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A Hierarchical Model for the Reliability of an
Anti-aircraft Missile System

C. Shane Reese, Valen E. Johnson, Michael Hamada, and Alyson Wilson

Abstract

We describe a hierarchical model for assessing the reliability of multi-component
systems. Novel features of this model are the natural manner in which failure
time data collected at either the component or subcomponent level is aggregated
into the posterior distribution, and pooling of failure information between similar
components. Prior information is allowed to enter the model in the form of actual
point estimates of reliability at nodes, or in the form of prior groupings. Cen-
sored data at all levels of the system are incorporated in a natural way through the
likelihood specification. The methodology is illustrated with an example from an
anti-aircraft missile system.
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1 Background

Estimating the reliability of complex systems such as missile systems and automotive

systems is a challenging statistical problem. Perhaps the most difficult aspect of system

reliability assessments is the integration of multiple sources of information, including

component, subsystem and system data, as well as prior expert opinion. In addition, it

is often necessary to infer how reliability changes over time. Such inferences are used to

make predictions of system reliability for the purpose of setting warranties (e.g, in the

case of automotive systems) and/or shelf-life (e.g., in the case of missile systems). While

much attention has been paid to theoretical system reliability (Barlow and Proschan

1975) and empirical component reliability, there are few instances where these disparate

approaches have been combined to model full system reliability when data have been

collected at both the component and system level. In this paper, we propose a framework

for achieving this synthesis by addressing two important analytical concerns: (1) the

integration of available information at various levels to assess system reliability, and (2)

estimating reliability growth or degradation. Methodology for achieving this integration

has historically proven elusive; our resolution to this problem is based on the specification

a Bayesian hierarchical model that accomodates both the inclusion of multiple information

sources, and a convenient context for modeling the time evolution of a system’s (or group

of systems’) reliability growth. Our model extends results presented in Johnson et al

(2003), in which a hierarchical model for the (binary) success or failure of systems and

their components was described.

1.1 Previous Work

To provide context, it is useful to begin with a review of related research in Bayesian

system reliability. Most relevant to the model considered here are the papers by Martz,

Waller and Fickas (1988) and Martz and Waller (1990), where complex systems, com-

prised of series and parallel subcomponents, were modeled using beta priors and binomial

likelihoods at component, subsystem and system levels. Within this framework, an “in-
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duced” higher-level prior was obtained by propagating lower-level posteriors up through

the system fault diagram, and combining these posteriors with “native” higher-level pri-

ors to obtain an induced prior at the next system level. The induced priors were then

approximated by beta distributions using a methods-of-moments type procedure. The

combination of native priors and posterior distributions obtained from lower-level system

data, both of which were expressed as beta distributions, was accomplished by expressing

the induced priors as a beta distributions with parameters representing a weighted aver-

age of the constituent beta densities. This process was propagated through subsequent

system levels to obtain an approximation to the posterior distribution on the total system

reliability. Johnson et al (2003) presents work on combination of multi-level binomial

data. They employ a substitution principle in the same spirit as the modeling approach

considered here.

Many common reliability models are not able to account for prior expert opinion and

data when such information is simultaneously obtained at several levels within a system.

Among those models that can accommodate such sources of information are those pro-

posed by Springer and Thompson (1966, 1969), and Tang, Tang and Moskowitz (1994,

1997), who provide exact (and in complicated settings, approximate) system reliabil-

ity distributions based on binomial data by propagating component posteriors through

the system’s reliability block diagram. Others have proposed methods for evaluating or

bounding moments of the system reliability posterior distribution (Cole (1975), Mastran

(1976), Dostal and Iannuzzelli (1977), Mastran and Singpurwalla (1978), Barlow (1985),

Natvig and Eide (1987), Soman and Misra (1993)). Moment estimators have also been

used in the beta approximations employed by Martz, Waller and Fickas (1988) and Martz

and Waller (1990). In a somewhat different approach, Soman and Misra (1993) proposed

distributional approximations based on maximum entropy priors.

Numerous models have, of course, also been proposed for modeling non-binomial data.

Thompson and Chang (1975), Chang and Thompson (1976), Mastran (1976), Mastran

and Singpurwalla (1978), Lampkin and Winterbottom (1983), and Winterbottom (1994)

considered models for exponential lifetime data, while Hulting and Robinson (1990, 1994)
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examined Weibull models. We extend the methods proposed there to include a hierar-

chical specification on the nodes appearing in a reliability block diagram. Poisson count

data, representing the number of units failing in a specified period, are discussed in Hult-

ing and Robinson (1990), Sharma and Bhutani (1992), Hulting and Robinson (1994),

Sharma and Bhutani (1994), and Martz and Baggerly (1997). Currit and Singpurwalla

(1988) and Bergman and Ringi (1997a) considered dependence between components in-

troduced through common operating environments. Bergman and Ringi (1997b) incorpo-

rated data from non-identical environments. However, the problem considered here—the

combination of multi-level failure time data—has, to the best of our knowledge, not been

considered elsewhere.

Many degradation models for system reliability restrict attention to settings in which

only system-level data are available (e.g., Fries and Sen (1996), Nolander and Dietrich

(1994), and Sohn (1996)). An exception to this trend is Robinson and Dietrich (1988), who

modeled component-level data collected during system development using exponential

lifetime assumptions and decreasing failure rates. In this work, we employ models that

directly address aging and estimate reliability growth or decay through the use of Weibull

failure times.

We present a self-consistent model for system reliability. In Section 2, we propose a

model for system reliability estimation that allows the inclusion of component, subsystem,

and full system test data. That model is illustrated with an application to anti-aircraft

missile system data in Section 3. The extension of the model to account for censored

data is described in Section 4. We conclude with a summary of results and suggestions

for future work in Section 5.

2 Model

To illustrate the baseline model, consider Figure 1, which depicts a simplified version of

a reliability block diagram for an anti-aircraft missile system. The features illustrated

in this figure include the composition of a system by multiple subsystems. In this case,
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there are three subsytems: the missile round, the battery coolant subsystem (BCU),

and an unspecified electronics subsytem (further details concerning the reliability block

diagram for this system have been omitted for proprietary reasons). We illustrate two

levels of system structure in this schematic, although additional levels of granularity can

be included without difficulty. In general, we assume that failure time data and prior

expert opinion are available at different levels of the system, and that our primary goal

in modeling such systems is the evaluation of the system reliability function, R1(t|θ1),

defined as the probability that the system (in this case component 1) will function beyond

time t, given the value of a parameter vector θ1. More generally, we let Ri(t|θi) denote

the reliability of the ith node in the reliability diagram, and we assume that Ri(t|θi)

is a continuous and differentiable function of both time t and the reliability parameter

θi. To simplify terminology, we henceforth call terminal nodes in the reliability diagram

“components”, nodes in the middle of the reliability diagram “subsystems,” and the node

at the top the “system.” (We note that this terminology is not entirely standard and

requires some care when more complicated reliability block diagrams are considered; in

such cases the diagram is often broken apart and segregated by subsystems, which, in our

terminology then become systems.) Other quantities of interest are the hazard function,

which is the instantaneous probability of failure at time t,

hi(t; θi) = lim
∆t→0

Pr(t < T ≤ t+ ∆t)

∆t

=
fi(t|θi)
Ri(t|θi)

,

where fi(t|θi) is the failure time probability density function of node i.

Several sources of information relevant to estimating system reliability are incorpo-

rated into our model framework. The first is failure time data collected at individual

components. The second is failure time data collected at the system or subsystem level;

such tests are important because they provide both information on subsystem function-

ing as well as adjustments to component reliabilities that must be made to account for

changes in reliability associated with aggregation of components to subsystems and the

requirement for nodes to function simultaneously. A third source of information takes
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Figure 1: Reliability Fault Tree for Missile Reliability

the form of expert opinion regarding the reliability of particular nodes. A fourth, less

precise source of information is expert opinion regarding the similarity of reliabilities of

groups of components or subsystems within the given system or across different systems.

For example, in the missile system depicted above, an expert may assert that the reli-

ability of the BCU is similar to the reliability of a BCU in a related missile system, or

that reliabilities of the missile round and BCU are similar. However, the expert may not

have knowledge regarding the specific probability that any component within a group of

similar components functions. Finally, we incorporate the statistical notion that compo-

nents in the reliability block diagram may also be grouped into sets of comparably reliable

components without the guidance of actual expert opinion. In the baseline model, such

information is modeled via an exchangeability assumption on the parameters of the failure

time distribution.

Nodes in the reliability diagram are labeled Ci, and the set Di contains the mi times

at which data for Ci is observed. The set Ai contains all component children of Ci.

The number of components (i.e., terminal nodes) in the system is denoted by nc. We

let Θ = {θi}, i = 1, . . . , nc denote the collection of parameters describing the lifetime

distributions of system components.
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2.1 Likelihood Specification

System reliability problems typically have two types of information contributing to the

likelihood: component tests and system/subsystem tests. We seek a model which pro-

vides flexibility for incorporating both types of information in a way that preserves the

probabalistic constructs defined by the reliability block diagram. As stated above, this

is not a trivial task, and combining data and prior information at different levels within

a reliability diagram has often proven problematic from both the perspectives of compu-

tational tractability and model consistency. Our solution to this conundrum is to simply

re-express system and subsystem lifetime distributions in terms of component lifetimes

using deterministic relations derived from an examination of the reliability block diagram.

Based on these considerations, we assume that test data collected at the component

level contributes to the likelihood function in the usual way. That is, a failure at time t

at component Ci contributes a factor of fi(t|θi) to the likelihood function.

Data collected at the subsystem or system level must be incorporated into the like-

lihood function through an examination of the reliability block diagram of the system.

For example, for a series-only system or subsystem (i.e., a nonredundant system), the cu-

mulative distribution function for subsystem Ci at time t may be expressed (suppressing

dependence on model parameters θ)

Fi(t) = 1−Ri(t)

= 1−
∏
j∈A(i)

Rj(t).

Note that the product in this expression ranges over only those components that have Ci

as a parent—intervening subsystem reliabilities need not be counted twice. The sampling

density at time t implied by this expression is

fi(t) =
dFi(t)

dt

= − d

dt

∏
j∈Ai

(1− Fj(t))

=
∑
j∈Ai

fj(t)
∏
k 6=j
k∈Ai

(1− Fk(t)). (1)
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For a parallel-only system or subsystem (i.e., a system comprised entirely of mutually

redundant components), the cumulative distribution function at time t is

Fi(t) = 1−Ri(t)

= 1−
∏
j∈Ai

(1−Rj(t)).

The sampling density at time t for such a parallel system is thus

fi(t) =
dFi(t)

dt

=
d

dt

∏
j∈Ai

Fi(t)

=
∑
j∈Ai

fj(t)
∏
k 6=j
k∈Ai

Fk(t). (2)

Appropriate combinations and modifications of these expressions can be used to con-

struct sampling densities for systems or subsystems composed of an arbitrary number of

components in various configurations of parallel and series subsets. Furthermore, compo-

nents need not follow the same lifetime distributions. For example, we might assume that

one component follows an exponential distribution, while modeling another according to

a Weibull distribution. This feature of our framework allows for substantial flexibility in

modeling complex systems for which components are acquired from different manufactur-

ers under different specifications.

A simple example of this methodology is provided by the anti-aircraft system with the

reliability block diagram illustrated in Figure 1. This is a non-redundant system, so its

cumulative distribution function can be expressed

F1(t|Θ) = 1−
4∏
i=2

[1− Fi(t|θi)]

= 1−
4∏
i=2

Ri(t|θi),

where Ri(t|θi) is the reliability function for component Ci. Differentiating, we find that
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the sampling distribution of the system failure times can be written

f1(t|ΘS) =
4∑
i=2

fi(t|Θi)
∏
j 6=i

(1− Fj(t|Θi)). (3)

This model is used to model system and component level test data collected on this system

in Section 3.

2.2 Prior Information

In many applications, expert opinion plays an important role in assessing system re-

liability, particularly in large complex systems for which data collected on individual

subcomponents may be sparse. Expert opinion may be available from several experts,

each of whom may provide information regarding the reliability of different subsets of

components, and the quality of information obtained from each may vary. Efficiently

incorporating expert knowledge into estimates of system reliability can therefore be a

complicated task. Our solution to this problem is to elicit information from experts in

the form of psuedo-observations. That is, we ask each expert to provide a value for the

failure time for each component for which he has information. We then treat these as-

sessments as if they were observations from the sampling density, except that we also

incorporate a parameter that represents the precision of the information solicited from

each expert. Other approaches are, of course, possible. We might, for instance, elicit prior

judgments on reliability parameters. However, our approach has proven to be convenient

from a practical standpoint because experts are often able to express opinions on how

long they think a component will last. They are less willing to express opinions on mean

lifetimes or other abstract model parameters. Also, incorporating expert opinion in the

form of psuedo-observations substantially simplifies statistical modeling in a setting that

is already quite complex.

With these considerations in mind, we assume that the prior information obtained

from expert m concerning the lifetime distribution of component Ci contributes a factor

of

fi(tim|Θi)Nm , (4)

9
Hosted by The Berkeley Electronic Press



to the joint posterior density. In this expression, Nm represents the precision or weight

assigned to information collected from expert m. Loosely speaking, Nm may be regarded

as the number of observations assigned to the expert’s assessment of the ith component’s

lifetime distribution. The value of Nm is not assumed to be known a priori, but we

instead assign a prior distribution to its value. A posteriori, plausible values of Nm are

estimated from their prior distributions and the consistency of the expert’s assessment

with observed data and other experts. For concreteness, we assume that each expert’s

precision parameter Nm is drawn from a gamma density with known parameters αm and

βm, parameterized here as

g(Nm;αm, βm) =
βαmm

Γ(αm)
Nαm−1
m exp(−βmNm).

To incorporate expert at the subsystem or system level, we use constructions similar

to those used in defining the likelihood function. For example, if expert m provides a

value of tim for the failure of subsystem Ci, whose functioning requires the functioning of

all components in Di (i.e., a non-redundant subset of the system components), then this

information is assumed to contribute a factor of

fi(tim|θi)Nm =

∑
j∈Ai

fj(t)
∏
k 6=j
k∈Ci

(1− Fk(t))


Nm

to the prior density on Θ. Similar expressions for parallel systems may be based on (2)

for completely redundant systems.

Note that by eliciting prior information from the same expert at the component and

system level, it is possible to partially assess the consistency of the expert’s opinions with

the assumed reliability block diagram, and to thus infer plausible values of Nm.

2.3 Hierarchical assumptions

Because expert opinion enters the model in the form of weighted data, we are left with

the freedom to impose a prior distribution on the model parameters Θ in a way that

reflects our prior beliefs on the exchangeability of system components. We accomplish
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this by assuming that the values of θi for specified groups of components are drawn from

a common distribution. If the hyperparameters of this distribution are denoted by η, then

in many settings it is feasible to also specify a second level model on the parameters η

and to estimate there values from data. Such a structure is illustrated in Section 3.

2.4 Joint Posterior Distribution

For the moment, we assume that test data is completely observed; we discuss the case of

censored data in Section 4.

Let D = {Di} denote the test data available for constructing the likelihood function,

and let Em denote the set of nodes for which expert m provides prior assessments, and

suppose that there are M experts from whom information has been solicited. Then under

the assumptions described in previous sections, the joint posterior distribution on model

parameters is proportional to

f(Θ, η, ζ|D) ∝
∏
i=1

∏
t∈Di

[fi(tim|θi)]

×
M∏
m=1

[
g(Nm|αm, βm)

∏
i∈Em

fi(tim|θi)Nm
]

× π(Θ|η) π(η)
M∏
m=1

π(αm, βm|η) (5)

where π(Θ|η) is the hierarchical prior specification of the parameters for the terminal

node failure time distributions and π(η) is the prior distribution on the η.

In (5), values of non-terminal node probabilities are assumed to be expressed in terms

of the appropriate functions of terminal node probabilities, as defined from the system

reliability block diagram.

2.5 Estimation strategies for the baseline model

The joint distribution of model parameters specified in (5) does not lend itself to ana-

lytical evaluation of the system or component reliabilities. However, a component-wise

Metropolis-Hastings algorithm can be implemented in a relatively straightforward way. In
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Table 1: Missile system test data. Observations are in units of tens of hours.

Component Data

System 23.9, 18.0, 53.1, 27.6, 53.7, 34.5, 47.2,25.7,20.8,7.1

Round 5.3,65.9,15.5,39.4,47.2,28.2,91.7,33.6,13.4,13.9

117.7,29.3,35.5,4.4,150.4,15.7,47.0,5.1,23.5,25.1

BCU 65.5,51.9,120.2,32.0,51.5,70.5,37.7,9.7,78.0,24.9

47.7,46.6,105.8,70.5,39.9,29.8,48.3,25.4,17.7,27.6

C4 28.8,51.3,41.2,59.2,19.9,57.5,64.4,15.7,75.0,35.2

57.5,49.2,18.2,48.8,57.5,35.7,29.4,14.6,46.2,9.0

our version of such a scheme, we used a random-walk Metropolis-Hastings algorithm with

Gaussian proposal densities for the terminal node probabilities, precision parameters, and

hyperparameters of the hierarchical specification.

3 An Application to an Anti-aircraft Missile System

As a simple demonstration of the proposed methodology, consider the missile system

described in Section 2. The reliability fault diagram for this system is depicted in Figure 1,

which shows that this system consists of three non-redundant components. There are

thus four reliability functions of interest, one for each of the components, and the system

reliability function.

Test data available for estimating the reliability functions for this system are provided

in Table 1. Twenty tests were conducted for each component, and ten system tests were

performed. Failure times for each test are depicted in the table.

Two experts provided prior assessments for the system or component reliabilities.
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Table 2: Expert Opinion for anti-aircraft missile example.

Component Expert Lifetime

System E1 32.0

System E2 48.0

Round E1 75.0

Round E2 90.0

C4 E3 70.0

Expert 1 (E1) provided lifetime information about the full system and the missile round.

E1 estimated that a system would survive 320 hours (or 32.0), and that a missile round

would have a lifetime of 750 hours (or 75.0). Another expert (E2) provided information

about the full system, the missile round and component 4 (C4). This expert expected a

full system to survive 480 hours (48.0). She also expected the missile round to survive

900 hours (90.0) and C4 to survive 700 hours (70.0). No expert opinion is available for

the BCU. A summary of the expert opinion data is shown in Table 2.

In this application, we use a Weibull distribution to model the component failure

times. Our parameterization of the Weibull density for failure times for component Ci,

i = 2, 3, 4, is

fi(t|ψ, λ) =
ψi
λi

(t/λi)
ψi−1 exp

[
− (t/λi)

ψi
]
, (6)

so that θi = (ψi, λi). Our prior specification for Θ (i.e., π(Θ|η)) in this example is that

the ψi and λi are conditionally independent given (δψ, ζψ) and (δλ, ζλ), respectively, and

that all values of (ψi, λi) are drawn mutually independently from gamma distributions;

that is,

π(ψi|δψ, ζψ) ∝ ψ
δψ−1
i exp (−ζψψi) ,

π(λi|δλ, ζλ) ∝ λδλ−1
i exp (−ζλψi) .

To complete the hierarchical specification, we assume that δψ, ζψ, δλ, ζλ have independent

prior exponential distributions with mean 1.
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We assigned a g(· | 5, 1) prior density to the expert opinion precision parametersN1 and

N2. A priori, this means that we value each expert’s assessment to be worth approximately

5 observations. The posterior distribution on these precision parameters are examined

below.

To sample from the posterior distribution on model parameters and reliabilities, we

used a successive substitution Markov chain Monte Carlo (MCMC) procedure (Gelfand

and Smith 1990), where each component of the joint posterior distribution was up-

dated one-at-a-time. The posterior distributions that are presented below were based

on 1,000,000 draws from the joint posterior distribution with a 100,000 burn-in period.

A plot of the marginal posterior densities on the reliabilities of components at different

levels within the system is depicted in Figure 1. We note that the Weibull distribution

has the following properties:

• if ψi > 1, the lifetime has an increasing failure rate,

• if ψi = 1, the lifetime has a constant failure rate (that is, the lifetime is exponentially

distributed),

• if ψi < 1, the lifetime has a decreasing failure rate.

For these data, these properties imply that the posterior probability of an increasing

failure rate is approximately 1.0 for all three components.

The prior distribution and posterior distributions for the expert precision parame-

ters are depicted in Figure 4. These plots suggest that assessments from E1 were more

consistent with observed data than were those from E2.

4 Extension to censored observations

The contribution of a right-censored observation to the likelihood function is the relia-

bility function evaluated at the censored value (1 − F (t)) at the appropriate level in the

reliability block diagram. The contributions of other forms of censoring are listed Table

3. Incorporating censored data into our model framework is thus straightforward and

14
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Figure 2: Marginal posterior distributions of the parameters of the failure time distri-

butions for each of the terminal nodes system represented in Figure 1. The left column

represents the posterior distribution of ψi for each of the three components and the right

column are the posterior distributions of λi.
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(a) (b)

(c) (d)

Figure 3: Posterior distributions (as a function of time) for the reliability function of each

of the components in the system represented in Figure 1. They are organized as (a), the

posterior distribution of the full system C1, (b) is the posterior distribution for the missile

round reliability, (c) is the posterior distribution for the BCU, and (d) is the posterior

distribution for the unnamed component C5.
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Table 3: Likelihood contributions of various types of censored data.

Censoring Type Likelihood Contribution

Uncensored fi(t|θ)

Right Censored(t > tR) 1− Fi(tR|θ)

Left Censored(t < tL) Fi(tL|θ)

Interval Censored(tL ≤ t ≥ tR) Fi(tR|θ)− Fi(tL|θ)

can be accomplished by simply substituting the appropriate expression for the censored

observation from Table 3 for the sampling density of an observed failure in (5).

4.1 Diagnostics

Our model for system reliability is relatively complex and contains a number of assump-

tions that should be verified. Although a comprehensive examination of model diagnostics

falls beyond the scope of this paper, we do stress the importance of such procedures. For

present purposes, however, we restrict attention to the global model diagnostic proposed

in Johnson (2004). This diagnostic can be considered as a Bayesian version of Pearson’s

chi-squared goodness-of-fit test.

The diagnostic requires that observations be conditionally independent given the value

of the parameter vector Θ, which they are in our application. Let Θ̃ denote a single value

of the parameter vector drawn from the posterior distribution, and let uj, j = 1, . . . , n,

be defined as

uj = F (yj|Θ̃)

Then from results in Johnson (2004), it follows that the distribution of the chi-squared

statistic obtained by assuming that the values of uj are drawn from a uniform distribution

on (0,1) has a chi-squared distribution onK−1 degrees of freedom, whereK is the number

of bins used to define the chi-squared statistic. No adjustment to the degrees of freedom

need be made to account for the dimension of Θ.
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To apply this procedure to our model for the missile data, we choose 5 equiprobable

bins and calculated 10,000 chi-squared statistics based on 10,000 posterior draws of Θ̃.

Only 4.3% of these values exceeded the .95 quantile of a chi-squared distribution on 4

degrees of freedom, suggesting no lack of model fit based on this global diagnostic.

5 Conclusions

Our hierarchical model for system reliability offers several advantages over other existing

models for system reliability. Among these are the ease of including diverse sources of

information at different levels of the system in the model for overall system reliabilities, a

coherent framework for incorporating multiple sources of prior expert opinion through the

treatment of expert opinion as (imprecisely-observed) data, and the natural elimination

of aggregation errors through the definition of non-terminal node probabilities using the

assumed structure of the system reliability block diagram and terminal node failure time

distributions.

In the setting where there are few, or perhaps no, system tests available, the borrowing

of strength across nodes allows decision makers to use existing data in a more efficient

manner. Hulting and Robinson (1994) discuss the reliance on elicited prior and their

reservation that the conclusions about reliability of some subsystems relies entirely on

the quality of the elicitation. Our hierarchical specification allows the incorporation of

more vaguely specified prior information based on groupings of component nodes based on

similarity of reliability, rather than more specific specifications of reliability values. This

reliance on elicited priors is thereby shifted more to structural similarity of components

and observed data, which we feel is an important innovation of our method. Johnson et

al (2003) also discuss the benefits of such hierarchical specifications.

A very simple example of our hierarchical model for reliability was described in this

paper. In future work we plan to extend this framework to include non-serial systems and

extensions of the model to account for dependencies between component failures within

a system or subsystem.
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(a) (b)

Figure 4: Posterior distributions for N1 and N2 for the anti-aircraft missile example. E1

whose posterior distribution for precision, N1 is shown in (a) is more consistent than

the apriori values, suggesting more precision or agreement with the system structure and

observations, while E2 (shown in (b)) demonstrates less precision.
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