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Cells for Unit Nonresponse
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Abstract

A method is proposed for weighting adjustments for unit nonresponse based on
a crossclassification by the estimated propensity to respond and by the predicted
mean of a survey outcome. Simulations to assess the performance of the method
are described.
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1. Introduction 
Unit nonresponse occurs when entire interviews are 
missing due to noncontact of a sampled individual or 
refusal to answer the questionnaire.  Weighting is a 
standard method of unit nonresponse adjustment and 
is a natural extension of weighting for unequal 
probabilities of selection.  However, unlike the 
sample weight, the nonresponse rate is usually 
unknown and must be estimated.   

In forming nonresponse weights, respondents 
and nonrespondents are often classified into 
adjustment cells based on covariate information 
recorded for both groups. Respondents in cell c are 
then weighted by the inverse of the response rate in 
cell c .  For example, a cell is defined as “married 
women living in the south” with 80 respondents and 
20 nonrespondents. Then, the response rate is 80/100 
= 0.8 and the response weight is 1/0.8 = 1.25. 

Let D = (X,Z) be all fully -observed survey 
variables X and design variables Z, Y be the outcome 
variable and R  be a response indicator.  In principle, 
adjustment cells might be based on a joint 
classification of the variables D.  We consider here 
situations where this leads to too many cells, so that 
some cells have no respondents or a small counts of 
respondents that lead to excessively variable 
nonresponse weights. This situation is common in the 
case of attrition in panel surveys, where extensive 
survey information from earlier waves is available for 
creating adjustment cells for later waves. In surveys 
involving differential probabilities of selection, 
adjustment cells are often formed within which the 
probability of selection is not constant. The usual 
weighting adjustment is then proportional to the 
inverse of the weighted response rate, defined as the 
sum of the weights for respondents divided by the 
sum of the weights for respondents and 
nonrespondents. Simulations in Little and Vartivarian 
(2002) show that improved inferences are obtained 
by forming adjustment cells that crossclassify on the 
survey design variables, rather than incorporating 
these variables by weighting the rates. However, this 
strategy may lead to too many adjustment cells to be 
practical. For example in the Health Interview Survey 
(Botman et al, 2000), weighted response weights are 
calculated within second stage sampling unit (SSU), 
a variable that has many levels. Joint classification by 
Z and X would correspond to stratifying households 
within SSU according to race, which would yield 
many small adjustment cells, including perhaps some 
with no respondents. 

2. Two key dimensions for forming adjustment 
cells  
We consider coarsening strategies based on 
classification by grouped values of linear 
combinations of Z. Two linear combinations of Z are 
particularly useful in this regard: (a) response 
propensity stratification, as defined in Section 2.1, 
which aims to form cells that are homogeneous with 
respect to the probability of response, and (b) 
predictive mean stratification, as defined in Section 
2.2, which aims to form cells  that are homogeneous 
with respect to the predicted mean of a particular 
outcome variable Y. Both of these approaches have 
the important property that if nonresponse is missing 
at random (MAR; Rubin, 1976; Little and Rubin, 
2002), that is  
 R C Y | D,    (1) 
where C  denotes independence, then the same 
property applies approximately to the coarsened 
classification.  That is, if A is a coarsening of D based 
on response propensity or predictive mean 
stratification, then approximately, 
 R C  Y | A,  (2) 
so adjustment based on A controls nonresponse bias.  
 
2.1 Response Propensity Stratification 
The first strategy for reducing the potential number 
of adjustment cells is response propensity 
stratification, where Little (1986) defines the 
response propensity as  
 ( ) ( 1 | )p D pr R D= = ,  (3) 

and supposes that ( ) 0p D >  for all observed values 
of D. Following Rosenbaum and Rubin’s (1983) 
theory for matching in observational studies, define a 
balancing score as a function b of the observed 
covariates D such that D is conditionally independent 
of response given the balancing score ( )b D , 

 D C  R  |  ( )b D . (4) 
Rosenbaum and Rubin’s (1983) theory shows that (a) 
the finest balancing score is the full set of covariates, 
b(D) =  D; (b) the coarsest balancing score is the 
propensity score p(D); and (c) if the data are MAR, 
as in (1), then  
 Y C R  |  p(D). (5) 
Therefore, adjustment cells based on grouping units 
according to the propensity to respond adjusts for 
nonresponse bias if the data are MAR (Little, 1986).   

In practice the response propensity is unknown 
and needs to be modeled, for example via a logis tic 
regression of R on D, yielding estimated propensities 
ˆ ( )p D . One can then form a grouped version of 
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ˆ ( )p D , say ˆ ( )Gp D , and use this grouped version of 
the response propensity as a basis for forming 
nonresponse adjustment cells; for example one might 
base the groups on the quintiles of the distribution 
ˆ ( )p D .  Since these adjustment cells do not depend 

on Y they are the same for each outcome variable, 
and only one regression of R on Y needs to be 
modeled.   

Little (1986) considers properties of weighting 
class adjustments for domain means that do not cut 
across adjustment cells, and for cross-class means 
that do cut across adjustment cells. For example, the 
overall mean or the mean outcome for C = 1 in Table 
1 are examples of domain means, but the mean 
outcome for homeowners is a cross-class mean since 
it cuts across the three levels of adjustment cells. 

 
Table 1:  Cross-classes of Home Ownership Status 

Adjustment Cell Variable C Home 
Ownership 

Status C = 1 C = 2 C = 3 

Owner    
Renter    

 
Means based on response propensity 

stratification have the following properties: 
• Weighting using the propensity score 

stratification yields approximately unbiased 
estimates of domain and cross-class means, 
where the approximation arises from 
estimating and grouping ˆ ( )p D .  

• Response propensity stratification does not 
control variance, and may be very 
inefficient, especially when the covariate set 
D includes variables that have a strong 
association with Y, but ˆ ( )p D  has a weak 
association with Y.  

 
2.2 Predictive Mean Stratification 
The second strategy for coarsening the set of 
adjustment cells is predictive mean stratification. 
First, a regression of the outcome Y on D is fitted to 
respondents, yielding a predicted mean ˆ( )y D  for 
each respondent and nonrespondent. Then adjustment 
cells are based on a grouped version ˆ ( )Gy D  of 

ˆ( )y D ; for example, one possible choice is to base the 

groups on the quintiles of the distribution of ˆ( )y D .  
To motivate this form of coarsening, note that 

the MAR assumption (1) implies that the distribution 
of Y for respondents and nonrespondents are the same 
given D.  Pooling over values of D with the same 
distribution of Y results in subpopulations where the 
outcome Y and response indicator R are still 
independent.  Suppose the distribution of Y given D 
differs only in the mean *( )y D  for different values 
of D. Then pooling over adjustment cells with the 

same value of *( )y D  yields coarsened cells within 
which Y  and R are independent. That is,  
 Y C R  | *( )y D . 

Hence if ˆ( )y D  is an estimate of * ( )y D  based on a 
well-specified regression model, then 
 Y C R  | ˆ( )y D ,  (6) 
approximately. The variance of Y within adjustment 
cells is also minimized by classifying on the 
predicted mean. Little (1986) summarizes the 
properties of weighted means from predictive mean 
stratification as follows: 

• The bias and variance of the overall mean of 
the outcome Y is approximately controlled, 
again the approximation arising due to the 
estimating and grouping of ˆ( )y D . 

• The variance is smaller than that obtained 
with response propensity stratification, since 
predictive mean stratification minimizes 
within cell variation. 

• Weighted means for cross-classes have 
potentially nonzero large sample bias (LSB). 

 
Thus predictive mean stratification gives better 

estimates of domains means than response propensity 
stratification, since it controls both bias and variance, 
but unlike response propensity stratification, it does 
not yield unbiased estimates of cross-class means. 
Another drawback with predictive mean stratification 
is that it leads to different choices of adjustment cells 
for each survey outcome Y.  A single set of 
adjustment cells that is relatively efficient for a set of 
key outcomes would be desirable (Little, 1986; 
Goksel, Judkins and Mosher, 1992).  One possible 
approach is to use a principal component analysis or 
some other form of factor analysis to reduce the 
number of outcome variables used in forming 
adjustment cells, thus reducing the number of 
regressions and sets of weights necessary.  

 
2.3 Joint Classification by Response Propensity 
and Predictive Mean Stratification 
Since response propensity and predictive mean 
stratification have attractive features, we propose to 
cross-classify on both the response propensity scores 
ˆ ( )p D  and the best linear predictor ˆ( )y D  to form 

adjustment cells. The motivation is to capture the 
bias-reduction property of response propensity 
stratification and the gains in efficiency of predictive 
mean stratification.  The joint classification also has 
potential gains in robustness if the model for the 
response propensity or predictive mean is 
misspecified, as discussed in section 2.3.2.   
 
2.3.1 Gains in Efficiency from Cr ossclassifying by 
ˆ ( )y D  as well as ˆ ( )p D   

Consider two aspects that contribute to the 
inefficiency of forming weighting classes based on 
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ˆ ( )p D : (i) the R2 from the regression of Y on D;  (ii) 

the correlation between ˆ ( )p D  and ˆ( )y D , say ρ .  
The asterisked cell in Table 2 corresponds to the 
situation where adding ˆ( )y D  to ˆ ( )p D  improves the 

efficiency of ˆ ( )p D . 
 

Table 2. Efficiency of the Response Propensity;  
*The case where ˆ ( )p D   is  inefficient. 

  R2(Y,D) 
  Low High 

Low  * ρ ( ˆ ( )p D , ˆ( )y D ) 
High   

 
Adding ˆ( )y D  to ˆ ( )p D   improves the efficiency 

when ˆ( )y D  is a good predictor of Y and ˆ ( )p D and 

ˆ( )y D  are weakly correlated. (If ˆ ( )p D and ˆ( )y D  are 
highly correlated, then the joint crossclassifying will 
have sparse off-diagonal cells leading to increased 
variance.)   
 
2.3.2 Reduction in Bias from Crossclassifying by 
ˆ ( )p D  as well as ˆ ( )y D  

If ˆ ( )p D  is misspecified, then further 

crossclassification on ˆ( )y D  will control bias for the 

overall mean.  On the other hand, if ˆ( )y D  is 

misspecified, then stratifying on ˆ( )y D  alone may 
lead to bias, which can be reduced by further 
classification on ˆ ( )p D .  The response propensity 
may be misspecified because important predictors are 
omitted from the logistic regression of R on D, or the 
form of this regression is incorrect. The predicted 
mean ˆ( )y D  may be misspecified for a number of 
reasons: 

(1) Mismodeling of ˆ( )y D  itself (e.g., omitting 
interaction terms); 

(2) With multiple outcomes, it is not practical to 
create separate weights for each outcome.  
Choosing a single compromise predictive 
mean stratification for all outcomes entails a 
misspecification error for each individual 
outcome. 

(3) Even if ˆ( )y D  is correctly specified, the bias 
of the cross-class mean is not controlled by 
predictive mean stratification, so adding 
ˆ ( )p D reduces the bias of weighted estimates 

of cross-class means.   
 

Crossclassifying by ˆ ( )p D  and ˆ( )y D  has the 
following “double robustness” property: 

(a) If ˆ ( )p D  is correctly specified and ˆ( )y D  is 
incorrectly specified, joint classification 
controls bias of estimates of the mean for the 
whole sample and for cross-classes;  

(b) If ˆ ( )p D  is incorrectly specified and ˆ( )y D  
is correctly specified, then joint 
classification controls the bias of the overall 
mean and leads to gains in efficiency. 
 

Similar “double robustness” properties were 
discussed by Robins et al (2000) in the context of 
estimating equations, and by Zeng (2001) in the 
context of survival analysis. In conclusion, a joint 
classification on ˆ ( )p D  and ˆ( )y D  has the potential of 
yielding greater robustness to model 
misspecification, improved bias reduction, and 
improved efficiency. In the next section we assess the 
empirical validity of these theoretical properties by a 
simulation study. 
 
3. Simulation I 
A finite population of size N = 10,000 was generated. 
Four covariates were generated such that 

4[ 1, 2, 3, 4]~ (0, )D D D D N I , where N4 is a 
multivariate normal and I is the identity matrix. A 
stratifier Z and a cross-class variable C were 
generated, with Z and C each based on dichotomized 
independent standard normal variates.  The outcome 
is as follows: 

1 0.5* YY N C Z ε= + + + , 

where N and Yε  are independent standard normal 

variates, the correlation r(Y1,D1)=0.7 and Y1 C  
[ 2, 3, 4]D D D .  The probit response probability 

depends on covariates [ 1, 2, 3, 4]D D D D  and a 

standard normal variate Rε  such that  

( 1| 1, 2, 3, 4)

{0.2 0.1* 1 0.6*( 2 3 4) 0.5* }.R

P R D D D D

D D D D ε

= =

Φ + + + + +
 

The resulting response rate is approximately 55%. 
One hundred replicate stratified random samples of 
size n = 2200 were taken from this population.  

The quantities of interest are the root mean 
square error (RMSE), the average bias (AB) over 
replicates relative to the mean before deletion of 
cases due to nonresponse and the RMSE relative to 
the correct model for the response propensity 
(RMSErpF), defined as RMSErpF = 
100*((RMSE/RMSEpF)-1)). 
 
3.1 Modeling the Response Propensity and 
Predictive Mean 
The response propensity probit model includes the 
cross-class variable C and stratifier Z. In addition, if 
the model includes D1, then the model is denoted 
pD1. If the model includes D1 and D2, then the 
model is referred to as pD12, and so on. If the model 
includes D1,D2,D3 and D4, the model is referred to 
as the full model, pF. A summary of all five models 
examined is listed in Table 3. 
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Table 3.  Models for the Response Propensity 

 
 

Model   
Mean 

Classification 
Covariates 

Included in Model 
1. pD1 1, ,D C Z  
2. pD12 1, 2, ,D D C Z  
3. pD34 3, 4, ,D D C Z  
4. pD234 2, 3, 4, ,D D D C Z  
5. pF 1, 2, 3, 4, ,D D D D C Z  

 
For example, the model pF is a probit regression of R 
on D1, D2, D3, D4, C and Z. 

Similarly, the five predictive mean models for 
Y1 are as in Table 3, but with p replaced by y1.  For 
example, the model y1F  is a multiple regression of 
Y1 on D1, D2, D3, D4, C and Z fit to the respondent 
data.  A grouped version of the predicted values for 
all models of the response propensity and predictive 
mean form the five adjustment cells, where groups 
are based on the quintiles of the distribution.  The 
response rate in an adjustment cell is then the number 
of respondents in a cell divided by the number of 
sampled individuals in that cell. 

The only correct model for the response 
propensity is pF, the model that includes all 
covariates.  The correct models for the predictive 
mean are  y1D1, y1D12 and y1F.   
 
3.2  Simulation I Results 
Since gains in efficiency by further classifying on the 
predictive mean after classifying on the response 
propensity are of interest, we examine the RMSErpF, 
the root mean square error of models relative to the 
root mean square error of classifying on the correct 
model for the response propensity pF.  Figure 1 
contains the RMSErpF and AB for all jointly 
classified adjustment cells, broken down into five 
cases: (1) the case where both the response 
propensity and the predictive mean are correctly 
modeled; (2) the case where only the predictive mean 
is correctly modeled; (3) the case where only the 
response propensity is correctly modeled; (4) the case 
where both the predictive mean and response 
propensity are incorrectly modeled; (5) the last case 
that includes both the mean before deletion of cases 
due to nonrespone (meanbd) and the respondent 
mean (meanr) .    

The mean before deletion of cases due to 
nonresponse (meanbd) performs 35% better with 
respect to the RMSErpF than the mean based on the 
model pF.  When the predictive mean is correctly 
modeled (cases (1) and (2)), we see that the all 
estimates are more efficient than the estimate based 
on pF (i.e., RMSErpF < 0).  In fact, when the 
predictive mean is correctly modeled, using the joint 
classification of the predictive mean in addition to the 
response propensity brings us between one-third to 

two-thirds of the efficiency achieved by using 
meanbd, the mean based on data before nonresponse.   
Another interesting feature apparent in Figure 1 is the 
“double robustness” property.  The robustness to 
model misspecification that is enjoyed by the joint 
classification of the predictive mean and the response 
propensity is apparent. Specifically, correctly 
modeling at least one of the two models allows for a 
sensible estimate, unlike in case (4), where the 
RMSErpF and AB are unacceptably high. Correctly 
modeling both models allows for gains in efficiency 
in addition to unbiasdness. 
 
4. Simulation II  
The simulation results presented thus far are based on 
one population, so general conclusions are not 
warranted.  In order to explore the issues of 
unbiasedness, efficiency and “double robustness” 
more systematically, the population characteristics 
were varied.  The outcome is of similar form to that 
in Simulation I,  

1 0.5* YY N C Z ε= + + + , 
where Y1 C  [ 2, 3, 4]D D D , but the correlation 

between Y1 and D1 is either moderate or low  (i.e., 
r(Y1,D1)=0.68 or r(Y1,D1)=0.38, respectively).  

The response propensity model is changed to  

1 2

( 1| 1, 2, 3, 4)

{0.2 * 1 *( 2 3 4) 0.3* 0.5* },R

P R D D D D

D D D D Cβ β ε

= =

Φ + + + + + +
 
where the coefficients 1β  and 2β are as in Table 4.   
 

Table 4. Simulation II Response Probability 
Coefficients 

 
 

1β  2β  

1. 0.6 0.6 
2. 0.2 0.6 
3. 0.6 0.2 

 
Thus, there are a total of 2*3=6 populations 
representing the 2 outcome structures and the 3 
nonresponse structures.  One hundred replicate 
stratified random samp les of size n=2200 were drawn 
from each of the six populations.  
 
4.1 Simulation II Results  
Figure 2 contains the RMSE for each joint 
classification of the response propensity and 
predictive mean, averaged over all six populations.  
The average RMSE for the classification based on pF 
alone is represented with a red line, RMSE=365. 
When the predictive mean is correctly modeled, the 
method of joint classification by the predictive mean 
and the response propensity in general improves the 
average RMSE relative to using only the correct 
model for the response propensity pF. Simulation II 
further supports conclusions based on Simulation I. 
Notice that the average RMSE is not reported for 
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cases where both models are incorrect or for the 
respondent mean as the average RMSE are 
unacceptably high, ranging from 563 to 1706, again 
demonstrating robustness of the joint classification to 
model misspecification when at least one of the two 
models is correct. 
 
5. Cross-Class Means 
The cross-class means for each of the six populations 
in Simulation II are calculated using the same 
weights obtained for the overall mean, but applied to 
the cross-classes of C (i.e., C = 0 or C = 1).  The 
sample weighted cross-class mean before deletion of 
nonrespondents is used as a standard.  Absolute total 
cross-class bias (ATOTCB) is defined to be the sum 
of the absolute bias in the cross-classes relative to the 
mean before deletion, and the standard deviation of 
the absolute total class bias (SDTOTCB) is the 
standard deviation of ATOTCB over replicates.  

The “double robustness” is again evident when 
examining the average ATOTCB over the six 
populations, where a reasonable ATOTCB is 
obtained when at least one of the two models is 
correct as shown in Figure 3.  

Figure 4 displays that using the 
crossclassification of the predictive mean and the 
response propensity, averaged over the six 
populations, results in lower ATOTCB for 10 of the 
17 cases when one of the two models is correct; also, 
the model y1D234pF results in only two units larger 
ATOTCB than when using only pF.   
 
6. Summary 
This research proposes to construct unit nonresponse 
adjustments based on the joint classification of ˆ ( )p D  

and ˆ( )y D .  Simulations suggest that an improvement 
in efficiency is gained in situations where the 
response propensity is inefficient, with negligible loss 
in efficiency when the response propensity is 
efficient. Further, our simulations demonstrate 
robustness of the joint classification to 
misspecification of the model for the response 
propensity or the predictive mean.  

Our research focuses on the simple situation of a 
single outcome Y, where predictive mean 
stratification yields a one-dimensional classification 
variable. In real surveys with multiple key outcomes, 
the method proposed here would lead to a different 
set of weights for each outcome, which is practically 
cumbersome and leads to complications for 
multivariate analysis. Thus, in future work we plan to 
explore our method in conjunction with dimension 
reduction of a set of outcomes, using techniques such 
as principal component analysis. 
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Figure 1:  RMSErpF and AB by Model Correctness; Simulation I 

 
 

 
Figure 2.  Average RMSE of Estimates over 6 Populations; Simulation II;    

Average RMSE = 365 for pF 

 
Figure 3.  Average ATOTCB and SDTOTCB over 6 Populations 

 for Cross-class Estimates; Simulation II  
 

 
Figure 4.  Average ATOTCB < 1400 over 6 Populations for Cross-class Estimates; 

 Simulation II;     Average ATOTCB = 724 for pF 
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