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SMOOTH QUANTILE RATIO ESTIMATION

Francesca Dominici, Leslie Cope, Daniel Q. Naiman, and Scott L. Zeger

October 28, 2003

Abstract

In a study of health care expenditures attributable to smoking, we seek to compare the

distribution of medical costs for persons with lung cancer or chronic obstructive pulmonary

disease (cases) to those without (controls) using a national survey which includes hundreds

of cases and thousands of controls. The distribution of costs is highly skewed toward larger

values, making estimates of the mean from the smaller sample dependent on a small fraction

of the biggest values. One approach to deal with the smaller sample is to rely on a simple

parametric model such as the log-normal, but this makes the undesirable assumption that

the distribution of the log-expenditures is symmetric.

We propose a novel approach to estimate the mean difference of two highly skewed dis-

tributions (∆), which we call Smooth Quantile Ratio Estimation (SQUARE). SQUARE

is obtained by smoothing, over percentiles, the ratio of the cost quantiles of the cases and

controls. SQUARE defines a large class of estimators of ∆ including: 1) the sample mean dif-

ference, 2) the maximum likelihood estimate under log-normal samples, and 3) L-estimates.

We detail asymptotic properties of SQUARE such as consistency and asymptotic normality,

and also provide a closed form expression for the asymptotic variance.

Through a simulation study, we show that SQUARE has lower mean squared error than sev-

eral competitors including the sample mean difference, and log-normal parametric estimates

in several realistic situations. We apply SQUARE to the 1987 National Medicare Expen-

diture Survey to estimate the difference in medical expenditures between persons suffering

from the smoking attributable diseases, lung cancer and chronic obstructive pulmonary dis-

ease, and persons without these diseases. Software in R (Ihaka and Gentleman, 1996) for

the implementation of SQUARE and of all its special cases, and the cost data used in this

paper are available at http://biostat.jhsph.edu/∼fdominic/square.html.

KEYWORDS: Comparing means, skewed distributions, order statistics, log-normal, regres-

sion splines, Q-Q plots, smoking, health expenditures.
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1 Introduction

This paper is motivated by the question of how to estimate smokers’ medical expenditures

attributable to their having lung cancer, chronic obstructive pulmonary disease (COPD) or

other diseases predominantly caused by smoking. As a component of our analysis, we com-

pare medical expenditures between persons with lung cancer or COPD (cases) and persons

without a major smoking attributable disease (controls) in a given year. That is, we seek to

estimate the difference ∆ = E[Y1]−E[Y2] where Y1 and Y2 are random variables representing

the expenditures for a case and control groups, respectively. We estimate ∆ using the 1987

National Medical Expenditure Survey (National Center For Health Services Research, 1987),

one data set on annual medical expenditures and disease status for a representative sample

of U.S. non-institutionalized adults.

This statistical problem is made interesting by two facts. First, the distribution of the non-

zero medical expenditures is highly skewed to large values. Figure 1 shows histograms of

non-zero medical expenditures in NMES with and without a logarithmic transformation.

Ninety percent of the total expenditures is contributed by only forty percent of the people.

Second, we have a much smaller sample of disease cases than controls. Among persons 40

years and older with non-zero expenditures in NMES, only 118 persons have lung cancer or

COPD, while 2262 persons are without a major smoking attributable disease. The problem

addressed in this paper is how to reliably estimate the difference in means from two right-

skewed distributions given two independent samples, one being substantially smaller than

the other.

The problem introduced above is one of a set of problems that arises in studying expenditure

data. These include a significant fraction of zero expenditures, right censoring, and lack of

independence among observations within clusters (Lipscomb et al., 1999). The general prob-

lem of comparing costs among two or more groups is important in econometrics, statistics,

and other disciplines (Duan, 1983; O’Brien, 1988; Fenn et al., 1996; Lin et al., 1997; Hlatky

et al., 1997; Lin, 2000; Tu and Zhou, 1999).

To motivate our approach, let y11, . . . , y1n1 and y21, . . . , y2n2 be the observed non-zero costs

in the case and control groups. An obvious estimator of ∆ is the difference in sample means

ȳ1− ȳ2 where ȳg = 1
ng

∑ng

i=1 ygi, g = 1, 2. Because we anticipate a highly skewed distribution

and one of the samples to be much smaller than the other (n1 < n2), this unbiased estimator

may be more variable than alternatives.
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One such alternative is the log-normal model, in which the logarithms of the expenditures are

assumed to follow normal distributions: log ygi ∼ N(νg, σ
2
g), i = 1, . . . , ng, g = 1, 2. Under

the log-normal assumption, the difference in mean expenditures for the two populations is by

∆ = exp(ν1 + σ2
1/2)− exp(ν2 + σ2

2/2) (Aitchison and Shen, 1980). The maximum likelihood

estimate of ∆ is biased (Zellner, 1971), but has reduced variability relative to the sample

mean difference because it reduces the degree of dependence on the few largest observations.

Zhou et al. (1997) and Zhou and Gao (1997) have studied methods for testing the null

hypothesis that ∆ = 0 under the log-normal model. Many authors have used the log-normal

model for inferences about the mean of a non-zero random variable (Land, 1971; Angus,

1994; Duan et al., 1983; Zhou and Melfi, 1997; Lipscomb et al., 1999; Andersen et al., 2000).

An important limitation of the log-normal model for estimating total or mean costs results

from the symmetry inherent in the normal distribution for the logarithms of the expendi-

tures. When the mean expenditure is the scientific focus, the right tail of the distribution

contributes most to the mean; the smaller values in the left tail have less influence. Under

the symmetry assumption for the log expenditures, we assume that the right and left tails

have the same shape on the logarithm scale so that the very smallest expenditures in the

sample can be viewed as providing information about the largest ones. In most applications,

including the lung cancer and COPD expenditures problem that motivates this work, this

symmetry assumption is not based upon any meaningful mechanism and is not likely to be

realistic.

One way to view the limitation of the log-normal model to address skewness, is in terms of

the quantile-quantile or Q-Q plot. The quantile estimates of the two distributions are plotted

against each other (Wilk and Gnanadesikan, 1968; Doksum and Sievers, 1976; Parzen, 1979;

Nair, 1982; Wilcox, 1995). Under the log-normal model, the logarithms of the quantiles from

each distribution satisfy the linear equation:

log Q1(p) =

(
ν2 − σ2

σ1

ν1

)
+

σ2

σ1

log Q2(p) (1)

where Q1(p) and Q2(p) are the quantile functions of the random variables Y1 and Y2 rep-

resenting the non-zero expenditures for the case and control groups. If we use the mean

and variance of the log-transformed data to estimate the intercept and slope from the Q-Q

plot, then the smallest observations have as much influence on the intercept and slope as the

largest observations. This is clearly undesirable when the goal is to estimate the difference

in population means, especially when evidence exists in the Q-Q plot against the linearity

assumed. Figure 2 displays the Q-Q plot of the log expenditures for the cases versus those for
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the controls, as well as the straight line corresponding to the maximum likelihood estimates

of the log-normal parameters for each sample.

If evidence exists in the Q-Q plot against the linearity assumed under the log-normal model,

we might assume that Q1(p) is an arbitrary function of Q2(p), that is Q1(p) = g (Q2(p))

or equivalently F1(y) = F2 (h(y)) where Fg(y), g = 1, 2 are the cumulative distribution

functions of Y1 and Y2. Doksum and Sievers (1976) define h(.) as the amount of “shift”

needed to bring Y1s up to the Y2s in distribution. For example, we might assume that Q1(p)

is a smooth function of Q2(p) with λ degrees of freedom, Q1(p) = s(Q2(p), λ), where s is a

parametric or a non-parametric smoother.

There are three possible limitations of the shift model for application to the estimation of

∆. First, one might estimate Q1 and Q2 at a given set of percentiles and regress Q̂1 on Q̂2.

This regression approach leads to conditioning on Q2 rather than treating the two quantile

functions symmetrically, as would be natural when the target for inference is ∆. Second, the

smooth function s would take arguments on the positive real line making choice of λ critical.

Third, if we then use the fitted values from the smoother to calculate ∆̂, this estimate is

simply the difference in the sample means.

As an alternative, we assume that the log-quantile ratio is a smooth function of the percentile

p with λ degrees of freedom:

log
Q1(p)

Q2(p)
= s(p, λ), 0 < p < 1. (2)

This is the basic idea of Smooth Quantile Ratio Estimation (SQUARE). Differently from

the shift estimator (Doksum and Sievers, 1976), SQUARE “spends” its degrees of freedom λ

over the interval (0,1) rather than over the real line, and hence imposes stronger smoothness

constraints in the tails where little information is available in our smaller sample. As a result,

SQUARE produces an estimator of ∆ that tends to be less variable than the difference in

sample means. For different distributional assumptions, shapes of s(p, λ) and choices of

λ, SQUARE encompasses rich class of estimators including the sample mean difference,

the maximum likelihood estimate under log-normal samples, and L-estimates. SQUARE

borrows strength across neighboring percentiles of the distribution to reduce the variability

in the estimated mean difference rather than relying on symmetry assumptions inherent in

the log-normal model. In summary, the development of SQUARE is motivated by the needs

to: 1) address skewness without making fully parametric assumptions on the underlying
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distributions for the two samples; 2) treat the two samples symmetrically; 3) and expand

the class of estimators to include existing ones and others that may be very efficient in some

circumstances.

In section 2, we introduce SQUARE as a semi-parametric method using a parametric model

for the log-quantile ratio and non-parametric estimate of the quantile functions. In section 3,

we show that, under certain bounding conditions for the log-quantiles, SQUARE is consistent

and asymptotically normal. Here we also provide an explicit expression for the asymptotic

variance of SQUARE, and examples where our asymptotic results apply. In Section 4, we

present a simulation study that compares bias and variance properties of SQUARE with

the log-normal maximum likelihood estimate and the sample mean difference. Here we also

illustrate SQUARE with an analysis of the NMES data shown in Figure 1. In this section

we also illustrate a cross-validation method for estimating the number of degrees of freedom

λ. Section 5 is a discussion of opportunities for further development of this idea. Proofs of

the asymptotic results are detailed in the Appendix.

2 Smooth Quantile Ratio Estimation (SQUARE)

2.1 Definition

Let Y1 and Y2 be two positive random variables. For example in the motivating application,

these are the non-zero expenditures for the cases and controls, respectively. We consider the

two cumulative distribution functions F1 and F2, and define Q1 and Q2 to be the correspond-

ing quantile functions so that Qg(p) = F−1
g (p) and Fg(Qg(p)) = Pr{Yg ≤ Qg(p)} = p, g = 1, 2

and 0 ≤ p ≤ 1. Our goal is to estimate the difference:

∆ = E[Y1]− E[Y2] =

∫ 1

0

{Q1(p)−Q2(p)}dp , (3)

assuming that the ratio of the quantiles is a smooth function of the percentiles with λ degrees

of freedom:

log
Q1(p)

Q2(p)
= s(p, λ), 0 < p < 1. (4)

4
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Then Equations (3) and (4), lead to:

∆ =

∫ 1

0

Q1(p) [1− exp (−s(p, λ))] dp =

∫ 1

0

Q2(p) [exp (s(p, λ))− 1] dp. (5)

2.2 Estimation Approach

Let y1 = (y11, y12, · · · , y1n1) be an iid sample of size n1 from F1, and y2 = (y21, y22, · · · , y2n2)

be an iid sample of size n2 from F2. We define y(g) = (yg(1), yg(2), · · · , yg(ng)) to be the order

statistics for the sample from Fg. We first estimate ∆ for the case n1 = n2 = n, and then

extend our definition to the more common situation n1 << n2.

The estimation approach can be described in two steps. First, we define a regression model

for s(p, λ) and we use it to smooth the observed log-ratio log(y(1)/y(2)) across percentiles

(parametric part). Second, we estimate ∆ by using the smoothed quantile ratios and non-

parametric estimates of F1 and F2 (non-parametric part). The two steps are detailed below.

Parametric step: we impose a smoothness assumption for s(p, λ) by assuming a regression

model:

log
y1(i)

y2(i)

= s(pi,β) + εi, i = 1, . . . , n (6)

where: s(pi,β) =
∑λ

j=0 Bj(pi)βj, pi = i/(n + 1), and Bj(p) are orthonormal basis functions,

with B0(p) = 1. We estimate β̂ = (β̂0, β̂1, . . . , β̂λ) by ordinary least squares, although

alternative and more efficient methods could be substituted.

Non-parametric step: we define u1 = (y(1),y
?
(1)) and u2 = (y(2), y

?
(2)) to be two samples

of size 2n where y?
1(i) = y2(i) exp

(
s(pi, β̂)

)
, and y?

2(i) = y1(i) exp
(
−s(pi, β̂)

)
, and s(pi, β̂) be

the fitted values from the regression model (6). We estimate ∆ by:

ŜQ(λ) = ū1 − ū2

= 1
2n

∑n
i=1 y1(i)

[
1− exp

(
−s(pi, β̂)

)]
+ 1

2n

∑n
i=1 y2(i)

[
exp

(
s(pi, β̂)

)
− 1

]
.

(7)

ŜQ(λ) is then the sample mean difference of the two ”extended samples” ug, g = 1, 2, by

which we mean the vector of actual observations y(g) augmented with the transformed values

from the other sample y?
(g). Therefore, it has the desirable property of being symmetric,

that is ŜQ(u1,u2, λ) = −ŜQ(u2, u1, λ) which is not necessarily shared by shift estimators.

5
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Furthermore, ŜQ(λ) can also be viewed as a linear combination of order statistics, but with

weights estimated from the data, and thus it is related to L-estimation (Huber, 1996; Serfling,

1980).

The motivating application for SQUARE is n1 < n2, that is, one sample is much smaller

than the other. Here we calculate ŜQ(λ) by replacing y2 by q2, the linear interpolation of

the order statistics y2(i) to the grid of points p1i = i/(n1 + 1), i = 1, . . . , n1. Similarly if

n1 > n2, then we replace y1 by q1, the linear interpolation of the order statistics y1(i) to the

grid of points p2i = i/(n2 + 1), i = 1, . . . , n2. This definition of SQUARE still maintains the

property of symmetry.

This paper focus on non-zero random variables, but a common difficulty in the statistical

analysis of expenditure data is the presence of a significant percentage of zero-cost observa-

tions. For example, in our application, the total number of cases and controls are N1 = 188

and N2 = 9228, respectively. Among these only n1 = 118 and n2 = 2262 have non-zero

expenditures, the remaining N1 − n1 = 70 and N2 − n2 = 6966 have observations with

zero costs. If we let π1 = P (Y1 > 0) and π2 = P (Y2 > 0) be the probabilities of non-zero

expenditure the disease and control groups, respectively, and let µ1 = E[Y1 | Y1 > 0] and

µ2 = E[Y2 | Y2 > 0] be the mean of the non-zero values in the disease and control groups,

then we seek to estimate ∆ = π1µ1 − π2µ2. It is appropriate to revise Equation (7) as

ŜQ(λ) = π̂1ū1 − π̂2ū2 where π̂j is the fraction of non-zero responses for population j.

2.3 Special Cases of SQUARE

In the previous section we have illustrated how to estimate ∆ with SQUARE, that is by

using a semi-parametric procedure where: 1) we first estimate s(p, β) by taking the fitted

values from the regression model (6); 2) given the estimated s(p, β̂), we estimate ∆ non

parametrically. For different shapes of s(p, β), choices of the basis functions Bj(p), and

specifications of parametric cdf, SQUARE encompasses a very large class of estimators.

Below are detailed some special cases.

1. ŜQ(Unif, λ = 0): s(p, β) is constant and Yg, g = 1, 2 are uniform r.v. We assume

Yg ∼ U [0, θg], then Q1(p)/Q2(p) = θ1/θ2 and ∆ = (θ1− θ2)/2. The SQUARE estimate

of ∆, denoted as ŜQ(Unif, λ = 0) is obtained by: 1) fitting the regression model (6)

with B0(p) = 1 and B1(p) = 0, and 2) using s(pi, β̂) = β̂0 = l̄y1− l̄y2 where ly = log(y)

6
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in equation (7). This leads to ŜQ(Unif, λ = 0) = 1
2

[
ȳ1(1− exp(−β̂0))− ȳ2(1− exp(β̂0))

]
.

Note that ŜQ(Unif, λ = 0) is not the MLE of ∆ which is equal to (y1(n) − y2(n))/2.

2. ŜQ(LN, λ = 1): s(p,β) is linear in Φ−1(p) and Yg, g = 1, 2 are log-normal

r.v. We assume Yg ∼ LN(νg, σg), then log(Q1(p)/Q2(p)) = β0 + β1Φ
−1(p) where

Φ−1(p) is the quantile function of the Normal r.v., β0 = (ν1 − ν2), β1 = (σ1 − σ2),

and ∆ = exp(ν1 + σ2
1/2) − exp(ν2 + σ2

2/2). The SQUARE estimate of ∆, denoted as

ŜQ(LN, λ = 1), is obtained by: 1) fitting the regression model (6) with B0(p) = 1

and B1(p) = Φ−1(p), and 2) using s(pi, β̂) = β̂0 + β̂1Φ
−1(pi) in equation (7). Note

that ŜQ(LN, 1) is not the MLE of ∆, which instead is defined as LN = exp(l̄y1 + s2
1/

2) − exp(l̄y2 + s2
2/2), where ly = log y and s is the standard deviation of the log-

transformed data. Also note that, if σ1 = σ2, then s(p, λ) is constant in p and equal

to β0.

3. The sample mean difference: s(p, β) interpolates the log-quantile ratios.

Here n1 = n2 = n = λ and the basis functions in (6) can be chosen so that s(p, β̂)

interpolates the values log
(

y1(i)

y2(i)

)
. In this case, we treat the two samples as independent

and we do not borrow strength from one distribution to the other in estimating ∆. Here

SQUARE reduces to the difference in sample means ȳ1 − ȳ2.

4. L-estimates: s(p,β) is known but with unspecified shape. Equation (7) shows

that, if s(p, β) is known then SQUARE is the average of two L-estimates (Huber,

1981).

3 Asymptotic Properties of SQUARE

In this section we show that the random coefficients β̂ and SQUARE itself are both asymp-

totically normal. We give explicit expressions for the variance of each.

Theorem 1 Consistency and asymptotic normality of β̂ Assume n1, n2 → ∞ and

there exist M, b1, b2 and δ > 0 such that

A) | log F−1
g (p)| ≤ Mp−1/2+b1+δ(1− p)−1/2+b2+δ, for g = 1, 2,

7
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B) the basis functions |Bj(p)| are continuously differentiable on (0, 1) and |Bj(p)| ≤ Mp−b1(1−
p)−b2

then β̂j is strongly consistent for βj, j = 0, 1, . . . , λ. In addition, if we assume that

C) the limit limn1,n2→∞ n1/(n1 + n2) exists and is in the interval (0, 1)

then β̂ − β has an asymptotic multivariate normal distribution with mean 0 and covariance

matrix Σ = (σij) where

σij =

{
1

n1

+
1

n2

} ∫ 1

0

∫ 1

0

(min{p, q} − pq) Bi(p)Bj(q)dpdq.

Remark 1 For consistency alone, the first condition can be replaced by the following relaxed

condition

A
′
)

∫ | log Yg|rdFg(x) < ∞, | log F−1
g (p)| ≤ Mt−1+b1+δ(1− t)−1+b2+δ, for g = 1, 2.

Proof: The consistency and asymptotic normality of individual coefficients β̂j is an im-

mediate corollary to the L-statistic results of Shorack Shorack (1972) and Wellner Wellner

(1977). The Cramer-Wold device is applied to show that β̂ − β has an asymptotic multi-

variate normal distribution. See, for example, Billingsly ? for details of Cramer and Wold’s

method.

Asymptotic Normality of SQUARE The principal result of this section is the following

proof that ∆̂−∆ has an asymptotic normal distribution. Our general approach will be the

the differentiable statistical functional method (functional δ-method) developed by von Mises

and described in (Serfling, 1980). To use this method, we establish an asymptotic equivalence

between the SQUARE estimator and the functional below, to which we can adapt the von

Mises framework. Details of this result, including a proof of the equivalence, are found at

Cope (2003). Our functional takes the form:

T (F1, F2) =
1

2

∫ 1

0

F−1
1 (p) (1− exp{−s(p,β)}) dp +

1

2

∫ 1

0

F−1
2 (p) (exp{s(p,β)− 1}) dp

8
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where

s(p,β) =
λ∑

j=0

βvjBj(p),

and

βj =

∫ 1

0

Bj(p)
[
log

(
F−1

1 (p)
)− log

(
F−1

2 (p)
)]

dp.

so that the functional version of the estimator is given by T (F̂1, F̂2). To prove asymptotic

normality, we expand the functional in a one term Taylor series. The directional derivative

of the functional at the point (F1, F2) converges to a Gaussian distribution. If the remainder

converges in probability to zero, then the estimator, like the derivative, has a Gaussian

limiting distribution.

The assumptions are bounding conditions very similar to those required to prove that L-

estimators are asymptotically normal.

Theorem 2 Assume that n1, n2 → ∞ and that λg = limn1,n2→∞ n1/(n1 + n2) exists and

lies in (0, 1). Suppose there exist M, b, and δ > 0 such that the following conditions hold for

g = 1, 2, j = 1, 2, . . . , k and all p ∈ (0, 1)

A) F−1
g ≤ M(p(1− p))−b+δ and | log F−1

g | ≤ M(p(1− p))−1/2+δ,

B) exp
{

(−1)g
∑λ

j=1 βjBj(p)
}
≤ M(p(1− p))−1/2+b,

C) |Bj(p)| ≤ M(p(1− p))−δ/(δ+2).

Then
√

n
(
∆̂−∆

)
has an asymptotic normal distribution with mean 0 and variance σ2

where

σ2 =

∫ 1

p=0

∫ 1

q=0

(min(p, q)− pq) (λ1η1(p)η1(q) + λ2η2(p)η2(q)) dpdq, (8)

and

ηg(p) =
F−1

g (p) + 1
2

(
F−1

1 (p) + F−1
2 (p)− ∫ 1

q=0

∑K
j=1 Bj(q)

(
F−1

1 (q) + F−1
2 (q)

)
dq

)

(−1)gF−1
g (p)fg

(
F−1

g (p)
) .

9
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A sketch of the proof is found in the appendix. Weak consistency is obtained as a corollary

to asymptotic normality.

We conclude with a couple of examples to which our asymptotic results apply.

Example 1 If both samples are drawn from lognormal distributions, then SQUARE is con-

sistent and asymptotically normal. In this case, Fg = Φ( log x−µg

σg
), F−1

g = exp {µg + σgΦ
−1(p)} ,

and log F−1
g = µg + σgΦ

−1(p), where Φ is the standard normal distribution function. The

log-quantile ratio is a linear function of Φ−1(p) so a natural orthonormal basis is B0 ≡ 1 and

B1 = Φ−1(p).

Example 2 If both samples are drawn from Pareto distributions with cdf F (x) = 1− bax−a

and a > 2, then SQUARE is strongly consistent and asymptotically normal. The Pareto

distribution makes an interesting example for SQUARE because it is very heavy tailed, and

has a finite kth moment only if the shape parameter a ≥ k. Its density function is f(x) =

abax−a−1, where x ≥ 1 and a, b > 0. The log-quantile function is given by log F−1(p) =

log b − log(1 − p)/a leading to the two basis functions B0(p) ≡ 1 and B1(p) = log(1 − p).

Note that the orthonormalized version of B1 is equal to (log(1− p) + 1)/
√

(3).

4 Simulations and Data Analysis

This section demonstrates that ŜQ(λ) (for moderate λ, and for λ estimated from the data)

has substantially lower mean squared error and bias than common used estimators of ∆,

such as the maximum likelihood estimator for log-normal populations and the sample mean

difference.

More specifically, we estimate λ by use of a B-fold cross-validation method (Efron, 1983;

Breiman and Spector, 1992; Efron and Tibshirani, 1993; Shao and Tu, 1995) which minimizes

CV (λ) =
B∑

b=1

[
(ȳ

(b)
1 − ȳ

(b)
2 )− ŜQ

(−b)

λ

]2

(9)

where (ȳ
(b)
1 − ȳ

(b)
2 ) is the sample mean difference applied to the two b-th random sub-vectors

10

http://biostats.bepress.com/jhubiostat/paper8



for the cases and the control (the training sets) a ŜQ
(−b)

λ is the SQUARE estimate obtained

with the rest of the data. We choose B = 10 and we minimizes CV (λ) for λ = 1, 2, 4, 6, 8.

Data are generated under 4 scenarios, A, B, C, and D. Under each scenario, we compare bias

and variance properties of the following six estimators of ∆: 1) ŜQ(λ̂) where λ̂ is estimated

by minimizing CV (λ) in equation (9); 2)ŜQ(λ = 2); 3) ŜQ(λ = 4); 4) SQUARE under the

assumption that the two populations are log-normal ŜQ(LN, 1); 5) the maximum likelihood

estimator under the log-normal model LN ; and 6) the sample mean difference ȳ1 − ȳ2.

Table 1 and Figure 3 summarize the four scenarios studied. The first three scenarios A,B and

C, are theoretical distributions in which population 2 is log-normal with mean ν2 = 7 and

standard error σ2 = 1.5. These parameters were chosen to roughly approximate the sample

statistics from the medical expenditures datasets for non-diseased subjects. In scenario

A, population 1 is is also log-normal with a higher mean ν1 = 7.5 and a higher standard

error σ1 = 1.75. In scenarios B and C, population 1 differs from 2 by the functions s(p)

shown in figure 3, chosen to represent a range of plausible shapes. We also studied ŜQ(λ)’s

performance for the empirical expenditure distribution drawn from the NMES data. Scenario

D, whose log-quantile functions are pictured in Figure 3 with dark solid lines, contrasts the

distributions of non-zero medicare expenditures for 118 lung cancer or COPD patients to

2262 controls.

In our simulations, we generated 500 data sets for each scenario, and we compared estimators

with equal sample sizes n1 = n2 = 100 and unequal samples with n1 = 100, n2 = 1000.

The results were qualitatively similar and hence we report only the unequal case. For each

generated data set, we estimate SQUARE for λ̂ and for λ = 2, 4 by use of natural cubic

splines as basis functions.

These results show that ŜQ outperforms both ȳ1− ȳ2 and the log-normal estimators in terms

of MSE. Table 2 presents the relative mean square error (MSE) as a percent of the MSE for

ȳ1 − ȳ2, e.g.
(
mse(ȳ1 − ȳ2)−mse(∆̂)

)
/mse(ȳ1 − ȳ2). Negative values imply that ȳ1 − ȳ2 is

preferred, positive percents favor the comparator ∆̂.

In scenario A, when both populations are log-normal, ŜQ(λ̂) and ŜQ(λ) for λ = 2, 4 are

52, 49 and 40 percent better than ȳ1− ȳ2. Note that the SQUARE estimates perform better

even than the log-normal MLE (LN) which in this case is asymptotically efficient. This is

because the relatively small sample size of the case group (n1 = 100) leads to a maximum
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likelihood estimate of E[Y1] that is less efficient than the sample mean of the extended

sample ū1. By borrowing strength from the distribution in the control group, SQUARE

gains efficiency in estimating E[Y1].

In scenario B, the six estimators have comparable performance and they are all superior

than the sample mean difference. In scenarios C and D, the estimates ŜQ(LN, 1) and LN

performs very poorly due to the substantial non-linearity of s(p) whereas the SQUARE

estimates are 51, 54 and 44 percent better than the sample mean difference. Finally, for the

empirical scenario D, the SQUARE estimates are 20 percent better than the sample mean

difference, and again the log-normal estimators performs very poorly.

Table 3 summarizes bias of ∆̂ as a percent of the true ∆, e.g.
(
E(∆̂)−∆

)
/∆, and shows

that ŜQ(λ) has small percent bias in the cases considered. In most cases the bias of the

SQUARE estimates is comparable to the bias of the sample mean difference, which is unbi-

ased in large samples. As expected, the bias of ŜQ(LN, 1) is small only when s(p) is almost

constant. Finally, except in scenario A when the two populations are log-normal, the LN is

badly biased.

We have also performed a sensitivity analysis of SQUARE to the choice of the basis functions.

For each of the 500 data sets, and for each scenario, we estimate s(p) by using, in addition to

the natural cubic splines, smoothing splines and polynomials. These estimates are all close

to each other and to the true s(p) (results not shown) .

Finally, we analyze the NMES data represented in Figures 1 and 2, also used as scenario D,

to estimate the mean difference between annual Medicare expenditures for persons with lung

cancer or COPD (cases), diseases caused largely by smoking, and otherwise similar persons

without these two smoking-attributable diseases (controls). In addition to estimating the

overall mean difference in expenditures for persons with and without disease caused by

smoking, a second question is whether this difference is smaller for smokers who perhaps

seek or receive fewer services. That is, does smoking status modify the difference in medical

expenditures between the cases and the controls? Table 4 shows the number of disease cases

and controls for smokers (current or former), and for the non-smokers (never). The numbers

within parentheses represent the percentage of people in that cell with non-zero expenditures.

The percentage of cases with non-zero expenditures is more than twice as large as for the

controls (65% and 25%); this is consistent with our expectation that people with disease

receive more services. These proportions are similar for smokers and non-smokers.
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We apply the two-part analogues of the: 1) SQUARE estimates, 2) maximum likelihood

estimator under log-normal population; and 3) weighted difference in the sample means

to the NMES data base, and to the subset of the NMES data for smokers only. Figure

4 summarizes boxplots of 100 bootstrap estimates of ∆ for everyone and for the smokers

only. Simulation study results suggest that the SQUARE estimates are far more efficient

with respect to the selected competitors. In addition the non-linearity of the estimated

s(pi,β) (bottom right panel of Figure 3) also suggests that and that the maximum likelihood

estimator (LN) is likely to be highly biased. As expected the estimator ŜQ(λ̂) is more variable

than the SQUARE estimates with λ known, because it also takes into account of the model

uncertainty. Estimates for the smokers are slightly larger than for everyone.

5 Discussion

In this paper, we have proposed a novel class of estimators of the difference of the expected

values of two skewed distributions that encompasses most of the current approaches. Our

innovative approach model the log-ratio of the two quantile functions as a smooth function

of the percentiles where the degree of smoothness can be estimated from the data. By

smoothing across percentiles, we borrow strength across the two samples and produce an

estimator that is more efficient than the difference in sample means and log-normal estimators

in the cases relevant to the motivating approach. In summary, SQUARE is a semi-parametric

method using a parametric model for smoothing the log-quantile ratios across percentiles,

and a non-parametric estimator of the two quantile functions. The software for implementing

SQUARE and the data for reproducing all the analyses reported in this paper are available

at http://biostat.jhsph.edu/∼fdominic/square.html.

The idea of linking two samples in a semi-parametric model is obviously not new. Perhaps

the most famous and influential example is the Cox proportional hazards model (Cox, 1972)

where the target is the hazard ratio. A second example is the density ratio model of Qin and

Zhang (1997). Here, the ratio of densities f(x)/g(x)is assumed to be a smooth function of x.

This model would lead to an estimator of the mean difference that is analogous to ours but

where a smooth function of the unordered data is used in Equation 7 rather than a smooth

function of the order statistics. There is a fundamental difference in the two approaches. We

smoothly map the random variables themselves to one another; they map their probabilities.
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SQUARE encompasses and generalizes a large class of estimators including L-estimates (Hu-

ber, 1996; Serfling, 1980). If s(p) is known, then SQUARE is a linear combination of order

statistics. If s(p) is unknown, then SQUARE is still a linear combination of order statistics,

but with weights estimated from data. This fact has been exploited to develop the asymp-

totic theory presented in this paper, which owes much to the L-estimation results of Shorack

(1972), Wellner (1977), Boos (1979), and Serfling (1980).

Under certain bounding conditions for the quantile functions, we showed that SQUARE is

consistent and asymptotically normal. We provided an explicit expression for the asymp-

totic variance of SQUARE, and examples where our asymptotic results apply. Although the

bounding conditions included in the theorems may appear awkward, their purpose is quite

straightforward: these bounds are sufficient to ensure that all integrals are bounded in prob-

ability. The bounds are tight and cannot be relaxed, but other combinations of conditions

will suffice as well.

For an arbitrary pair of distributions, it is not guaranteed that the quantile ratio falls within

the span of any pre-defined and finite basis. Therefore it is important to allow the basis to

grow with the sample. Asymptotic normality can generally be extended to this case if the size

of the basis is no greater than log n. We do require some regularity conditions on the basis

for this result to hold, but for square-integrable, log quantile functions, we can guarantee

the existence of a suitable basis. An extensive discussion of the asymptotic properties of

SQUARE and its relationships with L-estimation is reported in Cope (2003).

In the simulation study, we showed that SQUARE out-performs the sample mean difference

and the log-normal MLE estimator for moderate values of the smoothing parameter λ and for

λ estimated by use of cross-validation methods. We also performed a simulation study where

we sample Y1 and Y2 from exponential distributions. Here the maximum likelihood estimator

of the mean difference of two exponential random variables is the sample mean difference,

and SQUARE’s performance is similar to the MLE. As an alternative to SQUARE, we could

assume that Qlog Y1(p) = s(Qlog Y2(p), λ), and estimate ∆ by using the fitted values of the

QQ-plot. In our simulation study we compared this estimator with SQUARE. We found

that, although this is certainly a reasonable estimation approach, it is not as efficient as

SQUARE.

The development of SQUARE was motivated by the estimation of smoking attributable

medical expenditures. A key component is to estimate the mean medical expenditures be-
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tween persons with smoking attributable-diseases (e.g. lung cancer or COPD) and otherwise

similar persons without such diseases. Our analysis of expenditures allows smoking status

to modify the effect of disease on expenditures. We examine this effect modification first

by stratifying the cases and the controls with respect to their smoking status, and then by

estimating SQUARE separately for smokers and non-smokers, within each stratum.

However, a more desirable goal would be to compare medical expenditures for cases and

controls taking into account individual-level characteristics x. In this case SQUARE can be

extended to the regression case by assuming

log Q1(p; x) = log Q2(p; x) + s(p; x). (10)

To control for systematic differences in covariates between two populations, a common strat-

egy is to group units into subclasses based on covariate values, for example using propensity

score matching (Cochran and Rubin, 1973; Rubin, 1973), and then estimate SQUARE within

strata of propensity scores. The extension of SQUARE to the regression case, and a com-

parison between regression SQUARE and common econometric models such as a two-part

log-linear regression models (Duan, 1983; Mullahy, 1998; Mullahy and Manning, 1995) is

exploited in Dominici and Zeger (2003).

The potential applications of SQUARE are numerous. For example, in clinical trials our

approach can be used to estimate treatment effects that vary smoothly with respect to the

percentiles of the health outcome. If Y has a more nearly symmetric distribution, rather

than smoothing the ratio of the quantiles, we can smooth their difference; that is, we can

assume Q1(p) − Q2(p) = s(p). Under this model, we estimate the treatment effect, ∆, by∫
s(p)dp. The plot of the estimated s(p) versus p is also informative for identifying the

outcome percentiles where the treatment is mostly effective.
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6 Appendix

In using the differentiable statistical functional approach, the largest task is to demonstrate that the remain-
der

R1 =
√

n
(
T (F̂ )− T (F )− d1

(
T, F ;

√
n(F̂ − F )

))

converges to zero in distribution. If the remainder vanishes in the limit, then
√

n
(
T (F̂ )− T (F )

)
is equivalent

to d1

(
T, F ;

√
n(F̂ − F )

)
and the asymptotic properties of the former can be derived from the latter. In the

case of SQUARE, the derivative (??) is given by

d1

(
T, F ;

√
n(F̂ − F )

)
=

√
nλ1

∫ 1

p=0

(
F1(F̂−1

1 (p))− p
)

η1(p)dp

+
√

nλ2

∫ 1

p=0

(
F2(F̂−1

2 (p))− p
)

η2(p)dp. (11)

Both
√

nλ1

(
F1(F̂−1

1 (p))− p
)

and
√

nλ2

(
F2(F̂−1

2 (p))− p
)

converge to Brownian bridges, so the derivative

has a normal asymptotic distribution with variance σ2 as defined above.

Sketch of proof that the remainder converges to zero. At points in this proof it is
necessary to evaluate expressions like

∫ 1

p=0
F̂−1(p)Jn(p)dp where F̂−1 is an empirical quantile function and

Jn(p) may also be data dependent. In order to simplify treatment of these expressions, the following lemma
establishes conditions under which the range of integration can be truncated.

Lemma 1 Let x1, x2, . . . , xn be an i.i.d. sample. Suppose that F̂−1 is the empirical quantile function
corresponding to this data, and let Jn : (0, 1) → < be a possibly random function. Assume that there exist
positive constants M, b and δ such that

A) the quantile function F−1(p) ≤ M(p(1− p))−b+δ, and

B) the random function |Jn(x)| ≤ (
M(p(1− p))−1/2+b

)1+εn where εn
p→ 0.

Then

Tn =
√

n

(∫ k/n

0

F̂−1(p)Jn(p)dp +
∫ 1

(n−k)/n

F̂−1Jn(p)dp

)
p→ 0.

The proof is not included here.
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We break the remainder up into several pieces and prove convergence separately for each piece. Here R1,n

can be written as

1
2

∫ 1

p=0

√
n

(
F̂−1

1 (p)
2 − F−1

1 (p)
2 − [F̂1(F

−1
1 (p))−p]

2f1(F
−1
1 (p))

)
(1− exp (−s(p, β))) dp,

− 1
2

∫ 1

q=0

√
n

2 F−1
1 (q)

[
exp

(
−s(q, β̂)

)
− exp (−s(q, β))

− exp (−s(q, β))
∑

j Bj(q)
∫ 1

p=0
Bj(p)

[
[F̂1(F

−1
1 (p))−p]

F−1
1 (p)f1(F

−1
1 (p))

− [F̂2(F
−1
2 (p))−p]

F−1
2 (p)f2(F

−1
2 (p))

]]
dpdq,

+ 1
2

∫ 1

p=0

[
exp

(
−s(p, β̂)

)
− exp (−s(p, β))

] [
F̂−1

1 (p)− F−1
1 (p)

]
dp





(12)

+ 1
2

∫ 1

p=0

√
n

(
F̂−1

2 (p)
2 − F−1

2 (p)
2 − [F̂2(F

−1
2 (p))−p]

2f2(F
−1
2 (p))

)
(exp(s(p, β))− 1) dp,

+ 1
2

∫ 1

q=0

√
n

2 F−1
1 (q)

[
exp

(
s(q, β̂

)
− exp(s(q, β))

− exp(s(q, β))
∑

j Bj(q)
∫ 1

p=0
Bj(p)

[
[F̂1(F

−1
1 (p))−p]

F−1
1 (p)f1(F

−1
1 (p))

− [F̂2(F
−1
2 (p))−p]

F−1
2 (p)f2(F

−1
2 (p))

]]
dpdq,

+ 1
2

∫ 1

p=0

[
exp

(
s(p, β̂

)
− exp(s(p, β))

] [
F̂−1

2 (p)− F−1
2 (p)

]
dp.





(13)

Only (12) is examined here since the treatment of (13) is identical.

Our first step is to rewrite (12) as R1 + R2 + R3 where we define

R1 =
√

n

2

∫ 1

p=0


F̂−1

1 (p)− F−1
1 (p)−

[
F̂1(F−1

1 (p))− p
]

f1(F−1
1 (p))


 (1− exp (−s(p, β))) dp,

R2 = − ∫ 1

q=0

√
nF−1

1 (q)


 exp

(
−s(q,β̂)

)
−exp(−s(q,β))
2 − exp (−s(q, β))

×∑λ
i=0 Bi(q)

∫ 1

p=0
Bi(p)

[
[F̂1(F

−1
1 (p))−p]

2F−1
1 (p)f1(F

−1
1 (p))

− [F̂2(F
−1
2 (p))−p]

2F−1
2 (p)f2(F

−1
2 (p))

]]
dpdq,

and

R3 =
√

n

2

∫ 1

p=0

[
exp

(
s(p, β̂

)
− exp(s(p, β))

] [
F̂−1

2 (p)− F−1
2 (p)

]
dp.

R1 is the remainder from the differentiable statistical functional representation of an L-statistic and converges
in probability to zero.

After a little bit of algebra, R2 can likewise largely be expressed in terms of L-statistic remainders and
demonstrated to converge in probability to zero. With some manipulation, R2 can be written as

R2 =
√

n

2

∫ 1

p=0


log F̂−1

1 − log F−1
1 −

[
F̂1(F−1

1 (p))− p
]

F−1
1 (p)f1(F−1

1 (p))




×
λ∑

j=1

Bj(p)
∫ 1

q=0

F−1
2 Bj(q)dq, (14)
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+
√

n

2

∫ 1

p=0


log F̂−1

2 − log F−1
2 −

[
F̂2(F−1

2 (p))− p
]

F−1
2 (p)f2(F−1

2 (p))




×
λ∑

j=1

Bj(p)
∫ 1

q=0

F−1
2 Bj(q)dq, (15)

+
√

n

2

∫ 1

p=0

F−1
2 (p) exp


−

∑

j

ξjBj(p)


∑

j

(
(β̂j − βj)Bj(p)

)2

dp. (16)

Each of the first two terms, (14) and (15), is the remainder from the differentiable statistical functional form
of an L-statistic with functional, and so converges in probability to zero.

It remains to deal with (16), as well as R3. We have

exp


−

∑

j

ξjBj(p)


 ≤ exp




∣∣∣∣∣∣
∑

j

βjBj(p)

∣∣∣∣∣∣




1+Γn

,

and thus

√
n

2

∫ 1

p=0

F−1
2 (p) exp


−

∑

j

ξjBj(p)





∑

j

(β̂j − βj)Bj(p)




2

dp

≤ n1/2M1+Γn
2 max

i

(
β̂i − βi

)2
∫ 1

p=0

(
(p(1− p))−1/2+δ2/(δ+2)

)1+Γn

dp. (17)

Setting F̂−1(p) ≡ 1, Lemma 1 can be applied so that (17) is bounded from above by

M3 max
i

(
β̂i − βi

)2

n1/2+(1/2−δ2/(δ+2))(1+Γn).

When n is sufficiently large (and so Γn is sufficiently small), then the exponent on n is less than 1, ensuring
convergence in probability.

The final term, R3 is handled in very similar fashion. We first apply the mean value theorem to represent
exp

(
s(p, β̂

)
− exp(s(p,β)) in the form exp

(
−∑λ

j=1 ξjBj(p)
) ∑

j Bj(p)(β̂j − βj), where the ξj are strictly

between β̂j and βj . Then, defining F−1
2

.= F̂−1
2 (p)− F−1

2 (p), we have

R3 =
√

n

2

∫ 1

p=0

exp


−

λ∑

j=1

ξjBj(p)


 ∑

j

Bj(p)(β̂j − βj)F−1
2 dp

≤
√

n

2

∑

j

|β̂j − βj |
∫ 1

p=0

exp




∣∣∣∣∣∣

λ∑

j=1

βjBj(p)

∣∣∣∣∣∣




1+Γn

max
j
|Bj(p)|F−1

2 dp

≤
√

n

2

∑

j

|β̂j−βj |
∫ 1

p=0


exp




∣∣∣∣∣∣

λ∑

j=1

βjBj(p)

∣∣∣∣∣∣



(
max

j
|Bj(p)|+1

)


1+Γn

F−1
2 dp.
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(18)

Truncating the integrals and applying the bounding functions, we can see that (18) is asymptotically equiv-
alent to

√
n

2

∑

j

|β̂j − βj |
∫ n/(n+1)

1/(n+1)


exp




∣∣∣∣∣∣

λ∑

j=1

βjBj(p)

∣∣∣∣∣∣




(
max

j
|Bj(p)|+ 1

)


1+Γn

F−1
2 dp

≤ M1+Γn
2 n(1−b)(1+Γn)

∑

j

|β̂j − βj ||X2 − µ2|.

The random exponent Γn converges to zero at the same
√

n-rate as does
∑

j |β̂j − βj ||. Also |X2 − µ2|
converges to zero at a

√
n-rate, and so R3 converges in probability to zero.
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Series A, Indian Journal of Statistics, 35, 417–446.

Cope, L. (2003). “Some Asymptotic Properties of Smooth Quantile Ratio Estimation.” Ph.D. thesis,
Department of Applied Mathematics Johns Hopkins University, Baltimore, MD.

Cox, D. R. (1972). “Regression models and life tables.” Journal of the Royal Statistical Society, Series B ,
34, 187–220.

Doksum, K. A. and Sievers, G. L. (1976). “Plotting With Confidence: Graphical Comparisons of Two
Populations.” Biometrika, 63, 421–434.

Dominici, F. and Zeger, S. (2003). “Smooth Quantile Ratio Estimation with Regression: An Analysis of
Medical Expenditures for Smoking Attributable Disease.” Technical report, Department of Biostatistis
Johns Hopkins University.

Duan, N. (1983). “Smearing Estimate: A Nonparametric Retransformation Method.” Journal of the Amer-
ican Statistical Association, 78, 605–610.

Duan, N., Manning, W. G., Morris, C. N., and Newhouse, J. P. (1983). “A comparison of Alternative Models
for the Demand for Medical Care.” Journal of Business and Economic Statistics, 1, 115–125.

Efron, B. (1983). “Estimating the error rate of a prediction rule: Improvement on cross-validation.” Journal
of the American Statistical Association, 78, 316–331.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman &amp; Hall, New York.

Fenn, P., McGuire, A., Backhouse, M., and Jones, D. (1996). “Modelling programme costs in economic
evaluation.” Journal of Health Economics, 15, 115–125.

Hlatky, M., Rogers, W., Johnstone, I., et al. (1997). “Medical care costs and quality of life after randomization
to coronary angioplasty and coronary bypass surgery.” New England Journal of Medicine, 336, 92–99.

Huber, P. J. (1981). Robust Statistics. Wiley.

— (1996). “Robust Statistical Procedures (2nd ed.).” In CBMS-NSF Regional Conference Series in Applied
Mathematics, Number 68 . Soc. Industr. Appl. Math., Philadelphia, Pennsylvania.

20

http://biostats.bepress.com/jhubiostat/paper8



Ihaka, R. and Gentleman, R. (1996). “R: A Language for Data Analysis and Graphics.” Journal of Compu-
tational and Graphical Statistics, 5, 299–314.

Land, C. E. (1971). “Confidence Intervals for Linear Functions of the Normal Mean and Variance.” The
Annals of Mathematical Statistics, 42, 1187–1205.

Lin, D. (2000). “Linear regression analysis of censored medical costs.” Biostatistics, 1, 35–47.

Lin, D. Y., Feuer, E. J., Etzioni, R., and Wax, Y. (1997). “Estimating Medical Costs From Incomplete
Follow-up Data.” Biometrics, 53, 419–434.

Lipscomb, J., Ancukiewicz, M., Parmigiani, G., Hasselblad, V., Samsa, G., and Matchar, D. (1999). “Pre-
dicting the Cost of Illness: A comparison of Alternative Models applied to Stroke.” Medical Decision
Making , 18, S39–S56.

Mullahy, J. (1998). “Much ado about two: reconsidering retransformation and the two-part model in health
econometrics.” Journal of Health Economics, 17, 247–281.

Mullahy, J. and Manning, W. (1995). “Statistical issues in cost-effectiveness analysis.” In Valuing Health
Care: Costs, Benefits, and Effectiveness of Pharmaceutical and Other Medical Technologies. New York:
Cambridge University Press.

Nair, V. N. (1982). “Q-Q Plots With Confidence Bands for Comparing Several Populations.” Scandinavian
Journal of Statistics, 9, 193–200.

National Center For Health Services Research (1987). National Medical Expenditure Survey. Methods I I.
Questionnaires and data collection methods for the household survey and the Survey of American Indians
and Alaska Natives.. National Center for Health Services Research and Health Technology Assessment.

O’Brien, P. C. (1988). “Comparing Two Samples: Extensions of the t, Rank-sum, and Log-rank Tests.”
Journal of the American Statistical Association, 83, 52–61.

Parzen, E. (1979). “Nonparametric Statistical Data Modeling.” Journal of the American Statistical Associ-
ation, 74, 105–121.

Qin, J. and Zhang, A. (1997). “A goodness of fit test for the logistic regression model based on case–control
data.” Biometrika, 84, 609–618.

Rubin, D. B. (1973). “The Use of Matched Sampling and Regression Adjustment to Remove Bias in Obser-
vational Studies.” Biometrics, 29, 185–203.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley.

Shao, J. and Tu, D. (1995). New York: Springer-Verlag.

Shorack, G. (1972). “Functions of Order Staistics.” Annals of Mathematical Statistics, 43, 412–427.

Tu, W. and Zhou, X.-H. (1999). “A Wald Test Comparing Medical Cost Based on Log-Normal Distributions
with Zero Valued Costs.” Statistics in Medicine, 18, 2749–2761.

Wellner, J. (1977). “A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order
statistics.” Annal of Statististics, 5, 473–480.

Wilcox, R. (1995). “Comparing two independent groups via multiple quantiles.” The Statistician, 44, 91–99.

21

Hosted by The Berkeley Electronic Press



Wilk, M. B. and Gnanadesikan, R. (1968). “Probability Plotting Methods for the Analysis of Data.”
Biometrika, 55, 1–17.

Zellner, A. (1971). “Bayesian and Non-Bayesian Analysis of the Log-normal Distribution and Log-normal
Regression.” Journal of the American Statistical Association, 66, 327–330.

Zhou, X.-H. and Gao, S. (1997). “Confidence Intervals for the Log-normal Mean.” Statistics in Medicine,
16, 783–790.

Zhou, X.-H., Gao, S., and Hui, S. L. (1997). “Methods for Comparing the Means of Two Independent
Log-normal Samples.” Biometrics, 53, 1129–1135.

Zhou, X.-H. and Melfi, C.and Hui, S. (1997). “Methods for Comparison of Cost Data.” Biometrics, 53,
1129–1135.

22

http://biostats.bepress.com/jhubiostat/paper8



Table 1: Description of the sampling mechanisms used under each simulation study scenario. F̂g, g = 1, 2
are the empirical cdfs of the non-zero Medicare expenditures for patients in the case and control groups.
g(y) = exp(log 7 + Φ−1(y) log 1.5) and Φ is the cdf of a standard Gaussian variable.

Scenario Population 1 Population 2 n1 n2

A y1 ∼ LN(7.5, 1.75) y2 ∼ LN(7, 1.5) 100 1000
B u ∼ Unif[0, 1], y1 = g(u)esB(u) y2 ∼ LN(7, 1.5) 100 1000
C u ∼ Unif[0, 1], y1 = g(u)esC(u) y2 ∼ LN(7, 1.5) 100 1000
D y1 ∼ F̂1 y2 ∼ F̂2 118 2262

Table 2: Mean squared error relative to ȳ1 − ȳ2 defined by
(
(mse(ȳ1 − ȳ2)−mse(∆̂))/mse(ȳ1 − ȳ2)

)
× 100

under the data generation mechanisms described in Section 3. The degrees of freedom λ are estimated by the
cross-validation approach illustrated in equation (9) for B = 10.

Percent Efficiency
∆̂ Scenario A Scenario B Scenario C Scenario D
ŜQ(λ̂) 52 36 51 20
ŜQ(2) 49 38 54 21
ŜQ(4) 40 30 44 20
ŜQ(LN, 1) 50 40 -316 -196
LN 37 41 -3353 -1311

Table 3: Percent bias relative to ȳ1 − ȳ2 defined by
(
(E(∆̂)−∆)/∆

)
× 100 under the data generation

mechanisms described in Section 3. The degrees of freedom λ are estimated by the cross-validation approach
illustrated in equation (9) for B = 10.

Percent bias
∆̂ Scenario A Scenario B Scenario C Scenario D
ŜQ(λ̂) -11 -21 3 3
ŜQ(2) -8 -18 4 7
ŜQ(4) -2 -7 3 3
ŜQ(LN, 1) -3 -24 39 45
LN 8 -27 119 111
ȳ1 − ȳ2 0 -3 -2 1

23

Hosted by The Berkeley Electronic Press



Table 4: Disease cases and controls for smokers (current or former) and for non-smokers. Numbers within
parentheses represent the percentage of people in that cell with non-zero expenditures.

Smokers Non Smokers Everyone
cases 165 (64%) 23 (70%) 188 (65%)
controls 4682 (32%) 4546 (28%) 9228 (25%)

4847 (32%) 4569 (18%) 9416 (25%)
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Figure 1: Histograms of non-zero Medicare medical expenditures for the 1987 National Medical Expenditure
Survey (NMES) with and without a logarithm transformation, and for individuals in the case and control
groups. For clarity of exposition the histogram of the expenditures has been truncated at the top. On top
of the histograms of the log expenditures are density functions from Normal distributions with means ν̂1 =
1

n1

∑n1
i=1 log y1i, ν̂2 = 1

n2

∑n2
i=1 log y2i, and variances σ̂2

1 = 1
n1

∑n1
i=1(log y1i−ν̂1)2, σ̂2

2 = 1
n2

∑n2
i=1(log y2i−ν̂2)2,

for the case and control groups, respectively.
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Figure 2: Quantile-Quantile (Q-Q) plot of log non-zero Medicare expenditures for cases and controls.
Solid line is the Q-Q plot assuming each sample is from a log-normal model with parameter values estimated
by maximum likelihood.
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Figure 3: Theoretical (A-C) and empirical (D) s(p) curves. In scenario D, the solid curve is log
(

y1(i)

q2(i)

)

plotted at the percentiles p1i = i/(n1 + 1), i = 1, . . . , n1, where q2(1), . . . , q2(n1) are the order statistics of the
y21, . . . , y2n2 interpolated at percentiles p1i. The vertical segments represent the 95% point-wise confidence
intervals obtained for a bootstrap.

27

Hosted by The Berkeley Electronic Press



Everyone Smokers

20
00

60
00

10
00

0
14

00
0

18
00

0

SQ(CV) SQ2 SQ4 SQ(LN) LN SMD

20
00

60
00

10
00

0
14

00
0

18
00

0

SQ(CV) SQ2 SQ4 SQ(LN) LN SMD

Figure 4: Boxplots of 100 bootstrap samples of the estimated mean differences of Medicare expenditures
for people with and without smoking-attributable diseases. Results are reported for everyone in the sample
(N1 = 188, N2 = 9228) and for smokers only (N1 = 165, N2 = 4862).
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