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Censored Data Regression in High-Dimension
and Low-Sample Size Settings For Genomic

Applications

Hongzhe Li

Abstract

New high-throughput technologies are generating various types of high-dimensional
genomic and proteomic data and meta-data (e.g., networks and pathways) in or-
der to obtain a systems-level understanding of various complex diseases such as
human cancers and cardiovascular diseases. As the amount and complexity of
the data increase and as the questions being addressed become more sophisti-
cated, we face the great challenge of how to model such data in order to draw
valid statistical and biological conclusions. One important problem in genomic
research is to relate these high-throughput genomic data to various clinical out-
comes, including possibly censored survival outcomes such as age at disease on-
set or time to cancer recurrence. We review some recently developed methods
for censored data regression in the high-dimension and low-sample size setting,
with emphasis on applications to genomic data. These methods include dimen-
sion reduction-based methods, regularized estimation methods such as Lasso and
threshold gradient descent method, gradient descent boosting methods and non-
parametric pathways-based regression models. These methods are demonstrated
and compared by analysis of a data set of microarray gene expression profiles of
240 patients with diffuse large B-cell lymphoma together with follow-up survival
information. Areas of further research are also presented.
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Summary

New high-throughput technologies are generating various types of high-dimensional
genomic and proteomic data and meta-data (e.g., networks and pathways) in order
to obtain a systems-level understanding of various complex diseases such as human
cancers and cardiovascular diseases. As the amount and complexity of the data
increase and as the questions being addressed become more sophisticated, we face
the great challenge of how to model such data in order to draw valid statistical and
biological conclusions. One important problem in genomic research is to relate these
high-throughput genomic data to various clinical outcomes, including possibly cen-
sored survival outcomes such as age at disease onset or time to cancer recurrence.
We review some recently developed methods for censored data regression in the
high-dimension and low-sample size setting, with emphasis on applications to ge-
nomic data. These methods include dimension reduction-based methods, regularized
estimation methods such as Lasso and threshold gradient descent method, gradi-
ent descent boosting methods and nonparametric pathways-based regression models.
These methods are demonstrated and compared by analysis of a data set of microarray
gene expression profiles of 240 patients with diffuse large B-cell lymphoma together
with follow-up survival information. Areas of further research are also presented.
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ii CENSORED DATA REGRESSION FOR GENOMIC APPLICATIONS

1.1 INTRODUCTION

High-throughput technologies are generating many types of high-dimensional ge-
nomic and proteomics data. Important examples include DNA microarray technol-
ogy which permits simultaneous measurements of expression levels for thousands
of genes, array-based comparative genomic hybridization (aCGH) data which mea-
sure the change of DNA copy numbers, array based single nucleotide polymorphism
(SNP) data, and mass spectrometry data to measure protein expression levels. Such
high-throughout genomic data offer the possibility of a powerful, genome-wide ap-
proach to the genetic basis of different types of tumors and can be used for molecular
classification of cancers, for studying varying levels of drug responses in the area
of pharmacogenomics and for predicting different patients’ clinical outcomes. The
problem of cancer class prediction using the gene expression data, which can be
formulated as predicting binary or multi-category outcomes, has been studied exten-
sively and has demonstrated great promise in recent years (e.g., Golubet al. , 1999;
Sorlieet al. , 2001). There has also been active research of methods development in
relating gene expression profiles to other phenotypes, such as quantitative continuous
phenotypes or censored survival phenotypes such as time to cancer recurrence or
time to death. Due to large variability in time to certain clinical events such as cancer
recurrence among cancer patients, and in age of onset of many complex diseases,
studying possibly censored survival phenotypes can be more informative than treating
the phenotypes as binary or categorical variables.

The goal of linking genomic data to censored survival data is two-fold: to identify
genes that are involved in the risk of a clinical event and to build a predictive model for
future patients’ survival based on both genomic data and patient-specific covariates.
These two goals are related but not equivalent, although a good predictive model often
implies that the variables used in the model are relatively important or predictive.
Due to the problem of censoring, survival analysis models are obviously relevant to
this problem. The Cox regression model (Cox, 1972) is the most popular method
in regression analysis for censored survival data. Alternately, one can consider the
accelerated failure time (AFT) model (Buckley and James, 1979; Wei, 1992) and the
additive hazard model (Lin and Ying, 1994). For a given censored data regression
model, due to the very high dimensional space of the predictors, i.e., the genes
with expression levels measured by microarray experiments, the standard estimation
method cannot be applied directly to obtain the parameter estimates. Besides the
high-dimensionality, the expression levels of some genes are often highly correlated,
which creates the problem of high co-linearity. Finally, we should also expect
complex interactions between genes to affect the risk of survival. To deal with
these problems, Li and Luan (2003), Li and Gui (2004), Li and Li (2004), Gui and
Li (2005ab), Li and Luan (2005) were the first to investigate the use of penalized
estimation procedures for the Cox model in the high-dimension and low-sample size
settings. These regularized estimation methods were subsequently extended for the
AFT models and the additive hazard models by Huanget al. (2005) and Ma and
Huang (2005ab) by using appropriately defined loss functions.
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CENSORED DATA REGRESSION MODELS iii

The focus of this review is to present some recently developed statistical and com-
putational methods for relating high-throughout genomic data to censored survival
outcomes, including both the methods for identifying genes related to such survival
outcomes and the methods for building predictive models for future patients survival.
The rest of the paper is organized as follows. We first review some commonly used
censored data regression models. We then present a class of penalized estimation pro-
cedures for various models. We also present ensemble boosting methods for censored
data regression models and briefly mention methods based on dimension-reduction
and Bayesian variable selection. We present a comparison of some of these methods
using a real data set of diffuse large B-cell lymphoma (DLBCL) survival times and
gene expression data (Rosenwaldet al. , 2002). Finally, we give a brief discussion
of the methods and present several important problems for future research.

1.2 CENSORED DATA REGRESSION MODELS

Suppose that we have a sample size ofn from which to estimate the relationship
between the survival timeT and the gene expression levelsX = {X1, · · · , Xp}
of p genes. In addition, letZ be the vector of other patient-specific covariates.
Due to censoring, fori = 1, · · · , n, the ith datum in the sample is denoted by
(ti, δi, xi1, xi2, · · · , xip, zi), whereδi is the censoring indicator andti is the survival
time if δi = 1 or censoring time ifδi = 0, andxi = {xi1, xi2, · · · , xip}

′
is the vector

of the gene expression level ofp genes for theith sample. In this section, we briefly
review the three most commonly used censored data regression models, including the
Cox proportional hazards model, the accelerated failure time model and the additive
hazard model.

1.2.1 The Cox proportional hazards model

The Cox proportional hazards model is the most commonly used censored data
regression model in survival analysis. The model assumes the following hazard
function for cancer recurrence or death at timet,

λ(t|X, Z) = λ0(t) exp(F (X, Z))

= λ0(t) exp(β1X1 + β2X2 + · · ·+ βpXp + γ
′
Z)

= λ0(t) exp(β
′
X + γ

′
Z), (1.1)

whereλ0(t) is an unspecified baseline hazard function,F (X, Z) is the function
which links the(X, Z) to the hazard function. If this function is assumed to be
linear, theβ = {β1, · · · , βp} is the vector of the regression coefficients related to the
p genomic data, andX = {X1, · · · , Xp} is the vector of gene expression levels with
the corresponding sample values ofxi = {xi1, · · · , xip} for theith sample. Finally,
γ is the risk ratio parameter associated with covariate vectorZ.
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iv CENSORED DATA REGRESSION FOR GENOMIC APPLICATIONS

Based on the available sample data, the Cox’s partial likelihood (Cox, 1972) can
be written as

L(β, γ) =
∏
r∈D

exp(β
′
xr + γ

′
zr)∑

j∈Rr
exp(β′xj + γ′zj)

,

whereD is the set of indices of the events (e.g., deaths) andRr denotes the set
of indices of the individuals at risk at timetr − 0. Note that whenp > n, there
is no uniqueβ to maximize this partial likelihood function and therefore some
regularization is required (see Sections 1.3.1, 1.3.2 and 1.3.3). Even whenp ≤ n,
some regularization may still be required in order to reduce the variances of the
estimates and to improve the prediction performance.

1.2.2 Accelerated failure time model

Let T be the random variable of time to event. For theith individual, letti be the
respective random variable. Letci be the censoring times, assumed to bei.i.d and
follows a survival functionG(t) = Pr(ci > t). The linear AFT model assumes

g(T ) = α + β
′
X + γ

′
Z + ε, (1.2)

where g is some pre-specified monotone function (e.g., log function),ε is (het-
eroscedastic) unobservable error, assumed to be independent with zero means and
bounded variances acrossn individuals. Due to censoring, fori = 1, · · · , n, theith
datum in the sample is denoted by(yi, δi, xi1, xi2, · · · , xip), whereδi is the censoring
indicator,yi is g transformation of the survival time ifδi = 1 or g transformed of the
censoring time ifδi = 0, i.e.,

yi = min(g(ti), g(ci)), andδi = I[ti ≤ ci], i = 1, · · · , n.

Wei (1980) discussed some advantages of using such AFT models over the popular
Cox regression model, including easy interpretation of the model parameters and
better fits for some data sets. One approach for estimating the parameterβ is the
Buckley and James (BJ) (1979) procedure. In Section 1.3.4, we present simple
modification of the BJ procedure to deal with the problem of largep. Alternatively,
one can estimateβ by minimizing the inverse probability of censoring weighted
(IPCW) loss function introduced in Robins and Rotnitsky (1992). Based on this loss
function, one can develop regularized estimation procedures forβ and extend the
random forests and boosting procedure to censored survival data (see Section 1.4.2).
For simplicity, we only consider model (1.2) without covariateZ.

1.2.3 Additive hazard regression models

The additive risk model as described in Lin and Ying (1994) assumes the following
conditional hazard at timet,

λ(t|X, Z(.)) = λ0(t) + β
′
X + γ

′
Z(t), (1.3)
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REGULARIZED ESTIMATION FOR CENSORED DATA REGRESSION MODELS v

given ap-dimensional vector of genomic dataX and patient-specific covariateZ(.),
which can be time-dependent. Hereβ, γ andλ0(t) denote the unknown regression
parameter and the unknown baseline hazard function. In the following discus-
sion, we simply assume that there is no covariateZ in the model (1.3). Denote
{Ni(t) = I(ti ≤ t, δi = 1); t ≥ 0} and{Yi(t) = I(ti ≤ t); t ≥ 0} as the observed
event process and the at-risk process. Lin and Ying (1994) proposed the following
estimation equation forβ,

U(β) =
n∑

i=1

∫ ∞

0

X{dNi(t)− Yi(t)dΛ0(β, t)− Yi(t)β
′
Xdt} = 0,

where

Λ0 =
∑
i=1

∫ t

0

{dNi(u)− Yi(u)β
′
Xidu}∑n

i=1 Yi(u)

is the estimate of the baseline hazard function. As noted by Lin and Ying (1994)
and Ma and Huang (2005), the resulting estimation ofβ is obtained by solving the
equation[

n∑
i=1

∫ ∞

0

Yi(t){X − X̄(t)}⊕2dt

]
β =

[
n∑

i=1

∫ ∞

0

{X − X̄(t)}dNi(t)

]
, (1.4)

whereX̄(t) =
∑n

i=1 Yi(t)Xi/
∑n

i=1 Yi(t). As noted by Ma and Huang (2005), the
estimate ofβ by this equation is equivalent to minimizing a loss function ofβ (see
Section 1.3.6). Based on this loss function, the Lasso or threshold gradient descent
procedure can be developed for estimating theβ in the additive hazard model (1.10).

1.3 REGULARIZED ESTIMATION FOR CENSORED DATA
REGRESSION MODELS

In this section, we review several regularized estimation procedures for estimating
the censored data regression models reviewed in previous sections. Most of these
procedures are based on extensions of the procedures developed for linear regression
and classification, with appropriate definitions of the loss functions.

1.3.1 L2 penalized estimation of the Cox model using Kernel

Since the dimension ofxi vector is usually much larger than the sample sizen,
standard methods such as the Cox partial likelihood for estimating the unspecified
function f is unfeasible. In addition, to deal with the problem of collinearity, the
most popular approach is to use the penalized partial likelihood, including theL2

penalized estimation, which is often called the ridge regression. Li and Luan (2003)
investigated theL2 penalized estimation of the Cox model in the high-dimensional
low-sample size settings and applied their method to relate the gene expression profile
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vi CENSORED DATA REGRESSION FOR GENOMIC APPLICATIONS

to survival data. To avoid the inversion of large matrix, they used the kernel tricks
to reduce the computation to involve only the inversion of a matrix of the size of the
sample size. Consider the model (1.1) with no covariateZ, a regularized formulation
of the Cox regression is considered as a variational problem in reproducing kernel
Hilbert spaceH,

minf∈HRreg(f) =
1
n

n∑
i=1

V (ti, δi, f(xi)) + ξ||f ||2H ,

whereV (ti, δi, f(xi)) is the loss function which is a function off depending on
only the values off(x) at the data points,{f(xi)}n

i=1. For the general Cox model
(1.1), we propose to use the negative log partial likelihood as the loss function and
reformulate the problem as finding functionf(x) such that

Rreg = − 1
n

n∑
i=1

δi[f(xi)− log{
∑
j∈Ri

exp(f(xj)}] + ξ||f ||2H (1.5)

is minimized, whereRi = {j = 1, · · · , n, xj ≥ xi} is the set of individuals who
were at risk at timexi.

The solution to this problem was given by Kimeldorf and Wahba (1971), and is
known as the representer theorem. By this theorem, the optimalf(x) has the form:

f(x) = b +
n∑

i=1

aiK(x, xi) (1.6)

whereK is a positive definite reproducing kernel, which gives the inner product in
the transform space. Sinceb can be absorbed into the baseline hazard function in
model 1.1, we can omitb in the following discussion. For the simplest case of inner
product kernel withK(xi, xj) =< xi, xj >, the functionf(x) can be expressed as
a linear function ofxis. In the case when the data are not linearly separatable, one
can choose a more general kernel such as the polynomial kernels withK(xi, xj) =
(< xi, xj > +1)d or the Gaussian kernels withK(xi, xj) = exp(||xi − xj ||/σ2

d),
whered andσ2

d are the kernel parameters. From the representer formula (1.6), it can
be shown that minimizing equation (1.5) is equivalent to the finite dimensional form:

Ra = −δ
′
(Kaa) + δ

′
log{

∑
j∈Ri

exp(Kaa)}] + ξa
′
Kqa, (1.7)

where a
′

= (a1, · · · , an}, the regressor matrixKa = [K(xi, xj)]n×n, and the
regularization matrixKq = Ka. Here the matrixKa is called the kernel matrix. One
can use the Newton-Raphson method to minimize the loss function overa, which is
n-dimension.

This procedure can be simply modified to include other covariatesZ. For example,
we can estimateγ in model (1.1) by maximizing a profile partial likelihood.
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REGULARIZED ESTIMATION FOR CENSORED DATA REGRESSION MODELS vii

1.3.2 L1 penalized estimation of the Cox model using least angle regression

One limitation of theL2 penalized estimation of the Cox model is that it uses all
the genes in the prediction and does not provide a way of selecting relevant genes
for prediction. However, from a biological point of view, one should expect that
only a small subset of the genes is relevant to predicting the phenotypes. Including
all the genes in the predictive model introduces noises and is expected to lead to
poor predictive performance. Due to the high-dimensionality, the standard variable
selection methods such as stepwise and backward selection cannot be applied. Lasso
was proposed by Tibshirani (1996) for variable selection for linear models and
was further extended for variable selection for the Cox proportional hazard models
(Tibshirani, 1997). Consider the model (1.1) with no covariateZ, let l(β) = log L(β)
to be the log of the partial likelihood function, then the Lasso estimate ofβ (Tibshirani,
1996, 1997) can be expressed as

β̂(s) = argmaxl(β), subject to
p∑

j=1

|βj | ≤ s,

wheres is a tuning parameter determining how many covariates with coefficients are
zero.

Tibshirani (1997) proposed the following iterative procedure to reformulate this
optimization problem with constraint as a Lasso problem for linear regression models.
Specifically, letη = β

′
X, µ = ∂l/∂η, A = −∂2l/∂ηηT andz = η + A−µ. With

this reparameterization, a one-term Taylor series expansion forl(β) has the form of

(z − η)T A(z − η).

Although there are multiple choices ofA−, it is easy to show that ifrank(A) = n−1,
for anyA− that satisfiesAA−A = A andz = η+A−µ, (z−η)T A(z−η) is invariant
to the choice of the generalized inverse ofA. The iterative procedure of Tibshirani
(1997) involves the following four steps,

1. Fix s and initializeβ̂ = 0.

2. Computeη, µ, A andz based on the current value ofβ̂.

3. Minimize(z − β
′
X)T A(z − β

′
X) subject to

∑
|βj | ≤ s.

4. Repeat steps 2 and 3 untilβ̂ does not change.

Tibshrani (1997) proposed to use the quadratic programming for solving Step 3.
However, in the high-dimension and low-sample size setting, i.e., in the case when
p >> n, the quadratic programming algorithm cannot be directly applied. Gui and
Li (2005) proposed a simple modification of the LARS algorithm of Efronet al.
(2004) for Step 3. Specifically, Gui and Li (2005) apply the Choleski decomposition
to obtainT = A1/2 such thatT

′
T = A, then Step 3 of the iterative procedure can be

rewritten as
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viii CENSORED DATA REGRESSION FOR GENOMIC APPLICATIONS

Step 3: minimize(y − β
′
X̂)T (y − β

′
X̂) subject to

∑
|βj | ≤ s,

wherey = Tz andX̂ = TX. This can be efficiently solved by using the LARS-Lasso
procedure as presented in Efronet al. (2004).

Segal (2006) proposed to use LARS to minimize a residual-based loss function
for the Cox model, in which the IRWLS iterations are not required. Park and Hastie
(2006) proposed a generalization of the LARS algorithm for the Cox model using
the predictor-corrector algorithm of convex optimization. Finally, for a given tuning
parameters, one can estimateγ in model (1.1) by maximizing a profile partial
likelihood inγ. For a givenγ ands, the LARS procedure can be used for estimating
theβ, denoted asβ(γ, s). Then we can maximize the partial likelihood overγ.

1.3.3 Threshold gradient descent procedure for the Cox model

Treating the negative log partial likelihood function (−l(β)) as the loss function, Gui
and Li (2005) presented a threshold gradient descent (TGD) regularization procedure
for estimating theβ in the Cox model following the key idea presented in Friedman
and Popescu (2004). The main idea of the TGD is that during the gradient descent
minimization, a thresholding is imposed to the absolute values of the gradients.
Specifically, for any threshold value0 ≤ τ ≤ 1 , the threshold gradient descent
algorithm for Cox model involves the following five steps,

1. β(0) = 0, ν = 0.

2. Calculateη, µ, g(ν) = ∂l/∂β for the currentβ.

3. fj(ν) = I[|gj(ν)| ≥ τ ·max0≤k≤n|gk(ν)|]

4. Updateβ(ν +4ν) = β(ν) +4ν · g(ν) · f(ν), ν = ν +4ν.

5. Repeat steps 2-4 untilβ converge.

This procedure involves two tuning parametersτ andν, both of which control the
sparsity of the estimates ofβ. Compared to the Lasso estimate of the Cox model,
this TGD procedure is computationally fast and does not involve matrix inversion.
Simulations and applications to real data sets indicated that whenτ = 1, the TGD
procedure performs very similarly to the Lasso procedure. Note that this procedure
is quite general and can be applied to essentially any convex loss function. Finally,
if covariateZ is included in model (1.1), one can estimateγ by maximizing a profile
partial likelihood or by iteratively updatingγ andβ during the TGD iterations.

1.3.4 Regularized Buckley-James Estimations for the AFT model

Buckley and James (1979) used the transformationφ on the observed responsesyi,
whereφ(yi) = δiyi + (1− δi)E(ti|ti ≤ yi) and proposed to simultaneously update
φ(yi) andβ at each step and proceed iteratively:

1. Select an initial estimateβ0, and let̃ti = β0xi.
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REGULARIZED ESTIMATION FOR CENSORED DATA REGRESSION MODELS ix

2. Compute the residualsei = yi − t̃i and estimate transformation

φ̂(yi) = δiyi + (1− δi)
[
t̃i − {Ŝe(ei)}−1

∫ ∞

ei

sd{Ŝe(s)}
]

= δiyi + (1− δi)

[
t̃i +

∑u
k νk t̃kI(ei < ek)

Ŝe(ei)
−1

]

whereŜe(s) is the Kaplan-Meier estimator of the survival function based on
{εi, δi}n

i=1, νk is the probability mass assigned to uncensored residualek, and∑u denotes summation over uncensored values only.

3. Apply least-squares estimation to{φ̂(yi), xi} and updateβ.

4. Stop ifβ converges or oscillates. Otherwise, go to step 2.

Whenp > n, one cannot implement the least-square estimation in Step 3 of the BJ
procedure. However, one can perform LARS-Lasso or the threshold gradient descent
procedure for Step 3 to obtain a regularized estimation ofβ. Alternatively, one can
performL2 penalization or partial least squares (PLS) methods for estimating theβ
in Step 3 (Huang and Harrington, 2004), which provides a PLS procedure for linear
models with censoring on the responses.

1.3.5 Regularization based on inverse probability of censoring weighted loss
function for the AFT models

If there is no censoring in the data, the most commonly used method for estimating
the model (1.3) is by minimizing a quadratic loss function

l(β) =
n∑

i=1

(yi − β
′
xi)2,

over β. However, such a loss function cannot be evaluated at the censored obser-
vations. One solution to this problem is to use the inverse probability of censoring
weighted (IPCW) loss function introduced in Robins and Rotnitsky (1992). Robins
and Rotnitsky (1992) showed that for any loss functionl(T, F (x)), one has

E(l(T, F (x))∆G(T |x)) = E(l(T, F (x))),

where theT is the random variable of time to event,F (x) is an estimator,G(T |x) is
the survival function of the censoring variable, which may be dependent onx. This
suggests the use of the following loss function to estimate the AFT model (1.2),

lipcw(β) =
n∑

i=1

[
(yi − βxi)2

δi

G(yi)

]
, (1.8)
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x CENSORED DATA REGRESSION FOR GENOMIC APPLICATIONS

whereG(t) is the survival function of the censoring variable. This loss function can
be regarded as the weighted squared loss function with weightwi = δi/G(yi) for
theith individual. In practice,G(t) is of course unknown and needs to be estimated
by the Kaplan-Meier estimator,ˆG(t), from the observation(ti, δi, xi). Notice for
the purpose of estimatingG(t), a δi = 0 means a complete observation andδi = 1
means a censored observation.

Alternatively, we can use the robust Huber (1964) loss function as

lHipcw(β) =
n∑

i=1

lHi (yi, xi;β)
δi

G(yi)
(1.9)

wherelHi (.) is the Huber loss function for theith observation defined as

lHi (yi, xi, β) =
{

(yi − βxi)2/2 |yi − βxi| < τ
τ(|yi − βxi| − τ/2) |yi − βxi| < τ

,

whereτ is the transition point, and its value is often taken to beαth quartile of
the current absolute residualsτ(β) = quantileα{|yi − βxi|}i∈D. Here1 − α is a
specified fraction of the observations that are treated as outliers, subject to absolute
loss.

Based on the loss function defined by equation (1.8), Huanget al. (2005) devel-
opedL1 penalized estimation or lasso by using the LARS, i.e., minlipcw(β) subject
to
∑p

i=1 |βi| < s, and a threshold gradient descent procedure. For the Huber version
of the loss function (1.9), one can similarly perform a gradient boosting procedure
or the threshold gradient descent procedure (Friedman 2001; Friedman and Popescu,
2004). Finally, based on loss functions defined in equations (1.8) or (1.9), one can
easily develop principal components or partial least square components analysis for
the AFT models.

1.3.6 Penalized estimation for the additive hazard models

In the estimation equation (1.4) forβ in the additive hazard model (1.3), we denote
Hi =

∫∞
0

Yi(t){Xi − X̄(t)}⊕2dt, andRi =
∫∞
0
{Xi − X̄(t)}dNi(t), andHi

s,l as
the(s, l) element ofHi and thesth components ofRi andβ asRi

s andβs, then the
equation (1.4) is equivalent to the followingp equations:(

n∑
i=1

Hi
s,1

)
β1 + · · ·+

(
n∑

i=1

Hi
s,p

)
βp =

n∑
i=1

Ri
s, i = 1, · · · , p.

Ma and Huang (2005ab) further note that the estimate defined by this equation is the
same as minimizing the following loss functionL(β),

β = argminβ

l(β) =
p∑

s=1

{(
n∑

i=1

Hi
s,1

)
β1 + · · ·+

(
n∑

i=1

Hi
s,p

)
βp −

n∑
i=1

Ri
s

}2
 .
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SURVIVAL ENSEMBLE METHODS xi

Based on this loss function, Ma and Huang (2005ab) proposed to use the Lasso or
the TGD procedure to obtain regularized estimates ofβ.

1.4 SURVIVAL ENSEMBLE METHODS

In recent years, ensemble methods such as random forests (Breiman, 1994) and
boosting procedures (Freund, 1995; Freund and Schapire, 1997; Friedman, 2001;
Bühlmann, 2003; B̈uhlmann and Yu, 2003) have gained much popularity in classifica-
tion and linear regression analysis because of their superior predictive performances.
In addition, B̈uhlmann (2003) demonstrated the applicability of the boosting proce-
dure in the high-dimensional settings. In this section, we first review two extensions
of the gradient boosting procedure to the Cox model and the AFT model.

1.4.1 The smoothing spline based boosting algorithm for the nonparametric
additive Cox model

Li and Luan (2005) proposed to use the boosting procedure for estimating the func-
tion F (X) in model (1.1) nonparametrically. Boosting essentially is an iterative
procedure to update function estimators successively. Friedman (2001) developed
a novel general framework, called “Gradient Boosting Machine," to obtain additive
expansions adapted to any fitting criterion. The framework is quite general and works
for various models. For linear regression with no censoring, Bühlmann and Yu (2003)
show that theL2 boosting achieves the optimal rate of convergence.

Following Friedman (2001) and B̈uhlmann and Yu (2003), Li and Luan (2005)
proposed a component-wise boosting procedure using cubic smoothing splines as
base learner. At thekth boosting step, they obtain the estimate of the function,
F (k)(X), which is a nonparametric additive function of each component ofX, some
of which are identically zero. It should be noted that when the iterationk increases
by 1, one more term is added to the fitted procedure, however, this term may have
already been in the model. Due to the dependence of this new term on the previous
terms, the complexity of the fitted model is not increased by a constant amount. The
final model provides an estimate of possible nonlinear effects of gene expression
levels on the risk of an event.

1.4.2 Random forests and gradient boosting procedure for the AFT models

Hothornet al. (2006) presented a random forests algorithm and a gradient boosting
algorithm for the construction of prognostic and diagnostic AFT models by using the
IPCW loss function (1.8). Using the IPC weights, Hothornet al. proposed to modify
the original random forests procedure of Breiman (1994) in two ways: in the bootstrap
(or bagging) step, the case samples are weighted by their IPC weights to obtain the
case counts, and in the base learner step, the tree is built using the learner sample
with case counts obtained from the bootstrap step. Similarly, using this IPCW loss
function, the generic gradient descent boosting procedure of Friedman (2001) can be
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xii CENSORED DATA REGRESSION FOR GENOMIC APPLICATIONS

directly applied to develop a boosting procedure for a linear model with censoring.
The base learner can be regression tree, univariate splines or component-wise least
squares. One benefit of using the component-wise least squares as base learner is
that there is a closed form definition of AIC score, which can be used for selecting
the boosting step.

1.5 NONPARAMETRIC PATHWAY BASED REGRESSION MODELS

For many complex diseases, especially for cancers, there are many types of meta-data
available that are related to biological pathways. Currently, information derived from
meta-data such as known biological knowledge has been used primarily to select
promising candidates for genetic characterization and for studying gene-gene and
gene-environment interactions. Such information has hardly been utilized in the
modeling step for identifying such interactions or for identifying genes or pathways
that are related to the phenotypes.

Wei and Li (2006) proposed a pathways-based boosting procedure for estimating a
nonparametric pathway based regression models. Suppose that we haveK pathways
whose activities may be related to the phenotype of interest. Assume that there are
pk genes involved in thekth pathway. We allow that some genes belong to multiple
pathways and letp be the total number of genes involved in theK pathways and
thereforep ≤

∑K
k=1 pk. Suppose that we haven independent individuals and let

yi = (ti, δi), whereti is time to event or censoring andδi is an event indicator. Let
x

(k)
ij be the genomic measurement of thejth gene in thekth pathway for theith

patient,x(k)
i = {x(k)

i1 , · · · , x(k)
ipk
} be the vector of the genomic measures of the genes

in the kth pathway for theith patient, and letxi = (x(1)
i , · · · , x(K)

i ) be the vector
of the genomic measurements of all thep genes. Here the genomic measurements
can be SNP data or gene expression data. Our goal is to relate the phenotype dataY
to X = {X(1), · · · , X(K)} in order to identify the pathways that are related to the
phenotype and to identify genes and their interactions that determine the pathway
activities.

Here we assume that the phenotype is related to the total activity level across
multiple pathways through an additive pathway activity function,

F (X) =
K∑

k=1

Fk(X(k)), (1.10)

whereFk(X(k)) can be interpreted as the activity level associated with thekth
pathway as determined by the genomic measurements of thepk genes in this pathway.
We assume that conditioning on the genes of the pathways, the pathway activities
across theK pathways are additive. For the censored survival phenotype, we can
assume that the hazard function at timet given the observed genomic dataX is
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modeled as

λ(t|X, Z) = λ0(t) exp(F (X) + γZ), (1.11)

whereλ0(t) is the baseline hazard function,F (X) is the pathway activity function
as defined in (1.10),Z is a covariate vector andγ is the corresponding risk ratio
parameter. The main motivation of these models is that we aim to model complex
interactions between genes within pathways nonparametrically, rather than assume
particular parametric forms for functionsFk(X(k)). We use the term "nonparametric
pathway-based regression" (NPR) to particularly emphasize this point, i.e., the genetic
and pathways effects are modeled nonparametrically. It is obvious that without any
constraints on the functionsFk(X(k)), model (1.11) is not identifiable.

Wei and Li (2006) proposed a general pathway-based gradient descent boosting
procedure to identify such NPR models with the particular form of (1.11). The key
idea of our proposed extension of the boosting procedure of Friedman (2001) is that
instead of performing gradient boosting over all thep genes, we perform gradient
descent boosting over genes in each of theK pathways separately. We first consider
the case when no other covariates are included in model (1.11). LetL(yi, F (xi))
be a loss function for theith observation, which can be defined as negative of the
partial likelihood based on model (1.11). During each of the boosting iterations,
one pathway is picked that gives the best fit of the negative gradients using the base
learner. This effectively utilizes the known pathway information and reduces the
dimensionality from considering all the genes to only considering those genes in a
given pathway. Then the functions are updated by adding the tree corresponding
to thek∗th pathway selected. In order to model interactions between genes in a
given pathway, Wei and Li (2006) proposed to use aJ-terminal node regression tree
(Breimanet al. , 1984) as the base learning procedure. The boosting procedure with
regression trees as base procedures inherits the favorable characteristics of trees such
as robustness and flexibility in modeling interactions (Breimanet al. , 1984). In
addition, trees tend to be quite robust against the addition of irrelevant input variables
and therefore serve as internal feature selection (Friedman, 2001; Breimanet al. ,
1984).J controls the size of the tree, which is often chosen to be small.

1.6 DIMENSION-REDUCTION-BASED METHODS AND BAYESIAN
VARIABLE SELECTION METHODS

There have also been some attempts to generalize the dimension-reduction procedures
to censored survival data. Li and Gui (2004) and Parket al. (2003) generalized the
partial least squares (PLS) method to the Cox model taking into account censoring.
Li and Li (2004) extended the sliced inverse procedure to censored data. Similarly,
one can also develop PLS procedures for the AFT models (Huang and Harrington,
2004) and the additive hazard models. One limitation of such extensions is that these
procedures do not provide a rigorous way of selecting genes in the model. Given
that we expect that only a small set of genes might be related to survival endpoints,
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these procedures may introduce too much noise to the estimation, and therefore
may have relatively low predictive performance. Bairet al. (2005) proposed a
supervised principal components analysis, where genes are selected by univariate
Cox regression analysis and the selected genes are used to defined several principal
components. The number of genes and the number of components used in the final
model are selected by cross-validation. While this is a step forward than the use of
principal components analysis on all the genes, selecting genes by univariate analysis
may not capture possible joint effects of genes.

Bayesian variable and model selection procedures for linear regression models and
for clustering analysis (George, 2000; George and McCulloch, 1993; Tadesseet al.,
2005; West, 2003) in the high-dimensional settings can also be extended for censored
data regression models (Tadesse, personal communication, 2006). However, we have
seen publications of such extensions in the literature.

1.7 APPLICATION TO A REAL DATA SET AND COMPARISONS

We demonstrate the utility of some of these procedures using a published data set of
DLBCL by Rosenwaldet al. (2002). This data set includes a total of 240 patients
with DLBCL, including 138 patient deaths during the follow-ups with median death
time of 2.8 years. Rosenwaldet al. divided the 240 patients into a training set of
160 patients and a validation set or test set of 80 patients and built a multivariate Cox
model. The gene expression measurements of 7,399 genes are available for analysis.

For the Cox model, we applied several methods to build a predictive model using
the training data set and we used zero as a cutoff point of the risk scores and divided
the test patients into two groups based on whether they have positive or negative
risk scores. Using theL1 penalized estimation, the two groups of patients show
very significant differences (p-value=0.0004) in overall survival between the high-
risk group and low-risk group. We observe that the two risk groups defined by the
LARS-Cox estimated model showed more significant differences in risk of death
than the groups defined by the other three models:p-value of 0.0004 versus 0.003,
0.003 and 0.034 for the partial Cox regression method of Li and Gui (2004), theL2

penalized method of Li and Luan (2003) and the supervised principal components
analysis method of Bair and Tibshirani (2004), respectively Finally, the AUCs based
on the risk scores estimated by the LARS-Cox procedure are also higher than those
from the other three procedures.

Due to computational difficulty with the penalized estimation procedures for the
AFT model and the additive hazards model, 1656 genes out of 7399 with large
correlation coefficients (with the uncensored event times) were chosen for the AFT
and the additive hazard model analysis. The results are summarized as follows: for
the AFT model, the modified Lasso identified 37 genes and resulted in a test set
p-value of 0.05, the TGD procedure identified 91 genes with a test setp-value of
0.776; for the additive hazard model, the modified Lasso selected 7 genes with a
test setp-value of 0.331, and the TGD procedure identified 10 genes with a test set
p-value of 0.13. These results indicate that at least for this particular data set, the
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AFT or the additive hazard models did not provide as good predictive results as the
Cox regression models.

Finally, analysis by Li and Luan (2005) using the splines-based boosting procedure
indicated that some genes indeed show strong nonlinear effects on the risk of death
from lymphoma.

1.8 DISCUSSION AND FUTURE RESEARCH TOPICS

It is clinically relevant and very important to predict a patient’s time to cancer relapse
or time to death due to cancer after treatment using gene expression profiles of the
cancerous cells prior to the treatment. Powerful statistical methods for such prediction
allow microarray gene expression data to be used most efficiently. Due to high-
dimensionality of the genomic data, standard estimation and test methods for various
censored data regression models cannot be applied directly to analyze such data. In
this paper, we have reviewed the latest developed regularized estimation procedures
for several classes of the most commonly used censored survival data regression
models, including the Cox proportional hazards model, the accelerated failure time
model and the additive hazard models. The methods reviewed include penalization
estimation, threshold gradient-based regularization and gradient boosting procedures.
These methods have been evaluated by simulation studies and have shown to be
effective in identifying relevant genes and in building predictive models (Gui and Li,
2005; Li and Luan 2005; Ma and Huang, 2005ab).

Among the methods reviewed, most of the penalized estimation procedures are
developed for censored data regression models with simple linear functional forms
(i.e., β

′
X). The kernel-basedL2 penalization (Li and Luan, 2003) and extensions

of the boosting procedure or random forests to censored data regression (Li and
Luan 2005; Tothornet al., 2006) allow for nonlinear effects and potential gene-
gene interaction effects on the risk of event. In general, based on published results
in the papers we reviewed, we observed that the methods with variable selection
often perform better in prediction than the dimension-reduction-based procedures.
In addition, we should expect that the ensemble methods such as boosting and
random forests perform better in prediction than other methods, especially in the
high-dimension and low sample size settings. However, we should not expect one
model or method to always perform better than the others. One useful avenue of
research is to comprehensively compare these methods by simulations and application
to many different data sets. Besides empirical results, theoretical results are also
required in order to gain insights into the methods and to provide theoretical basis
for the methods proposed.

While the emphasis of this review is on the methods for identifying genes that
are related to censored survival outcome and building predictive models for future
patients’ survival using gene expression, there are several other interesting topics
related to censored data regression in the high-dimension and low sample size settings
that deserve further research. We present in the following some of the problems and

Hosted by The Berkeley Electronic Press



xvi CENSORED DATA REGRESSION FOR GENOMIC APPLICATIONS

possible solutions and some possible extensions of the methods presented in this
paper.

1.8.1 Test of treatment effect adjusting for high-dimensional genomics data

Consider the clinical trial setting where a treatment effect is evaluated with time to
clinical event as an endpoint. In standard analysis of the data obtained from the clinical
trials, the treatment effect is often tested using the Cox model adjusting for other
low-dimensional covariates. It is becoming common practice that high-dimensional
genomic data are often collected for such clinical trials. How to adjust for the genomic
heterogeneity when testing for the treatment effect deserves further research. For
example, in model (1.1) whereZ is the treatment indicator in randomized clinical
trials, the null hypothesis is

γ = 0,

where the effect of genomic dataβ is treated as a high-dimensional nuisance pa-
rameter. A valid test for such a null hypothesis is required. A related problem is to
identify a subset of patients who respond to treatment differently.

1.8.2 Development of flexible models for gene-gene and gene-environment
interactions

Most of the models and methods reviewed in this paper assume a simple linear
functional form to relate genomic data to the phenotypes. However, most phenotypes
are expected to be affected by the interplay of different genes and environments and
therefore simple linear functional form cannot capture the complexity of the genomic
effects on phenotypes. Ensemble methods using trees offer one way of modeling
potential interactions between the variables. However, new methods are required for
identifying and assessing such complex interactions. This is especially challenging
in the high-dimension and low sample size settings. For example, the patient rule
induction method (PRIM) (Friedman and Fisher, 1999) provides an alternative to the
tree method, which may capture the genomic interactions better.

1.8.3 Methods for other types of genomic data

The methods presented in this paper are mainly developed for microarray gene
expression data, where the data structures are relatively simple. Since genes usually
function in coordinated modules, it is often observed that the expression levels of
some genes are highly correlated. Methods that can account for such clusters of
genes in the models are expected to predict well. In addition, special features of other
types of genomic data such as aCGH data, mass-spectrometry data and genome-wide
SNP/haplotype data need to be accounted for when building predictive models. For
example, if one wants to build a predictive model using aCHG data, one needs to
account for local dependency of the measurements. Similarly, if one wants to identify
SNPs that are related to censored survival phenotypes, one has to account for linkage
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disequilibrium for the SNPs. Tibshiraniet al. (2005) recently proposed a fused-Lasso
procedure, which provides a way of accounting for such local dependency.

1.8.4 Development of pathway- and network-based regression models for
censored survival phenotypes

Since genes and proteins almost never work alone, they interact with each other
and with other molecules in highly structured but incredibly complex ways. Un-
derstanding this interplay of human genome and environmental influences is crucial
to developing a systems understanding of human health and disease. An important
avenue for future research is to develop methods that can incorporate known biolog-
ical knowledge such as pathways and networks into statistical modeling in order to
limit the search space for gene-gene and gene-environment interactions. Wei and
Li (2006) presented an attempt to incorporate known biological pathways/networks
information into the censored data regression model in order to reduce the dimen-
sionality of the problem. However, how to best identify genes and pathways that are
related to censored survival phenotypes clearly deserves future research.

1.8.5 Final remarks

High-throughput genomic and proteomic data provide a unique opportunity for dis-
secting genes and pathways that are related to risk of complex diseases or the re-
sponses to treatments. Due to variation of disease onset or time to clinical event,
studying censored survival data can gain additional power in identifying genes and
pathways involved. As user-friendly software packages implementing these methods
become available, we should expect to see more applications of these methods in
identifying genes and pathways involved in complex diseases. We should also expect
more new method developments in this important area.
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