








To tackle this problem in the presence of censored failure times, one usually fits the
data with a Cox proportional hazards model, which relates the hazard function of the
individual event time to its covariates (Cox (1972)). Specifically, let T be the failure time
and Z be the corresponding d x 1 random vector of covariates or predictors. Assume that
Az(t), the hazard function of T given Z = z at time ¢, is related to z via the standard Cox
proportional hazards model

Aa(t) = Ao (t)ePo?, (1.1)

where \g(t) is a completely unspecified function of ¢ and B, is the vector of the unknown
regression parameters. After fitting the data with the Cox model (1.1), suppose that we
are interested in identifying all the future patients based on their covariate vectors z, who
“likely” survive beyond %y, a relatively large time point. For instance, one may consider

the following set of covariate vectors:

Q, ={z:5,(to) > p}, (1.2)

where 0 < p < 1 and S,(¢) is the survival probability at time ¢ for patients with the
covariate vector z (e.g., to = b years and p = 0.8). Patients whose covariate vector z € (2,

are expected to be long-term survivors. A reasonable “point” estimator for 2, is
Q, = {z: S,(to) > p}, (1.3)

where S,(t) is obtained via the Breslow estimate for A,(t), the cumulative hazard function
of \y(t) in (1.1) (Breslow (1972); Altman and Andersen (1986); Lin, Fleming and Wei
(1994)). In Section 2 of this paper, we show that this estimator is strongly consistent for

Q,.
Although the dimension of the covariate vector may be large, the observed estimate

~ ~1! ~

(2, can be determined by the patient’s estimated risk score 8 z, where 3 is the maximum

partial likelihood estimate for B,. This univariate score, which combines the information
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across all the covariates of a patient, has been used extensively in predicting breast cancer
risk (Gail et al. (1989)). To make further inferences about €2,, one may construct a
(1 — @) confidence “interval” (2,,€),) for this parameter (which is a subset of R%) such
that Pr(, C Q, C Q,) ¥ 1 — a, where 0 < o < 1. Patients whose covariate vectors fall
into {2, are likely to live long. On the other hand, patients would less likely be long-term
survivors if their covariate vectors are in the complement of €,. Now, let us consider a

natural candidate for this type of interval estimator whose lower bound £, is

{2 : Sa(to) — May2Ts > P}, (1.4)

and whose upper bound is the complement of

~

{Z : SZ(tO) + 7704/27/—; < p}’ (15)

where 7, is an estimated standard error of §z(t0), and 7)o/2 is the upper 100(c/2) per-
centage point of the standard normal. That is, for a given z, if the lower bound of the
standard confidence interval for S,(tp) is larger than p, we label this patient as a long
term survivor. On the other hand, if the upper bound of the interval is below p, this
patient is not expected to live long, and we assign this subject to the complement of
2,. Asymptotically this interval has the correct coverage probability for 2, with a single
prediction. This simple procedure, however, is not valid asymptotically for multiple pre-
dictions with two or more distinct covariate vectors {z} such that S,(ty) = p. Moreover,
for practical sample sizes, even the covariate vectors are not on the boundary of €2,, the
above procedure with bounds (1.4) and (1.5) may give us a rather distorted picture of
2,. For instance, in one case considered in Section 3, we show via simulation that the
empirical probability that (1.4) C Q, C (1.5) is less than 0.66 with 1 — o = 0.95.

In this paper, we present the confidence bounds {2, and Q,, for ,, which are valid for

the case with any number of predictions. These two bounds can be readily displayed on
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a two-dimensional plane even for the case with high dimensional covariate vectors. This
type of interval estimation is quite useful for guiding us in improving patient care and
designing future studies for similar regimens. We illustrate the new proposal using a data
set from the study on treating multiple myeloma with IFN + VBMCP. Conceptually our
proposal is closely related to the procedures for solving the classical calibration problem

with multivariate predictors and non-censored observations (Lee (1998)).

2. INTERVAL ESTIMATES FOR A SET OF COVARIATE VECTORS FOR
LONG- OR SHORT-TERM SURVIVORS
Let C' be the censoring variable for 7. Conditional on Z, 7" and C are assumed to be inde-
pendent of each other. For T, one can only observe (X, A), where X = min{7,C},A =
I(X = T), and I(-) is the indicator function. Our data consist of n independent and
identical copies, {(X;, Z;,A;),i = 1,--- ,n}, of (X,Z,A). The estimator Qp in (1.3) is
“consistent” for the set (2,. Specifically, we define the distance between two sets A and B
in R? by d(A, B) = prz(AU B — AN B), where prg(-) is the probability on R¢ generated

by the covariate vector Z. If Z has a bounded support, it is straightforward to show that

~

d(§2p,€2p) < constant x (||B — Boll + |§0(t0) — So(to)|) = 0,

almost surely. That is, for a large n, we expect that Qp is almost overlapped with Qp.
To obtain the bounds for (2,, we may consider a similar type of bounds (1.4) and (1.5)

with an appropriate adjustment on the cutoff point 7,. Since S, (o) is bounded between

0 and 1, we consider a complementary log-log transformation of this probability. To this

end, we rewrite the estimate ﬁp as
{2 : log(~log(Sa(t0))) + B'z < log(~logp)}.
To obtain confidence “bounds” for €2,, let us consider the process of z
W(z) =n'’? (log(— log(So(t0))) + B z — log(—log(So(to))) — BGZ) :
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It is straightforward to show that this process converges weakly to a Gaussian process in
z. Now, let o(z) be an estimated standard error of W (z), and let ¢, > 0,0 < a < 1, be a

cut-off point such that,

pr (sup(W(@)/o2)) < o ) o (LW @00} > —ca) M 1= (21

zZEH

where H is the set of z which we are interested in making prediction from. Define a set
-~ ~!
Q, = {2 : log(— log(Ss (1)) + B2+ n~Pcao(z) <log(—logp)}.  (22)
Then it follows from (2.1) that
pr (log(— log(go(to))) + Blz — log(—1log(So(to))) — Bpz > —n~Y2cq0(2),Vz € ’H) ~ 1—a.

This implies that

pr(, C,0<p<1) =

pr (log(— log(Sy(t0))) + ,Blz +n 2cq0(z) > log(—log(So(te))) + Bhz,Vz € ”H) ,

and

pr(2, CQ,0<p<l)=1l—oa. (2.3)

Note that the probability statement in (2.3) is valid uniformly in p, and ¢, is heavily
dependent on the choice of 4. For instance, one may let H be a specific subset of the
support of the covariate random vector Z.

To approximate the cutoff point ¢, in (2.1), consider the random vector

nl/? (log(— log(go(to))) — log(—1log(So(t0))), BI - :36)1-

It follows from Anderson and Gill (1982) and Lin et al. (1994) that this vector converges

in distribution to a multivariate normal, say, G with mean 0. The covariance matrix of
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. . 011 , 012
GG can be consistently estimated by ¥ = , where

21 , nZ

o1s = nR=2(t) [ /Oto B( o /to SM(B, 5)'dN (s )yzq /to S(lg(oﬂ,[j, N(s )}] ’

~ to g(1)
0'21=0'12'=—TLA {/ (0) ( )};

= ZI(XZ > S)Z;eB’Zi: r= Oa 17

n
= ZI(XZ S S,Ai = 1),
i=1
T is the inverse of the observed information matrix of the partial likelihood function for

(1,2')G

O)szy) iz 8

model (2.1). Thus, the process W (z)/o(z) converges in distribution to
n — oo.

If H is the support of Z and if the component of Z is either discrete (with a finite
number of possible values) or continuous, H can be defined by a set of linear constrains
of z. For any realization of G, sup,c4(1,2)G/{(1,2')2(1,2')'}*/? can be obtained via
the standard quadratic programming technique. Approximations to the distribution of
sup{W(z)/o(z)} and the corresponding ¢, can then be obtained by simulating a large
number of realizations from G (see Appendix for details). If we let H = R, the distribu-
tion of such a sup-statistic can be approximated by the distribution of a mixture of two
random variables: —Xd aF 2xd+1 One may use the 100(1 — «)th percentile of this mixture
as a conservative approximation to ¢, in (2.1). The detail of the above approximation is

also given in the Appendix.

Similarly, to obtain an outer “bound” of €2, define the set

= {z : log(— log(Ss(t0))) + Blz —n"2¢,0(z) < log(—logp)}. (2.4)
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It follows that pr(Q, C ©,,0 < p < 1) & 1 — a. Therefore, a patient whose z does not
belong to €2, would be less likely to survive beyond t.

It is important to note that although the observed sets £, and Q, are functions of a
possibly high dimensional covariate vector z, they are uniquely determined by =z = o(z)
and the risk score y = B,z. Therefore, the above two sets can be simply displayed on
the (x,y)-plane. In Figure 1, we present a typical plot for these sets. First, the set of
the point estimate ﬁp in (1.2) is the entire region under the horizontal line y = alz =
log(—logp) — log(—log(Ss(to))). The heavily shaded area is 2, and the lightly shaded
area is the complement of ),. The straight lines, which define the boundaries of these
two sets, depend on the confidence level «. This graphical display is quite informative.
For example, the black dot in the plot is closer to the above horizontal line than the open
circle point, indicating that we are much more confident that the patient associated with
the open circle point is a long-term survivor than the patient corresponding to the black
dot. Moreover, although the subject with “*” has a larger risk score ,@,z than that with
the black dot, this subject is likely to be a long term survivor due to its small o(z).

One may consider an alternative way to define a long-term survivor. For instance,
consider

0, = {z: 7™(T) > t,}, (2.5)
where 7%(T) is the 7" quantile of T conditional on z. For example, one may be interested
in ©, with 7 = 1/2 and ¢, = 5 years. Note that ©, is equivalent to {z : So(to)e"p(ﬁﬁz) >
1 — 7}. The corresponding two bounds ©_ and ©, for (2.5) can be obtained by replacing
pin (2.2) and (2.4) with (1 — 7), respectively.

One may also be interested in identifying future patients based on z, who tend to die

relatively early. For this case, let us consider

O ={z:pr(T < ty|z) > p} ={z: So(t)®PPo2) < 1 — p}, (2.6)
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where 1 is a relatively small time point. The corresponding two bounds for 27 are
~ ~1
Q= {z : log(—10g(So(ts))) + Bz —n ?ca0(2) > log(—log(1 - p))},

O = {z: log(—10g(So(ts))) + Bz + n~2cea(z) > log(—log(1 — p))}. (2.7)

Similar to (2.5), one may use a quantile of 7' to define short-term survivors by defining
OF = {z: T™(T) < to} = {z : So(to)™P¥o? <1 —7}. (2.8)

The bounds ©F and ©. for (2.8) can be obtained by replacing p in (2.7) with 1 — 7
accordingly.
Now, suppose that we are interested in obtaining (), and Qp, which are valid only for

the case with a single p (not uniformly in p). That is,
pr(Q, C Q) =pr(Qp C Q) >1-a. (2.9)
For this case, the cutoff point ¢, for Qp can be obtained via

pr( supﬁc(l,z')G/{(l,z')Z(l,z')'}l/2 > cq) = Q, (2.10)

where (NZIC) is the complement of the observed value of Qp. The cutoff point ¢, for ﬁp can
be obtained via

pr( sup (1,2)G/{(1,2)%(1,2')'}/? > ¢,) = a, (2.11)

ZEHNG,

where Qp is the observed Qp. Note that these two critical values ¢, may be different. Again,
numerically these two cutoff points can be obtained via the quadratic programming and

the aforementioned simulation technique.

3. EXAMPLE
We illustrate the new numerical and graphical procedures using a data set from the

clinical study mentioned in the Introduction on treating patients with multiple myeloma
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(MM). Multiple myeloma is a neoplastic disease of bone marrow plasma cells causing lytic
bone lesions, anemia, renal insufficiency, and hypercalcemia. The study was designed to
evaluate the effect of adding alternating cycles of IFN or early intensification with high
dose HiCy to the standard chemotherapy VBMCP regimen for treating MM. Six hundred
and twenty-eight patients entered the study from February 1988 to May 1992, and they
were randomized to one of the three arms: VBMCP, VBMCP + rIFN,,, and VBMCP
+ HiCy (Oken et al. (1999)). With respect to overall survival, there are no differences
among these three treatment groups (see Figure 2). On the other hand the superior ability
of VBMCP + IFN induction therapy to produce complete response and more durable
responses suggests that this combination has promising biologic activities in myeloma.

Numerous baseline covariates for each patient were collected for the study and special
efforts were made to build a prediction model for MM patient survival (see Greipp et al.
(1998)). With the data from all the eligible patients for the study, seven covariates were
selected as the important predictors via the Cox regression model for patient survival.
These covariates are PB morphology type (PB), plasma cell labeling index (PCLI), 52
microglobulin (52M), C-reactive protein (CRP), soluble interleukin-6 receptor (sIL6R),
plasma cell percentage by immunofluorescence (PC) and serum creatinine (SC). Note that
only the first covariate is discrete (dichotomized). The vector B of the regression coeflicient
estimates is (0.642,0.14,0.028,0.07,0.912,0.05,0.001)’, and the corresponding estimated
standard errors are 0.184,0.07,0.012,0.022,0.253,0.019 and 0.0004, respectively. There
are 39 patients with plasmablastic MM (PB), and the corresponding covariate value is
one for the PB case, 0, otherwise. The PB patients tend to have much shorter survival.
The above estimates were obtained based on 447 patients from the entire study cohort,
who had complete information on these seven covariates.

From Figure 2, on average, 30% of the study patients died within 2 years and 30% of
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them survived beyond 5 years. Here, we present four scenarios to illustrate our proposal
with the above fitted Cox model. For the first case, we identify MM patients who are
expected to die relatively early. Specifically, consider {7 in (2.6) with p = 0.7 and ¢, = 42
months, which is the observed median survival time for the entire cohort. That is, those
patients in ) are likely to die within 42 months after treatment. The heavily shaded
area in Figure 3(a) is the observed {2 with a: = 0.1 and ¢, = 3.30 which was obtained via
(2.10) with this specific p = 0.7 and H = {0, 1} U R®. Note that if we use the cutoff point
in (2.1), which is uniform in p, ¢, = 3.45. Furthermore, if we let H = R, the cutoff point
is 3.57. The lightly shaded region is the complement of ,. Naturally it is interesting
to see where the aforementioned 447 patients in the study are located on this graphical
display. To this end, each black dot in the figure represents a study patient’s estimated
risk score y = ,@Iz and z = o(z). There are 42 patients in 63_7, the region above the
solid horizontal line y = log(— log p) — log(— log(Ss(to))) = 1.6. On the other hand, there
are only 5 study patients in (), indicating a high degree of uncertainty of the “point”
estimate 623_7. Note that a point in the dark region, which is far away from the solid line
y = 1.6, represents a short-term survivor with a much higher confidence level than that
of a point near the line.

For the second case, we considered ©} with ¢y = 36 months, a relatively small time
point, and 7 = 0.5. The darker area in Figure 3(b) is ©p -, with @ = 0.1. The lightly shaded
area corresponds to the complement of @, .. There are 18 study patients belonging to Qj -,
and eleven are PB MM (only 8% of the entire study cohort are PB). These eleven study
patients had rather high SC and PC, and had extremely high 52M and PCLI. On the
other hand, the distributions of the other two covariates CRP and sIL6R for these 18
patients are similar to those of the entire cohort.

Next, we considered the case associated with long term survivors by letting t5 = 42
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months and p = 0.7 in €2,,. The 2, ; with o = 0.10, is the bottom, darker region in Figure
4(a). In Figure 4(b), we present the case with ¢, = 48 months and 7 = 0.5 for ©,. There
are 52 study patients in the dark region ©,;. None of these patients is PB and they all
had rather low 52M, PCLI and PC values.

4. PERFORMANCE OF THE INTERVAL ESTIMATOR FOR SMALL- AND
MODERATE-SIZED SAMPLES

A limited simulation study was conducted to examine if the large sample approximation to
the distribution of sup,e% W (z)/0(z) is adequate for practical sample sizes or equivalently,
to examine the validity of the confidence bounds in (2.3). To this end, with a two-
parameter Weibull regression model, we fitted the data from those 447 patients in the
myeloma study, who had complete information on the seven covariates discussed in the

Example Section. This results in the Weibull model:
Ay (t) = 1.32t%% exp(—6.24 + 0.61 * PB + 0.14 % SC + 0.03 * f2M+

0.07 * PCLI + 0.90 * PC + 0.05 * CRP + 0.0008 * sIL6R). (4.1)

In our simulation, we considered the case that # = {0, 1} x RS for obtaining c, (therefore,
asymptotically the results should be valid uniformly in p). For each fixed sample size n,
we repeatedly used Model (4.1) to generate a set of n survival times with the covariate
vectors randomly selected from 447 observed covariate vectors with replacement, and the
corresponding censoring variable was assumed to be a uniform with support (0, 7), where
7 was chosen to have a pre-specified censoring proportion. In Table 1, we report the
empirical coverage probabilities of {2, for €2, for 0 < p < 1, where ¢, = 42. Note that
for the present case, pr(Q2, C €,,0 < p < 1) = pr(sup,4{W(z)/0(z)} < ca), to obtain
the empirical coverage levels via simulation, for each generated sample, we check whether

the realized sup,.{W(z)/o(z)} is greater than ¢, or not. Moreover, since W (z) is a

12

http://biostats.bepress.com/harvardbiostat/papers



linear combination of z and 0?(z) is a quadratic form of z, sup,.,{W(z)/o(z)} can be
obtained analytically via Formula 1f.1.3 of Rao (1973) (p.60). Each entry in the table
was obtained based on 10,000 repetitions. The empirical levels of this interval estimator
are quite close to their nominal counterparts with moderate sample sizes. On the other
hand, when n is less than 100, the coverage probabilities are noticeably less than their
nominal counterparts.

Empirically we find that it is possible that a subject, who is classified to be a long-term
survivor with respect to ¢y, may fall into the gray zone with respect to a time point earlier
than ¢y;. This non-monotonicity feature is due to the fact that the estimated standard
error of the survival probability estimator at ¢y is smaller than that at that earlier time
point.

Lastly, to examine the adequacy of the simple interval estimation procedure with
bounds (1.4) and (1.5) discussed in the Introduction, we used Model (4.1) to generate
2000 sets of samples based on the observed covariate vectors from the MM study with
n = 447. For each realized sample, we obtained the lower and upper bound (1.4) and (1.5)
with 7, = 1.96 for Q, = {z: S,(42) > 0.5}, which is equivalent to the set of z associated
with patients whose median survival times are no less than 42 months. Assume that we
are only interested in predicting patients with z in the set of the observed covariate vectors
from the MM study. Without censoring involved in these 2000 simulated samples, the
empirical probability that (1.4) C Q5 C (1.5) is only 0.66 instead of 0.95, the nominal

level of the interval.

5. REMARKS

The Cox model (1.1) for modeling the hazard function with its covariate can be replaced
by other parametric or semi-parametric survival models, for example, the accelerated
failure time (Wei (1992)) or linear transformation models (Cheng, Wei and Ying (1995)).
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In theory, one may use a non-parametric regression function estimate without modeling
the distribution of the failure time with its covariates to estimate pr(7 > ty|z) to obtain
ﬁp or modeling the median of 7" given z to construct @)1 /2. In practice, especially for
the high-dimensional case with censored observations, however, it is rather difficult to
implement such a purely nonparametric procedure.

Now, consider the case that there are no censored observations and the response
variable 7" is either continuous or discrete. Furthermore, conditional on z, let the mean
of the response variable T be u(Byz), where u(-) is a known, strictly increasing function.

Then, one may be interested in estimating the set

Qu = {2z : u(Boz) > a} = {z: Byz > " '(a)},

[A9g}]

where “a” is a given constant. Let B be the estimate for B, and o(z) be its estimated
standard error. The two bounds €2, and Q, for Q, can be constructed and displayed with

Y= ,B\Iz and z = o(z) accordingly as in Section 2.
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APPENDIX

First, we show how to obtain an approximation to the distribution of

1 !
s (17)G

; 6.1
zer £/ (1,2')2(1,2") 6.1)

where z € H is defined by a set of linear (equality and/or inequality) constrains of z. For

any given realization g of G, let y = (1,2’)g. Then, (6.1) becomes

I 02
where
ify >0,
h(y) = inf{(1,2)5(1,2)'} (6.3),
if y <0,
hly) = sup{(1,2)2(1,2)'} (6.4).

Here, inf and sup are taken over z € HN{(1,2')g = y}. Note that both (6.3) and (6.4) can
be obtained via the standard quadratic programming with linear constrains. Commercial
software is widely available for implementing such optimization problems (see the website:
www.ece.northwestern.edu/OTC). When ¥ is strictly positive definite, any local minimum
of (1,2')3(1,2') is the global minimum. Therefore, the numerical search for A(y) in (6.3)
is a rather trivial task. On the other hand, locating a global maximizer for (1,z")%(1,z’)’

in (6.4) may not be that straightforward due to the fact that there are possible local
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minima. Note that if for any non-negative y, the feasible set for (6.3) is not empty, that
is, the constrain z € H N {(1,2z')g = y} does not give us an empty set of z, we do not
have to consider (6.4) to obtain (6.2). Empirically, we find that it is rather rare that
all the feasible sets for (6.3) are empty. In any event, since % is a function of a single
variable g, its sup can be obtained numerically without much difficulty. One can then
simulate a large number of realizations g from G and obtain an approximation to the
distribution of (6.1). Note that the critical value ¢, may also be approximated via the
techniques recently developed for obtaining tail probabilities of the maxima of Gaussian
random fields (Sun (1993); Sun, Loader and McCormick (2000)).

When all the covariates are continuous, any bounded support of the covariates can
be defined by a linear inequality constrain of z. Now, suppose that the first component
of Z is discrete with two possible values, say, 0 and 1, and the rest of covariates are

continuous. Then, the corresponding sup,.{W(z)/o(z)} can be obtained by taking

(1,2)G

Coaay here

the maximum of two sup-statistics similar to (6.1), that is, SUDP ey,
H,=HN{(1,0,---,0)z =1} and [ = 0, 1. For the general case with a mixture of discrete
(say, a total of m possible combinations) and continuous covariates, the sup,ey W (z)/0(z)
can be obtained by taking the maximum of m sup-statistics similar to (6.1), each of them
has an extra linear equality constrain defined by a set of specific values generated from
all the discrete covariates.

Now, consider (6.1) with % = R? Let v = X'2(1,2')", h = ¥~'/2g. Then (6.1) =
SUDy.yrg—1 \}’%, where s’ = (s1,---,5441) is the first row of the matrix ¥~1/2. Recall that
v'h = y. It follows from 1f.1.3 of Rao (1973) (p.60) that the minimum value h(y) of v'v
is A,

s's sh 1 _ Zfill hi — 2(2?211 sihi)y + (Zj;l s7)y?
s’h h'h y Sy 82 i B2 = (D sih)?

where h; is the ith component of h. This implies that the maximum value of y/h(y) is

(1,9)

bl
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the maximum value of

y\/Zi”fS

d+1 )
=1 Slh)

\/zd—f—l h2 —

over y > 0, which is

d+1

i=1 Si

\/Zd—f—l h2
Vi b

(O, sihi)?
d+1 52

zlz

ha)y + (3i0) s2)y?

if 34 sk <0

if S sih; >0

Since X'/2@ is the standard normal, it is easy to show that the above quantity or (6.2) is

a realization of a mixture of x4 and 4.1 with a mixing probability of 0.5. Note that one

may use the 100(1 — «)th percentile of this mixing distribution to be an upper bound of

the cutoff point ¢, for the case with any type of covariate vector Z.
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Figure 1. The graphical display for point and interval estimates for 2,
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Figure 2. Kaplan-Meier estimates of survival probabilities for three treatment groups in

the myeloma study
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(a) Qp = {z : pr(T < 42|z) > 0.7}

Figure 3 Estimated regions of predictors for short-term survivors with multiple myeloma.
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(b). ©% = {z : the median of T' < 36}
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(a). Q, ={z:pr(T > 42|z) > 0.7}

Figure 4. Estimated regions of predictors for long-term survivors with the multiple myeloma.
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(b). ©; = {2z : the median of T > 48}
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Table 1

The empirical coverage levels of interval estimators for €2,

n  no censoring 20% censoring

0.95 0.90 0.95 0.90
100 091 0.84 0.91 0.84
250 0.92 0.86 0.92 0.86
450 0.94 0.88 0.94 0.88
650 0.94 0.89 0.94 0.89
80 0.94 0.89 0.94 0.89
1050 0.94 0.89 0.94 0.89
1250 0.95 0.89 0.94 0.89
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