be known or to follow some

parametric form. Due to conditioning, one may expect loss of efficiency in parameter estimates.

Sun and Li (2004) recently proposed and evaluated two approaches based on conditional prospec-

tive likelihood and conditional ascertainment corrected likelihood for the additive genetic gamma

frailty model in order to estimate the baseline hazard function based on the family data collected

for linkage analysis. However, such an ascertainment correction procedure requires knowledge of

the population distribution of the family structures and family sizes, which can be difficult to

obtain.
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9 Survival Analysis Methods in the Genomics Era

Recent development of new high-throughput technologies for generating very high-dimensional

genomic data such as microarray gene expression data raises other important and interesting

problems that require development of new survival analysis methods. One such area is to link

the microarray gene expression data to censored survival outcomes such as cancer recurrence.

Due to high-dimensionality of the data, traditional survival analysis methods cannot be applied

directly to such data sets or are expected to perform poorly.

Currently, there are several classes of approaches for these type of censored data regres-

sion problems in the high-dimension and low sample-size settings. One class of approaches is

dimension-reduction-based methods, such as extensions of the partial least square regression

method for censored data regression problems (Park et al., 2001; Li and Gui, 2004), extension

of the slice inverse regression method (Li and Li, 2004) and supervised principal components

analysis (Bair and Tibshirani, 2004). While these methods may perform well in prediction, they

usually do not provide a direct way of selecting genes that are potentially related to time-to-event.

Another class of approaches is based on regularized estimation procedures such as L2 penalized

estimation (Li and Luan, 2004), the extension of the least absolute shrinkage and selection

operator (Lasso) of Tibshirani (1996) to censored survival data using the least angle regression

(LARS) (Efron et al., 2004; Gui and Li, 2005; Segal, 2006), and the threshold gradient descent

procedure (Friedman and Popescu, 2004; Gui and Li, 2005). These methods provide a way of

selecting genes whose expression might be related to clinical outcome such as time-to-event. In

addition, these methods can also be used for building a model for predicting future patients’

time-to-event.

Survival ensembles, based on extensions of the random forests (Breiman, 2001) and the

gradient descent boosting procedure (Friedman, 2001) to censored survival data, have also been

developed recently (Li and Luan, 2005; Hothorn et al., 2006). These procedures are more flexible

and usually perform better in predicting future patients’ time-to-event.

22

Hosted by The Berkeley Electronic Press



10 Conclusion and Future Directions

Since many complex diseases show large variation in age at disease onset, consideration of vari-

able age of disease onset is an important aspect of genetic analysis of complex diseases. Methods

in survival analysis provide a natural framework for incorporating age of onset and environmental

risk factors into genetic analysis. In this paper, I have reviewed some recently developed survival

analysis methods for aggregation, segregation, linkage and association analysis and gene charac-

terization analysis in genetic epidemiology. Most of these methods were developed in the last ten

years and have been shown to be able to offer additional insights into genetic studies of complex

diseases. As user-friendly software packages implementing these methods become available, we

should expect to see more applications of these methods in mapping genes for complex diseases.

With the completion of the Human Genome Project and the HapMap project, genome-wide

association studies of complex traits are now possible and have already been proposed for several

complex diseases. Under such studies, hundreds of thousands of SNPs are typed for a large set of

patients and controls. In addition, large-scale cohort studies are under discussion or are already

underway in the UK (UK Biobank), Iceland (Decode), Germany, Canada and Japan. The US is

also considering to propose its own large-scale population cohort (Collins, 2004). We therefore

expect that large amounts of data will be generated from these large cohort studies in the near

future. Besides large cohort data, case-cohort and nested case-control designs offer alternatives

to cohort and case-control designs. An important research question is how to identify SNPs,

SNP-SNP interactions, gene-gene interaction, gene-environment interactions among hundreds of

thousands of SNPs that may affect the disease risk based on case-cohort or nested case control

data in the framework of survival analysis. In addition, many common diseases are known to be

affected by certain genotype combinations; therefore, statistical methods to detect the influential

genes along with their interaction structures are also required. Finally, new statistical methods

are also required in order to fully utilize the genome-wide linkage disequilibrium patterns and

the haplotype block structures available from the HapMap project. New ideas from statistical

learning (Hastie et al., 2001) hold great promise to address these important issues.

Since genes and proteins almost never work alone, they interact with each other and with
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other molecules in highly structured but incredibly complex ways. Understanding this interplay

of human genome and environmental influences is crucial to developing a systems understanding

of human health and disease. An important venue for future research is to develop methods that

can incorporate known biological knowledge such as pathways into statistical modeling in order

to limit the search space for gene-gene and gene-environment interactions (Conti et al., 2003; Wei

and Li, 2006). Wei and Li (2006) proposed a non-parametric pathways-based regression model to

incorporate pathways information into regression analysis. As biological knowledge accumulates,

one should expect to see development of new methods and more applications of these models in

identifying genes and environmental risk factors that are related to risk of developing disease.
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