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Bayesian Aggregation Error?

Valen E. Johnson

Abstract

Differences between inferences obtained from Bayesian reliability models using
system-level data versus component-level data have recently motivated a call for a
“basic restructuring of the Bayes procedure [1].” In this note, I explore the source
of such differences and demonstrate that Bayesian models would be aberrant only
if such differences did not exist.
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1 Introduction

Aggregation errors, or more appropriately aggregation differences, occur when es-

timates of system reliability obtained from Bayesian probability models differ de-

pending upon the level at which data is incorporated into a model. For instance,

incorporating component-level data into a Bayesian reliability model often results in

a different estimate of system reliability than is obtained when the component-level

failures are aggregated and then modeled as system failures. Bier [2] provided several

theorems that characterize multi-level reliability models that avoid this phenomenon.

Such models are said to possess perfect aggregation properties, and may be of some

interest because they eliminate the requirement to record and model data at the

component level.

In a related article [1], the phenomenon of aggregation error was heralded as

a “failure of Bayes system reliability inference based on data with multi-level ap-

plicability,” and it was suggested that aggregation error “represents a fundamental

breakdown in the usual Bayesian methodology.” In this note, I investigate the source

of aggregation error in two simple examples. These examples highlight the point that

inferential differences attributed to aggregation should be expected whenever infor-

mation of different specificity is incorporated into multi-level reliability models. I

also present a theorem that elucidates the relation between posterior distributions
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based aggregated and disaggregated data.

2 A beta-binomial example

Consider first a simple series system composed of two non-redundant, independent

components with probabilities π1 and π2 of successfully functioning when operated.

Suppose further that elicitation of expert opinion results in a prior beta density with

parameters (α1, β1) for the first component, and a prior beta density with parameters

(α2, β2) for the second component.

2.1 Aggregrated analysis

If the system is tested n times and successfully functions in x of the n trials, then

the joint posterior distribution on the success probabilities π1 and π2 based on the

aggregated data is proportional to

f(π1, π2 |x, n) ∝ (π1π2)
x(1− π1π2)

n−xπα1−1
1 (1− π1)

β1−1πα2−1
2 (1− π2)

β2−1. (1)

Although this posterior distribution is not of standard form, its properties can be

explored easily using Markov chain Monte Carlo (MCMC) methods (e.g., [3]) to

obtain the induced posterior distribution on the system reliability, equal here to the
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product π1π2.

2.2 Disaggregated analysis

If success/failure data is available at the component level, it is possible to model

the system more precisely. In our two component system, if the first component

successfully functions in x1 of n trials, and the second component functions in x2 of

n trials, then the joint posterior distribution on (π1, π2) that results from these data

is proportional to

f(π1, π2 |x, n) ∝ πx1+α1−1
1 (1− π1)

n−x1+β1−1πx2+α2−1
2 (1− π2)

n−x2+β2−1. (2)

For consistency with the aggregrated analysis, we require that the number of trials

in which at least one of the components fails is x. As in the aggregated analysis,

the posterior distribution on the system success probability π1π2 can be obtained

by a transformation of variables and can be investigated numerically by examining

posterior samples from an MCMC algorithm.

Bier [2] provides special conditions under which the joint posterior on the product

π1π2 obtained from the aggregated and disaggregated analyses are the same. For

general choices of (α1, β1) and (α2, β2), the posterior distributions do not coincide.
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2.3 Numerical examples

For the aggregated analysis, suppose that n = 10 and x = 2, or that 2 out of 10

system tests are successful. Suppose further that Jeffreys’ non-informative prior is

assumed for both component probabilities; that is, α1 = α2 = β1 = β2 = 0.5. Then

from (1), the posterior distribution on the probability that the system functions

successfully can be determined numerically. In this case, the posterior mean of this

probability is 0.20, and a plot of the posterior distribution for π1π2 based on these

data appears in Figure 1 as the “aggregated” curve.

Now suppose that we wish to model the system more precisely and, through

further investigation, learn that the first component failed in 8 of the 10 tests and

the second component was successful in all 10 tests (i.e., x1 = 2, x2 = 10). How does

this affect our inference? Based on the disaggregated data, the posterior mean that

the system functions is now 0.21, and the curve labeled “1” in Figure 1 represents

the posterior density on π1π2 based on this component-level data. Clearly, both the

density and the posterior mean have changed now that more detailed data—and thus

more detailed information—have been obtained. But is this really problematic?

To answer this question, suppose that instead of observing x1 = 2 and x2 =

10, we had instead observed 6 out of 10 successes for each component. That is,

each component failed 4 times, with a maximum of one component failing on each
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system test. Should our inference regarding the successful functioning of the system

be different now? Obviously it should be, since the posterior distributions on π1

and π2 now concentrate around 0.6, whereas they previously concentrated near 0.2

and 1.0. The posterior mean of the system failure rate in this case is 0.35, close

to the maximum likelihood estimate of 0.36. To help visualize the difference, the

actual posterior distribution for the system success probability for these data is also

illustrated in Figure 1 and is represented by the curve labeled “2.”

The two scenarios for disaggregated data demonstrate that very different infer-

ences should be drawn for data that aggregate in exactly the same way. In other

words, because both sets of disaggregated data yield the same aggregated data, it is

clear from this example that any resolution of the phenomenon of aggregation error

requires that the same the inferences be drawn for both sets of disaggregated data.

But that is clearly absurd, and suggests that aggregation differences are a desirable

feature of well-specified reliability models, not an indictment against them. Aggre-

gration differences are also not unique to Bayes estimates: Similar differences are

observed for the maximum likelihood estimates.

6

http://biostats.bepress.com/mdandersonbiostat/paper11



3 An exponential failure time example

My second example is borrowed from [1] and concerns the failure time distribution

of a system that has two components arranged in series. Failure times for both

components are assumed to follow independent exponential distributions. The prior

distribution on the failure rate of the first component, λ1, is assumed to be an expo-

nential distribution with mean µ1 = 0.01/sec. The prior distribution for the failure

rate of the second component, λ2, is also assumed to be an exponential distribution,

but with prior mean µ2 = 0.001/sec. Both components are operated for a period

t = 1000 seconds. The number of failures observed for the first component, r1, is 1,

and the number of failures observed for the second component, r2, is 2.

From simple probability calculus, it follows that the failure rate of the system is

exponentially distributed with mean λ = λ1 + λ2. The joint posterior distribution

on (λ1, λ2) based on the disaggregated data is proportional to

f(λ1, λ2|r1 = 1, r2 = 2, t = 1000) ∝ λ1
1λ

2
2 exp[−1100λ1 − 2000λ2], (3)

while the joint posterior distribution based on the aggregrated data is proportional

to

f(λ1, λ2 | r1 + r2 = 3, t = 1000) ∝ (λ1 + λ2)
3 exp[−1100λ1 − 2000λ2]. (4)
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As noted in [1], the posterior mean of the failure rate based on the disaggregated

data is 3.3E − 3, and the posterior mean of the system failure rate based on the

aggregated data is 3.8E − 3.

Although we should expect aggregation differences in failure time data just as we

should for failure data, it is illuminating to investigate the source of these differences.

In this case, the prior mean of the system failure rate is .011, and the first component’s

contribution to this prior mean is 0.01. The second component’s contribution is

ten times smaller—.001. Despite these differences in prior expectations, twice as

many failures occur at the second component than at the first component, and the

observed failure rate at the first component is one-tenth that which is expected a

priori. Clearly, these features of the disaggregated data were not what we expected

to see when we specified our prior density.

But what about the aggregated data? That is, if we know only that 3 failures

occurred, how would we assign the failures to individual components? The Bayesian

paradigm provides a simple answer to this question. Given values of λ1 and λ2, the

conditional probability that a failure occurred in component 1 (given that a failure

has occurred) is equal to

λ1

λ1 + λ2

. (5)

Averaging over the posterior distribution of λ1 and λ2 given in (4), it follows that the
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posterior distribution on the number of failures that occur at the first component has

mean 2.2, and the posterior probabilities of observing 0, 1, 2, and 3 failures at the

first component are (0.08, 0.15, 0.27, 0.50), respectively. The probability of seeing 2

or 3 failures at the first component, given that 3 failures occurred, is equal to 0.77. In

other words, it is likely that 2 or 3 of the failures occurred in the first component, and

we implicitly update our prior belief about the value of λ1 based on the prediction

that the observed number of failures in the first component is more likely to be 2 or

3 than it is to be 0 or 1.

Somewhat more formally, an application of the law of total probability shows

that the posterior density on (λ1, λ2) based on the aggregated data can be written

as a weighted average of the posterior densities on (λ1, λ2), weighted with respect to

the posterior probabilities that each configuration of disaggregated data occurred.

In this weighting, r1 = 1 gets only 15% weight.

More generally, the relation between posterior distributions based on aggregated

and disaggregated data can be summarized by the following theorem.

Theorem. Let y denote a vector of (disaggregated) observations drawn from a

sample space Y and suppose that y has a probability density function in a parametric

family {f(y|θ), θ ∈ Θ ⊂ Rp} defined with respect to a σ-finite measure µ. If y is

continuous, then µ is Lebesgue measure. If y is discrete, then µ is the counting
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measure on Y. Let π(θ) denote the prior density on θ and let py(θ|y) denote the

posterior distribution on θ given y. Let x = t(y) denote a (possibly vector-valued)

function (aggregation) of the observation vector y, and let A = {z : z ∈ Y, x = t(z)}.

Then the posterior distribution on θ given x, say qx(θ|x), can be expressed

qx(θ|x) =

∫
A

pz(θ|z)r(z|x) dz, (6)

where

r(z|x) =

∫
Θ

f(z|θ)qx(θ|x) dθ. (7)

Proof: Recognizing that pz(θ|z) = pz(θ|z,x), the proof follows directly from the law

of total probability (e.g., [4], page 37).

The weighting in (6) encapsulates the difference in aggregated and disaggregated

estimates of the system failure rate. The aggregated estimate weights over all possi-

ble configurations of disaggregated data, with weights proportional to the posterior

probability of each configuration. The disaggregated estimate assigns weight 1 to

the configuration actually observed. If this configuration is relatively unlikely given

the aggregated data and the assumed statistical model, the two estimates can be

expected to differ sharply.

Interestingly, in this example if the observations are switched so that r1 = 2 and

10

http://biostats.bepress.com/mdandersonbiostat/paper11



r2 = 1, then the posterior mean of the system failure rate based on the disaggregated

data becomes 3.7E − 3. In some sense, this configuration of the 3 failures is closest

to the posterior probabilities of component failures based on the aggregated data,

and so the Bayes estimate of the system failure rate based on this configuration of

disaggregated data is very similar to the aggregated failure rate estimate. Of course,

this estimate of the system failure rate also differs from the estimate obtained using

the original configuration r1 = 1, r2 = 2, demonstrating once again that aggregated

estimates cannot, in general, be consistent with all configurations of disaggregated

data.

4 Summary

Aggregation error is not an error. Differences in posterior inferences based on aggre-

gated data and disaggregated data occur because the information content of data—

as reflected through likelihood functions—is generally different for aggregated and

disaggregated data. Aggregation differences thereby represent a natural feature of

properly specified statistical models. Aggregation errors should not be interpreted

as evidence of model inadequacy.
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Figure 1: This plot depicts posterior densities for system failure probability based on
aggregated and disaggregated data. The curve labeled “1” is based on the observation
of 2 out of 10 and and 10 out of 10 successes for the first and second components,
respectively, while the curve labeled ”2” is based on the observation of 6 out of 10
successes for both components.
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