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Inference for the Population Total from
Probability-Proportional-to-Size Samples

Based on Predictions from a Penalized Spline
Nonparametric Model

Hui Zheng and Rod Little

Abstract

Inference about the finite population total from probability-proportional-to-size
(PPS) samples is considered. In previous work (Zheng and Little, 2003), penalized
spline (p-spline) nonparametric model-based estimators were shown to generally
outperform the Horvitz-Thompson (HT) and generalized regression (GR) estima-
tors in terms of the root mean squared error. In this article we develop model-
based, jackknife and balanced repeated replicate variance estimation methods for
the p-spline based estimators. Asymptotic properties of the jackknife method are
discussed. Simulations show that p-spline point estimators and their jackknife
standard errors lead to inferences that are superior to HT or GR based inferences.
This suggests that nonparametric model-based prediction approaches can be suc-
cessfully applied in the finite population setting by avoiding strong parametric
assumptions.
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Summary. Inference about the finite population total from probability-proportional-to-

size (PPS) samples is considered. In previous work (Zheng and Little, 2002), penalized 

spline (p-spline) nonparametric model-based estimators were shown to generally 

outperform the Horvitz-Thompson (HT) and generalized regression (GR) estimators in 

terms of the root mean squared error. In this article we develop model-based, jackknife 

and balanced repeated replicate variance estimation methods for the p-spline based 

estimators. Asymptotic properties of the jackknife method are discussed. Simulations 

show that p-spline point estimators and their jackknife standard errors lead to inferences 

that are superior to HT or GR based inferences. This suggests that nonparametric 

model-based prediction approaches can be successfully applied in the finite population 

setting by avoiding strong parametric assumptions. 

 

Key words: jackknife, balanced repeated replication, Horvitz-Thompson estimator, 

sampling weights, variance estimation. 
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1. Introduction 

Survey sampling is perhaps unique in being the only area of current statistical activity 

where inferences are primarily based on the randomization distribution rather than on statistical 

models for the survey outcomes. This so-called design-based approach to survey inference is 

described in standard survey texts such as Hansen, Hurwitz and Madow (1953), Kish (1965) and 

Cochran (1977).  For a population with N units, let 1( ,..., )NY Y Y=  where iY  is the set of survey 

variables for unit i, and let 1( ,..., )NI I I=  denote the set of inclusion indicator variables, where 

1iI =  if unit i is included in the sample and 0iI =  if it is not included. The main characteristic of 

design-based inference is that it is based on the distribution of I, with the survey variables Y 

treated as fixed quantities.  

The model-based approach to survey sampling inference posits a model for the survey 

outcomes Y, which is then used to predict the non-sampled values of the population, and hence 

finite population quantities Q. There are two variants of the modeling approach: superpopulation 

modeling and Bayesian modeling. In superpopulation modeling (Brewer, 1963; Royall, 1970; 

Valliant, Dorfman and Royall, 2000), the population values of Y are assumed to be a random 

sample from a “superpopulation”, and assigned a probability distribution ( | )p Y θ  indexed by 

fixed parameters θ . The Bayesian approach (Ericson, 1969; Rubin, 1987; Ghosh and Meeden, 

1997) adds a prior for the parameters and bases inference for finite population quantities on the 

posterior predictive distribution of Y. In general, inferences under either variant are based on the 

joint distribution of Y and I. However, in probability sampling, where the distribution of I given 

Y does not depend on the values of Y after conditioning on survey design variables, inferences 

can be based on the distribution of Y alone provided the design variables are included in the 

model (Rubin, 1987).  
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 An advantage of the model-based approach is that it provides a unified approach to 

survey inference, aligned with mainline statistics approaches in other application areas such as 

biostatistics and econometrics. Also, the Bayesian variant may yield better inferences for small 

sample problems where exact frequentist solutions are not available, by propagating error in 

estimating parameters. Model-based inferences will generally outperform design-based 

inferences if the model is correctly specified. However, all models are simplifications and hence 

subject to misspecification error. The major drawback with model-based inference is that if the 

model is seriously misspecified it can lead to inferences that are worse (and potentially much 

worse) than design-based inferences (Hansen, Madow and Tepping, 1983; Holt, Smith and 

Winter, 1980; Pfeffermann and Holmes, 1985). A key to robust models for sample surveys is to 

account for aspects of the survey design, such as stratification, clustering and weighting. In this 

paper we focus on survey weights, a particularly interesting survey design feature since it is 

handled somewhat differently by the model and design-based paradigms.  

Specifically, we consider the case of sampling with probability proportional to size 

(PPS), where a size measure X is known for all units in the population, and unit i is selected with 

probability iπ  proportional to its size ix . PPS samples can be selected in a number of ways that 

lead to different joint selection probabilities for pairs of units (Hanif and Brewer, 1980). We 

consider here the practical and common fixed sample size design. From a random starting point, 

units are selected systematically from a randomly-ordered list, at regular intervals on a scale of 

cumulated sizes (Kish, 1965, chapter 7); units that would be selected with probability one are 

removed into a certainty stratum. We consider statistical inference for the finite population total 

T of a continuous outcome Y; our methods can be modified to handle ordinal or nominal 

outcomes.   
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The standard design-based approach to PPS samples is to weight sampled units by the 

inverse of their probability of selection, yielding the Horvitz-Thompson (HT) estimator 

  � =
= n

i iiHT yT
1

/ˆ π , (1) 

(Horvitz and Thompson, 1952), where the summation is over n sampled units. This is also the 

projective estimator (Firth and Bennett, 1998) for a “HT model”, where iy  given iπ  is assumed 

to have mean iβπ  and variance 22
iπσ . It is well known that the HT estimator is design unbiased, 

but can be inefficient when the “HT model” is not a good approximation to reality. A parody of 

this situation is the famous “circus elephant” example in Basu (1971) 

Modelers who ignore the design weights do so at their peril: results are highly vulnerable 

to model misspecification. However, a number of authors (Rubin, 1983, Little, 1983a) have 

argued that from a modeling perspective, the weights should be used as predictors in a model 

rather than used to weight the sampled cases. In the case of PPS sampling, this suggests basing 

inferences from the predictions of a regression model relating Y to X. Recently, several authors 

have argued for models in survey settings that make relatively weak assumptions of the form of 

the relationship, since sample sizes are often large and strong models are viewed with 

skepticism. In particular, Dorfman (1992) and Dorfman and Wehrly (1993) estimate a finite 

population totals by a nonparametric model relating Y to an auxiliary variable, using kernel 

smoothing. Breidt and Opsomer (2000) use the local polynomial kernel as the smoothing tool 

and develop a design-consistent model-assisted estimator of the total.  

A modification of the prediction approach is to base the estimate of T on predictions from 

a model, but then adjust the estimator to achieve design consistency. In particular, generalized 

regression estimators (GR) achieve this by adding a calibration term consisting of a design-

weighted sum of residuals to the predictions ˆiy  from the model:  
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1 1

ˆ ˆ ˆ( ) /
N n

GR i i i ii i
T y y y π

= =
= + −� � . (2) 

This estimator is design consistent for the total, and more efficient than the HT estimator if the 

auxiliary variables are good predictors of Y. For discussions of this “model assisted” approach, 

see Särndal, Swensson and Wretman (1989, 1992). 

Some have argued that the calibration correction in (2) is unnecessary if the model is 

chosen so that the prediction or projection estimator is design consistent, a condition that is 

relatively easy to achieve (Little, 1983b, Firth and Bennett, 1998). In particular, in the context of 

PPS sampling, Zheng and Little (2002) compare prediction estimates of the population total 

based on p-splines with the HT estimator and the GR estimation based on a simple linear 

regression model. These simulations, which are briefly summarized in Section 4, indicate that 

nonparametric models lead to prediction estimators of T with negligible bias and improved 

efficiency over HT or GR estimators, for a wide range of simulated populations.  

Even if the spline-based prediction estimators were more efficient than design-based 

competitors, the latter might still be preferred if they yielded better inferences, that is have better 

confidence coverage, or tests closer to their nominal significance levels. Hence, the goal of the 

current paper is to consider variance estimation and inference properties of the estimators 

compared in Zheng and Little (2002). A variety of approaches to variance estimation, based on 

the information matrix, balanced repeated replication and the jackknife are considered for both 

the spline-based estimator and competitors. A simulation study indicates that the spline-based 

estimator is not only more efficient, but yields inferences that are as good as, or better than, 

inferences based on the HT and GR estimators. We view this as further evidence that a model-

based prediction approach can be successfully applied in the finite population setting, providing 
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strong parametric assumptions are avoided and attention is paid to modeling the features of the 

survey design. 

The rest of the paper is organized as follows. In section 2 we describe penalized spline 

model-based point estimation and three associated variance estimators. In Section 3 we present a 

simulation study that compares inferences under the various approaches for a variety of 

simulated populations and situations. Conclusions and suggestions for future work are presented 

in Section 4. 

 

2. Inference about a Finite Population Total Based on Penalized Spline Model 

2.1. Penalized Spline Model-based Estimation 

A model-based alternative to HT given by Zheng and Little (2002) predicts non-sampled 

values of SPiyi −∈,  using the following nonparametric regression model: 

  ( , )i i iy f π β ε= + ,  iε  ~ ind 2 2(0, )k
iN π σ  , (3) 

where the functionf  is a penalized spline: 

  
0

1 1

2

( , ) ( ) ,

~ (0, ), 1,..., .

p m
j p

i j i l p i l
j l

l p
iid

f

N l m

π β β β π β π κ

β τ

+ +
= =

+

= + + −

=

� �
 i=1,…, N.  (4) 

Here the constants mκκ << ...1  are selected fixed knots, and pp uu =+)(  if 0>u   and 0, 

otherwise. In the spirit of Ruppert and Carroll (2000), Ruppert (2002) and others, we favor a 

modeling strategy that places a large number of knots (for example, 15 or 30) at pre-specified 

locations, and then achieves smoothness by treating mpp ++ ββ ,...,1  as random effects centered at 

0. The degree of smoothing is based empirically on the estimate of the variance ratio 
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22 /τσα = . Assuming constant error variance (that is, k = 0), the maximum likelihood (ML) 

estimate of the regression parameters conditional on 22 /τσα =  is  

  WYDWYD TTTTT
pm Π+ΠΠ=Π+ΠΠ= −−

+
1**1**

0 ))(())(()ˆ,...,ˆ( ααββ , (5) 

where T
nyyY ),...,( 1= , the ith row of Π  is  ))(,...,)(,...,,1( 1,

p
mi

p
i

p
iii ++ −−=Π κπκπππ , the 

matrix )(αD  is diagonal with first p+1 elements equal to 0 and remaining m elements equal to 

22 /τσα = , ),...,,( 22
2

2
1

k
n

kkdiagW −−−= πππ , Π=Π 2/1* W  and * 1/ 2Y W Y= . For the constant 

variance model 0k = , W I=  and *Π = Π . 

For unknown 2σ  and 2τ , restricted maximum likelihood (REML) estimates of β  are 

obtained by replacing )(αD  in (5) by )ˆ(αD , where 22 ˆ/ˆˆ τσα =  and 2σ̂ and 2τ̂  are REML 

estimates of 2σ  and 2τ . We consider the predictive estimator of the total based on this model 

  ��
+==

+=
N

ni
ii

n

i
iPRED YEyT

11

)|(ˆ π , (6) 

where �
=

++ −++++==
m

j

p
jipj

p
ipiiii fYE

1
10 )(ˆˆ...ˆˆ)ˆ,()|( κπβπβπβββππ . The projective 

estimator is  

  �
=

=
N

i
iiPROJ YET

1

)|(ˆ π  (7) 

is also considered by some survey samplers, but makes less sense from a model-based 

perspective. 

2.2 Model-Based Variance Estimation 

The empirical Bayes posterior variance of β  in (3), when conditioned on 

222 ˆ/ˆˆ and ˆ τσασ = , is 2 * * 1ˆ ˆ{ ( )}T Dσ α −Π Π + . It follows that the estimated variance for the 

projective estimator is  
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  NP
TT

P
T
NPROJ DTVar 1)}ˆ({1ˆ)ˆ( 1**2 Π+ΠΠΠ= −ασ , (8) 

where N1  is an ( 1)N ×  vector with elements equal to 1 and PΠ  is the analogous quantity to Π  

for the whole population P. The empirical Bayes posterior variance for the predictive estimator is 

  nNSP
TT

SP
T

nNPRED DTVar −−
−

−− Π+ΠΠΠ= 1)}ˆ({1ˆ)ˆ( 1**2 ασ , (9) 

where nN −1  is an (N-n) by 1 vector of elements equal 1 and SP−Π  is the analogous quantity to Π  

for the non-sampled population P-S. The estimates (6) and (7) and associated variance estimates 

(8) and (9) can be computed with standard software such as SAS Proc Mixed and S-plus function 

lme. 

2.3 Replication Based Variance Estimation Methods 

The variance estimators (8) and (9) rely on model assumptions, and might fail when the 

model (specifically, the assumed variance structure) is incorrect. In this section we propose 

replication-based methods that are less reliant on the model, and hence are more consistent with 

design-based perspectives.  

2.3.1 The Jackknife Method 

Originally introduced by Quenouille (1949), the jackknife method is a broadly useful 

method for both finite and infinite population inference (Shao and Wu, 1989). 

The jackknife method involves the following procedure. The sample S is divided into G 

subgroups with equal number of units and the gth pseudovalue is computed 

as ( )
ˆ ˆ ˆ( 1)g g

�
K

�
K T= − − , where T̂  is the original p-spline model-based estimator and ( )

ˆ
gT  is the 

same estimator calculated from the reduced sample not including the elements in the kth 

subgroup.   
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The jackknife variance estimate of T̂  is  

  2

1

1 ˆˆ ˆ( ) ( )
( 1)

G

g
g

v T T T
G G =

= −
− � , (10) 

where
1

ˆ ˆ /
G

gg
T T G

=
=� . In order to balance the distribution of the selection probabilities across 

the subgroups, sampled units are stratified into n/G strata each of size G with similar values of 

iπ , and the G subgroups are then constructed by randomly selecting one element from each 

stratum. To save computation, estimates 22 ˆ/ˆˆ τσα =  are not recomputed for each replicate. That 

is, we compute pseudovalues as 1
( ) ( ) ( ) ( )ˆ( ( ))T T T
g g g gD Yβ α −= Π Π + Π , where ( )gΠ  is constructed 

in the same way as Π  but omitting the g-th subgroup, but the estimate α̂  is computed for the 

full sample.  

Miller (1974) proved the asymptotic properties of the jackknife estimator in the case of 

multiple regression. In the sample survey setting, Shao and Wu (1987, 1989) discussed the 

properties of jackknife variance estimation in linear regression models. In our case, the p-spline 

regression is a form of ridge regression conditioned on α̂ . If the P-spline is a low dimensional 

smoother, that is, the dimension of the “design matrix” *Π  is small compared with the sample 

size n, then the jackknife method has asymptotic properties similar to linear regression. In 

Appendix A, we give a brief proof of the asymptotic consistency of the jackknife variance 

estimator in the delete-one case and under regularity conditions similar to those in Miller (1974). 

Simulations in Section 3 study the performance of the jackknife method for moderate sized 

samples.  

2.3.2 The Balanced Repeated Replicate Method 

The BRR method was developed for stratified designs with two units sampled in each 

stratum. It is the most computationally efficient technique when the half samples are fully 
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balanced. In practical application of BRR, clusters (PSUs or small strata) are often grouped into 

pairs and units within large strata are randomly split.  

The systematic PPS design can be viewed approximately as a stratified design with n 

strata each consisting of units with cumulative measures of approximate size nx
N

i i� =1
. One 

unit is sampled from each of the n strata. Assuming n is even, the design can also be 

approximated by a stratified design with n/2 strata with cumulative measures of size nx
N

i i� =1
2 , 

and two units are sampled per stratum. Balanced repeated half samples are then constructed by 

selecting one unit from each stratum, with the selection scheme based on Hadamard matrices 

(Plackett and Burman, 1946).  Let bT̂  be the p-spline estimator computed from the bth half 

sample, using the same knots as used in the computation using the full sample - the number and 

placement of knots needs to allow the spline model to be fitted on each half-sample. The BRR 

estimator is then given by  

  �
=

−=
B

b
bBRR TT

B
Tv

1

2)ˆˆ(
1

)ˆ( . (11) 

 Since the BRR method with two units sampled per stratum does not fully reflect 

efficiency gains from PPS stratification, it can be expected to overestimate the true variance of 

the p-spline estimator, a conjecture that is consistent with simulation results reported in the next 

section. 
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Figure 1. Six simulated populations (N=300) X-axis: pi(i); Y-axis: y(i) with normal errors 

 

3. Simulation Study 

3.1 The Simulated Populations 

 Artificial populations are simulated according to six different mean functions relating 

outcome iy  and the inclusion probabilitiesiπ : Five of these populations are generated by adding 

independent errors with variance 0.2 to the following mean functions: 

(NULL) 30.0)( ≡if π ,  

(LINUP) iif ππ 3)( = , linearly increasing function with a zero intercept  

(LINDOWN) iif ππ 358.0)( −= , linearly decreasing function with positive intercept (EXP) 

)2664.4exp()( iif ππ +−= , an exponentially increasing function 

(SINE) )69.35sin()( iif ππ = . 
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A sixth population is generated to yield an “S” shaped function: 

(ESS) )1,0(~),5*50(log6.0 1 Nity
iid

iiii εεπ +−= − . 

Since the errors in ESS lie inside the logit function, this population had heteroscedastic 

errors. Plots of samples from these populations are provided in Figure 1. Population sizes 300, 

1000 and 2000 with respective sample sizes 32, 96 and 192 are simulated for each mean 

function. For each simulated population, 500 repeated samples are drawn using the systematic 

PPS sampling design. Numerical comparisons of various methods are all based on the empirical 

results from the repeated samples. 

3.2 Bias and Mean Squared Error of Alternative Point Estimators 

 A detailed discussion of bias and mean squared error properties of the p-spline, HT and 

GR estimators is presented elsewhere (Zheng and Little, 2002). We illustrate those findings in 

Table 1, which presents empirical bias and root mean squared error (RMSE) of point estimates 

from the following methods:  

a) P0_15, a p-spline prediction estimator (6) with  k =0 and 15 knots equally spaced with respect 

to the percentiles of the distribution of X. 

b) HT, the Horvitz-Thompson estimator (1). 

c) GR, a generalized regression estimator (2) assisted by a simple linear regression model that 

regresses iy  on iπ , assuming a constant error variance. 

 For each of the six mean structures described in section 3.1, the estimates were computed 

for 500 systematic PPS samples of size 96. Table 1 suggests that P0_15 has smaller empirical 

RMSE than HT or GR for the populations with nonlinear mean structures (SINE EXP and ESS). 

P0_15 has similar RMSE as GR when the mean function is linear (NULL, LINUP and 

LINDOWN). P0_15 has similar RMSE as HT for the population with a linearly increasing 
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without an intercept mean function (LINUP), which is in favor of HT. The empirical bias of 

P0_15 is small and in most cases P0_15 has comparable empirical bias as HT and GR. Similar 

findings are presented in the more extensive simulations in Zheng and Little (2002). 

3.3 Variance Estimation for Alternative Methods 

In this section we compare the inferences for the P-spline prediction and projection 

estimators, with variances estimated by (8)-(11), with inferences based on the HT and GR 

estimators. For HT, we show results for two variance estimation methods, the random groups 

variance estimator 

  ( )
2

1

1 ˆ ˆ
( 1)

K

RG k HT
k

v T T
K K =

= −
− � , (12) 

where the sample is divided into K random subsamples, each of size /m n K= , and  

� =
= m

i iik mpyT
1

)/(ˆ , np ii /π=  is the HT estimator from the kth subsample; and the with-

replacement PPS variance estimator 

  
2

1

1 ˆ
( 1)

n
i

WR HT
i i

y
v T

n n p=

� �
= −� �− � �

� ,  (13) 

which ignores the impact of sampling without replacement on the variance. This is also a model-

based variance estimator for the projective estimator, assuming the “HT model”. We also 

considered three other variance estimators suggested in Wolter (1985), a Yates-Grundy estimator 

with joint inclusion probabilities approximated as in Hartley and Rao (1962), a paired units 

estimator and a consecutive differences estimator. These did less well in our simulations, and 

hence are omitted here to save space. Results for all five estimators are given in Zheng (2002). 

 For GR, we apply the formula given by rndalaS��  et al (1989) for a regression on a 

covariate X: 
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  ��
= =

∆
=

n

k

n

l l

ll

k

kk

kl

kl egeg
v

1 1 πππ
, (14) 

where  

kkklkklkl πππππ =−=∆ , , ���
=

−

==

−+=
n

k
kk

n

i k

k
N

k
kk xx

x
xg

1

12

11

))((1
π

, 

nkyye kkk ...1,ˆ =−= , 

Here the covariate is kkx π= , and we use the Hartley-Rao approximation  

�
=

−−+−+−=
N

k
kjiijjijiij

n

n

n

n

n

n

1

2
3

22
2

1
)(

11 ππππππππππ ,  

for klπ .  The approximation formula for joint inclusion probability is valid when 

)(})...1,max({ 1−== NOniiπ , which is satisfied by our simulated sampling design. 

 First, 500 repeated PPS samples are drawn from each artificial population using the 

systematic sampling method. For each repeated sample, the proposed inference method (p-spline 

point estimation and empirical Bayes, JRR and BRR variance estimators) as well as inference 

methods associated with HT and GR are computed. The coverage of these inference methods are 

then compared based on their empirical performances. 

Next, we consider the robustness of the model-based and replication based methods in the 

presence of misspecification of the variance structure, by assessing their performance for 

populations with heteroscedastic errors.  We apply the total estimator P1_15, which assumes the 

error variances are proportional to 2
iπ , on two groups of populations. The first group of 

populations is generated with constant-variance error and the second group generated with the 

same mean structure as the first group but with error variances proportional to 2
iπ .  Thus, P1_15 

Hosted by The Berkeley Electronic Press



 15

assumes the correct error variance for the second group while it misspecifies the error variance 

for the first group.  

Last, we study how the number of knots influences the coverage in population SINE, 

whose mean function requires more knots than the other populations. We study the relationship 

between the coverage of 95% C.I. and the number of knots employed.  

4. Results 

 Table 2 gives a comparison of six variance estimators in terms of the mean estimate of 

the variance. The six variance estimators are: RGv  and WRv  for HT; design-based variance 

estimator for GR; and empirical Bayes, JRR and BRR for P0_15. The empirical variances of HT, 

GR and P0_15 are also listed in Table 2.  The averages of the two variance estimators for HT 

track the empirical mean squared errors reasonably well, particularly for the larger sample sizes.. 

This table also suggests that the design-based estimator for the variance of GR can seriously 

underestimate the variance for small to moderate size samples. 

For populations other than SINE and for the two larger sample sizes (n = 96 and 192), the 

average estimated variances from the jackknife and empirical Bayes methods track the empirical 

mean squared errors well, and the BRR method tends to yield conservative estimated variances. 

For the small sample size(n =32) and populations other than SINE, the empirical Bayes variance 

tends to underestimate the variances of the p-spline point estimators for populations other than 

ESS, and to overestimate the variance for the population ESS, perhaps because the variance 

structure for that population is hetereoscedastic and hence misspecified by the model; the 

jackknife and BRR methods tend to have upward biases for these cases. For the SINE population 

the average of the empirical Bayes variance estimates seriously underestimates the empirical 

mean squared error. As discussed later, this finding appears to reflect the fact that there are not 
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enough knots in the p-spline regression to estimate the SINE function well for these populations. 

The jackknife and BRR methods overestimate the variance for the SINE population, the BBR 

method severely so.  

In Table 3, three inference approaches: HT with the random groups variance estimator 

(9), GR with the design-based variance estimator (13), and the p-spline with the jackknife 

variance estimator are compared. From this table, it is clear that the p-spline method gives 

confidence intervals that are shorter than those given by the HT method when the mean function 

is not linear-with-no-intercept. It also gives C.I.s that are shorter than those from the GR method 

when the mean function is not linear. When the data are in favor of HT or GR, p-spline based 

inferences yield comparable coverage. With the exception of population SINE, the p-spline 

method generates C.I.s with satisfactory coverage rates for the simulated populations. There is 

some under-coverage by the C.I.s from the HT method for the populations NULL and 

LINDOWN, which seriously violate the “HT model” assumption. In terms of coverage rate, the 

C.I.s given by the GR method are quite unsatisfactory for small (32) to moderate (96) sample 

sizes and only become better for a large sample size (192). 

For the SINE population, the coverage rates of the C.I.’s corresponding to the three 

variance estimators for the p-spline with 15 knots are unsatisfactory. Figure 2 displays these 

coverages as a function of the number of knots, and indicates that for this population at least 30 

knots are needed for valid inference. This figure also shows that the jackknife method has quite 

robust coverage, while the BRR method tends to be conservative and yield 95% confidence 

intervals that over-cover the population quantity.  

Table 4 provides more information on the effect of misspecification of the variance 

structure. We compare model-based and jackknife variance estimators of P1_15, which 
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Figure 2. 
Coverage rate (percentage) of 95% C.I. vs. number of knots for population SINE N=2000, n=192, Coverage 

rate computed from 500 repeated samples (target =93-97%) 
 

 

corresponds to a p-spline with 15 knots and assuming error variance proportional to 2
iπ , on 

populations with homoscedastic and heteroscedastic errors with variance proportional to 2
iπ . 

This table suggests that the model-based variance estimator is sensitive to misspecification of the 

variance structure while the jackknife method is robust to this form of misspecification. 

5. Discussion 

 Although the HT estimator is design-unbiased, and can be used with an appropriate 

variance estimator to yield valid large-sample inferences, its efficiency and its performance in 

moderate-sized samples depend on the validity of the underlying “HT model”. The GR estimator 

can yield increases in efficiency, but is also sub-optimal if based on a poorly chosen model, and 

can yield anti-conservative inferences in moderate sized samples. Our proposed nonparametric 

model based on p-splines assumes a more flexible mean structure than that implied by the HT or 

GR models. Since these models give a close approximation to the mean function, calibration as 
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in the GR estimator is not necessary. The p-spline method with the jackknife variance estimate 

yields shorter confidence intervals than the design-based methods, while achieving noncoverage 

rates that are superior to traditional methods.  An exception is its performance in the SINE 

populations, where more than the chosen number of 15 knots is needed for inference. A referee 

noted that our jackknife method might be improved by using adjustments of the type considered 

by Hinkley (1977); this remains a topic for future research. 

 The model-based empirical Bayes variance estimator is valid if the model is correctly 

specified. However, our simulations suggest that it is vulnerable to misspecification of the 

variance structure. One possible solution is to estimate parameters for the variance structure, 

such as the parameter k in Eq. (3), from the data. Here we adopted the less efficient but simpler 

approach of fixing k and use a robust variance estimator based on the jackknife.  

Survey samples favor simple estimation methods that can be applied to large samples in a 

production setting. Thus, we deliberately chose a relatively straightforward parametric approach 

to spline regression with fixed knots, which can be readily implemented with existing software. 

Our simulations suggested that this approach worked well in most cases, but yielded 

unsatisfactory confidence coverage in the SINE population when an insufficient number of knots 

were used. Numerous authors (Friedman & Silverman, 1989; Friedman, 1991; Stone et al., 1997; 

Denison, Mallick and Smith, 1998; Ruppert and Carroll, 2000, Rupert 2002) have proposed 

sophisticated knot selection methods that might be profitably applied to complex mean functions. 

The jackknife method of variance estimation worked well in our simulations, whereas the 

BRR method tended to yield conservative standard errors. The bootstrap might also be expected 

to work well if the boostrapping was done in a way that balanced the distribution of the selection 

probabilities in the bootstrap samples.  
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In conclusion, we believe that p-spline models provide an attractive approach to survey 

inference based on probability-proportional-to-size samples. We are currently considering 

extensions of the proposed approach to multistage sampling, and to non-normal outcomes.  
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Appendix A. Asymptotic Consistency of the Jackknife Variance Estimation 
 
Some notation:  

A. T
pm ),...,( 0 += βββ , the coefficients under model (4). 

B. ( ) YTT ΠΠΠ= −10β̂ , the least squares (LS) estimator of β  from the whole sample.  

C. ( ) YD TT Π+ΠΠ= −1
)ˆ(ˆ αβ , the estimator of β  given by (5) from the whole sample, )ˆ(αD  is 

defined as in (5). From here on we replace the notation )ˆ(αD  by D for simplicity. 
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D. ( ) i
T

ii
T

ii Y−−
−

−−− ΠΠΠ= 10β̂ , the LS estimator of β  and from the reduced sample with the ith 

element omitted, i−Π  is constructed the same way as Π  but omitting the ith observation. 

E. ( ) i
T

ii
T

ii YD −−
−

−−− Π+ΠΠ= 1β̂  the estimator of β  given by (5) and from the reduced sample. 

F. iΠ , the ith row of matrix Π  

We prove the validity of the jackknife method under the following assumptions: 

1) Model (3) is correct, the knots mκκ << ...1 are fixed and m does not depend on n. 

2) ∞<)( 4
iE ε  and k = 0; when k is not zero, the proof holds after the transformation 

Π=Π 2/1* W , YWY 2/1* = . 

3) α̂  is bounded. This is in fact is necessarily true for a fixed nontrivial mean functions (trivial 

functions are polynomial functions with degrees no greater than p). For trivial mean functions, 

traditional multiple regression theory holds and is not discussed here. 

4) iΠ , the ith row in the matrix Π , is bounded for all i and n; 

5) Σ→ΠΠT
n
1 , as ∞→n   for all i for a positive definite matrix Σ . 

With assumptions 4) and 5), it follows that Σ→ΠΠ −−− i
T

in 1
1 as ∞→n  uniformly with respect to 

i. 

 Under the above assumptions, 120 )ˆ( −Σ→ σβnVar  and 12)ˆ( −Σ→ σβnVar . 

Lemma 1. βββ ˆ)(ˆˆ 10 −ΠΠ=− TD  
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Proof 
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QED. 

Lemma 2 )(ˆˆ 100 −
− =− nOi ββ  uniformly for all i. 

Proof  

)ˆ()(               

))ˆ()ˆ(()(               

)ˆ()(               

)()(ˆˆ

01

001

01

1100

β

ββ

β

ββ

ii
T
ii

T
i

ii
T
i

T
i

T
i

ii
T

ii
T

i

TT
i

T
ii

T
ii

Y

YY

Y

YY

Π−ΠΠΠ−=

Π−Π−Π−ΠΠΠ=

Π−ΠΠΠ=

ΠΠΠ−ΠΠΠ=−

−
−−

−
−−

−−−
−

−−

−
−−

−
−−−

 

)ˆ( 0βii
T
i Y Π−Π  is uniformly O(1)  and  1)( −

−− ΠΠ i
T

i  is uniformly )( 1−nO . Hence 

)(ˆˆ 100 −
− =− nOi ββ  uniformly. QED. 

Lemma 3. )()ˆˆ(ˆˆ 200 −
−− +−=− nOii ββββ  uniformly for all i. 

Proof 
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from Lemma 1, βββ ˆ)(ˆˆ 10 −ΠΠ−= TD , 
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By assumptions 3) and 4), 1)( −
−− +ΠΠ Di

T
i  is )( 1−nO  uniformly; by Lemma 2, 

)(ˆˆ 100 −
− =− nOi ββ uniformly. So the second term in the last line of the equation is )(2−nO  

uniformly. 

By assumption 4), 1)( −
−− ΠΠ i

T
i  is )( 1−nO uniformly; by assumptions 3) and 4), 1)( −

−− +ΠΠ Di
T

i  is 

)( 1−nO uniformly; by assumption 4), i
T
i ΠΠ  is bounded; ββ →ˆ  in probability. So the third term 

in the last line of the equation is also )(2−nO uniformly. 

QED. 

Theorem 1. If assumptions 1)- 4) are all satisfied, then the delete-one jackknife variance 

estimator for β̂ , ( ) ( )�
=

−− −−−=
n

i
i

T

iJ n

n
v

1

ˆˆˆˆ1 ββββ , is asymptotically consistent, i.e., 

12 −Σ→ σJnv  in probability. 

Proof.  

( ) ( )�
=

−− −−−=
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from Lemma 3, 
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Under the assumptions 1), 2) and 4), the jackknife estimator for the LSE 

( ) ( )�
=

−− −−−=
n

i
J

T

iJ n

n
v

1

00000 ˆˆˆˆ1 ββββ  satisfies 120 −Σ→ σJnv  in probability, which leads to  

12 −Σ→ σJnv  in probability. QED. 

The validity of the jackknife variance estimation forPROJT̂   and PREDT̂  follows from the validity 

of β̂ .  
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Appendix B. 

 
 

Inferences for Horvitz Thompson estimator: Var(HT) = empirical variance; meanvar = average estimated variance and N.C. = noncoverage of 95% CI 
over 1000 samples (target = 30-70), for each of five estimators of variance (V1 – V5) and three population sizes with K=10 for the jackknife method. 

 
   v1 v2 v3 v4 v5 

(Yates-Grundy) (Random Group) (With Replacement) (Paired Differences) (Successive 
Differences) 

 Population Var(HT) 

meanvar N.C. meanvar N.C. meanvar N.C. meanvar N.C. meanvar N.C. 
             

NULL 350 370 148 389 106 387 134 379 140 384 136 
LINUP 156 154 44 179 16 164 28 166 46 166 32 

LINDOWN 1005 858 204 904 182 895 200 892 200 889 196 
SINE 3215 3433 96 3624 80 3639 84 3598 96 3601 98 
EXP 254 247 68 284 48 276 56 275 62 272 62 

 
A 
 

N=300 
n=32 

ESS 31 31 76 47 34 33 58 34 74 34 70 
NULL 1229 1275 98 1340 68 1334 86 1327 100 1331 96 
LINUP 744 791 60 870 42 834 50 835 50 833 50 

LINDOWN 4001 3940 110 4109 82 4095 102 4107 100 4110 94 
SINE 12679 13388 68 13908 60 14089 66 14017 70 14082 70 
EXP 1205 1176 64 1324 42 1278 54 1274 50 1266 50 

 
B 
 

N=1000 
n=96 

ESS 125 122 50 159 14 132 44 133 46 132 48 
NULL 2934 2601 108 2817 76 2725 94 2688 98 2697 98 
LINUP 1308 1396 50 1450 32 1474 44 1469 40 1466 40 

LINDOWN 7447 7205 104 7386 78 7501 98 7485 98 7484 98 
SINE 23172 24912 52 26153 56 26251 50 26337 50 26196 50 
EXP 2337 2158 62 2361 46 2357 50 2337 50 2359 48 

 
C 
 

N=2000 
n=192 

ESS 247 239 62 272 34 259 50 258 58 258 52 
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Table1. Comparison of three point estimators: P0_15, HT and GR 
N=1000,n=96 

 
P0_15 HT GR  

Empirical Bias RMSE Empirical Bias RMSE Empirical Bias RMSE 
NULL 0.27 21.79 -1.93 35.11 0.99 23.69 
LINUP 3.24 25.89 1.49 27.32 -2.79 34.29 

LINDOWN 0.87 26.71 2.04 63.29 -1.63 35.33 
SINE 22.01 45.48 4.85 112.71 -3.63 94.61 
EXP 0.15 27.39 1.09 34.74 -0.57 54.34 
ESS -4.41 10.22 0.82 11.20 0.92 30.24 
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Table 2. Empirical mean estimates of 6 variance estimators: RGv , WRv , )(ˆ GRV , Empirical Bayes, Jackknife (K=10) and BRR. 

 
 Population Empirical 

Var (HT) 
Mean( RGv ) Mean ( WRv ) Empirical 

Var(GR) 
Mean )(ˆ GRV  Empirical 

Var(P0_15) 
Empirical 
Bayes 

Jackknife 
(K=10) 

BRR 

NULL 350 389 387 157 113 133 140 171 172 
LINUP 156 179 164 275 196 125 142 163 165 

LINDOWN 1005 904 895 281 192 169 131 197 192 
SINE 3215 3624 3639 2752 1767 873 349 1326 1426 
EXP 254 284 276 784 566 201 233 273 334 

 
A 
 

N=300 
n=32 

ESS 31 47 33 219 175 39 32 51 71 
NULL 1229 1340 1334 560 527 475 501 555 576 
LINUP 744 870 834 1168 1020 660 573 678 702 

LINDOWN 4001 4109 4095 1246 1037 713 608 622 658 
SINE 12679 13908 14089 8937 7656 1584 769 1890 4006 
EXP 1205 1324 1278 2952 2515 750 726 796 947 

 
B 
 

N=1000 
n=96 

ESS 125 159 132 914 786 85 114 100 141 
NULL 2934 2817 2725 1389 1250 1120 1133 1153 1195 
LINUP 1308 1450 1474 2197 2107 1070 1056 1170 1204 

LINDOWN 7447 7386 7501 2337 2160 1217 1086 1174 1226 
SINE 23172 26153 26251 19482 16346 2027 1556 2551 4861 
EXP 2337 2361 2357 6073 5656 1254 1297 1345 1518 

 
C 
 

N=2000 
n=192 

ESS 247 272 259 1860 1696 142 194 144 182 
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Table 3. Comparison of three approaches to inference: HT with V2, GR with Yates-Grundy, P-spline with Jackknife: A.W. = Average 95% CI width 
and N.C. = non-coverage rate of 95% C.I. over 1000 samples (target = 30-70) 

 
        
 Population HT GR P-spline 
  A.W. N.C. A.W. N.C. A.W. N.C. 

NULL 68 106 40 122 48 46 
LINUP 48 16 53 128 47 40 

LINDOWN 98 182 52 134 51 48 
SINE 223 80 161 156 114 204 
EXP 63 48 89 142 57 64 

N=300, n=32 

ESS 26 34 51 112 24 48 
NULL 131 68 88 80 89 28 
LINUP 109 42 123 64 98 48 

LINDOWN 230 82 124 82 94 62 
SINE 446 60 340 74 145 86 
EXP 135 42 193 96 105 54 

N=1000, n=96 

ESS 48 14 109 84 37 66 
NULL 196 76 137 54 129 42 
LINUP 142 32 178 52 130 30 

LINDOWN 317 78 180 64 129 58 
SINE 611 56 497 82 182 74 
EXP 184 46 289 66 138 48 

N=2000,n=192 

ESS 63 34 161 76 45 46 
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Table 4. Inferences for P1_15 with model-based and jackknife standard errors, applied to data with homoscedastic and heteroscedastic errors. 
Var(P1_15) = empirical variance; meanvar = average estimated variance and N.C. = noncoverage of 95% CI over 1000 samples (target = 30-70). 

N=1000,n=100. 
 

   
 Variance Structure Incorrectly Specified Variance Structure Correctly Specified 

Var (P1_15) Model Based s.e. Jackknife s.e. Var (P1_15) Model Based s.e. Jackknife s.e. Population 
 meanvar N.C. meanvar N.C.  meanvar N.C. meanvar N.C. 

           
NULL 668 383 150 830 56 94 82 56 110 50 
LINUP 1012 500 192 1318 56 75 71 56 96 38 

LINDOWN 732 461 140 1058 38 96 81 84 104 44 
SINE 1070 785 118 2742 46 238 278 54 581 48 
EXP 897 529 136 1326 50 98 106 50 126 26 
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