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Efficient Semiparametric Marginal Estimation
for Longitudinal/Clustered Data

Naisyin Wang, Raymond J. Carroll, and Xihong Lin

Abstract

We consider marginal generalized semiparametric partially linear models for clus-
tered data. Lin and Carroll (2001a) derived the semiparametric efficinet score fun-
tion for this problem in the mulitvariate Gaussian case, but they were unable to
contruct a semiparametric efficient estimator that actually achieved the semipara-
metric information bound. We propose such an estimator here and generalize the
work to marginal generalized partially liner models. Asymptotic relative efficin-
cies of the estimation or throughout are investigated. The finite sample perfor-
mance of these estimators is evaluated through simulations and illustrated using
a longtiudinal CD4 count data set. Both theoretical and numerical results indi-
cate that properly taking into account the within-subject correlation among the
responses can substantially improve efficiency.
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Summary

We consider marginal generalized semiparametric partially linear models for clustered
data. Lin and Carroll (2001a) derived the semiparametric efficient score function for this
problem in the multivariate Gaussian case, but they were unable to construct a semipara-
metric efficient estimator that actually achieved the semiparametric information bound. We
propose such an estimator here and generalize the work to marginal generalized partially lin-
ear models. Asymptotic relative efficiencies of the estimators that ignore the within-cluster
correlation structure either in nonparametric curve estimation or throughout are investi-
gated. The finite sample performance of these estimators is evaluated through simulations
and illustrated using a longitudinal CD4 count data set. Both theoretical and numerical
results indicate that properly taking into account the within-subject correlation among the
responses can substantially improve efficiency.

Some key words: Clustered data; Generalized estimating equations; Kernel method; Lon-
gitudinal data; Marginal models; Nonparametric regression; Partially linear model; Profile
method; Sandwich estimator; Semiparametric information bound; Semiparametric efficient
score; Time dependent covariate.

Short title. Efficient Semiparametric Regression for Clustered Data

!Naisyin Wang (email: nwang@stat.tamu.edu) is Professor of Statistics and Toxicology and Raymond
J. Carroll (email: carroll@stat.tamu.edu) is Distinguished Professor of Statistics, Epidemiology and Bio-
statistics, Nutrition and Toxicology, Texas A&M University, 3143 TAMU, College Station TX 77843-3143.
Xihong Lin (Email: xlin@umich.edu) is Professor of Biostatistics, Department of Biostatistics, School of
Public Health, 1420 Washington Heights, Ann Arbor, MI 48109-2029. Wang’s research was supported by
a grant from the National Cancer Institute (CA74552) and the Texas Advanced Research Program. Car-
roll’s research was supported by a grant from the National Cancer Institute (CA57030) and by the Texas
A&M Center for Environmental and Rural Health via a grant from the National Institute of Environmental
Health Sciences (P30-ES09106). Lin’s research was supported by a grant from the National Cancer Institute

(CAL__ - ). The authors thank Vincent Carey for sharing his Splus code, “yags”, for parametric GEE.
We also thank an associate editor and 3 referees for their detail and helpful comments.

Hosted by The Berkeley Electronic Press



1 Introduction

We consider estimation in marginal semiparametric generalized linear models for clustered
data using estimating equations. These models are becoming an increasingly popular topic of
research, see Zeger and Diggle (1994), Wild and Yee (1996), Pepe and Couper (1997), Hoover,
et al. (1998), Lin and Carroll (2001ab) and Lin and Ying (2001) for recent examples.

These marginal models, through general links, have predictor effects that are partially
linear: they consist of a linear function of one set of predictors (e.g., exposure variables)
with a parameter vector 8 and a completely nonparametric function of a scalar covariate
(e.g., time). For uncorrelated data, Severini and Staniswalis (1994) showed how to construct
a semiparametric efficient estimator of S using a profile-kernel method. Lin and Carroll
(2001a), hereafter referred to as LC, showed that for clustered data, the conventional profile—
kernel method does not yield an efficient estimator of f when the parametric covariate is
dependent of the nonparametric covariate. In fact, such an estimated 8 could be /n-
inconsistent unless either a “working independence” (WI) assumption or an under-smoothing
step is adopted: here working independence means that one ignores the correlation structure
entirely. LC derived the semiparametric efficient score of # in the multivariate Gaussian
case, and noted that it was a solution to a complicated Fredholm integral equation. They
were however unable to construct an estimator that was semiparametric efficient.

The purpose of this paper is to propose a semiparametric efficient estimator of 5 in such
marginal partially linear models allowing the parametric and nonparametric covariates to be
dependent upon one another. When the nonparametric covariate is time, this implies that the
parametric covariates could be time dependent. We show that the estimator can effectively
account for within-cluster correlation. It is semiparametric efficient in the Gaussian case,
and is more efficient than the WI estimator in non-Gaussian cases.

The outline of the paper is as follows. In Section 2, we describe the model and state the
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major assumptions. Of particular note is that we are not working in the context of time series
data: our asymptotics assume that the number of clusters/individuals becomes large while
the number of observations per cluster/individual remains bounded. In Section 3 we describe
the proposed estimator. Section 4 states the main theoretical results. Numerical studies
including an investigation of the asymptotic relative efficiencies of two previously proposed
estimators and a small simulation study are provided in Sections 5 and 6, respectively. In
Section 7, we analyze a longitudinal data set of CD4 counts of HIV seroconverters. Finally,

Section 8 gives concluding remarks.

2 The Model

Suppose that the data consist of n clusters with the ith (i = 1,---,n) cluster having m;

observations. Let Y;; and (X,

T;;) be the response variable and covariates for the jth
(j =1,---,m;) observation in the ith cluster. Here X;; is a p x 1 vector and T}; is a scalar
that varies within each cluster. Let Y, = (Yj1, ..., Yim,)! and define X; and T'; similarly. Our
basic assumption is that the underlying distribution of the response and covariate processes

are the same for all subjects, that (Y;, X;,T;) are observations of the ith randomly selected

subject within say a fixed range of T such that m; are bounded, and that
E(Y;;| X5, Tij, Xy, Ts) = E(Yy|Xi5,Tij) = b (1)

see Pepe and Couper (1997) for a discussion of this assumption. The marginal mean s,

depends on X;; and T;; through a known monotonic and differentiable link function g(:):

9(pij) = X;;8 +0(Tyy), (2)

where § is a px 1 vector and 6(-) is an unknown smooth function. We thus model the effect of

X (px1) parametrically and the effect of 7" nonparametrically. In matrix notation, denoting
B, = (tans s pimg)" and g(p) = {g(pin), -~ -, g(ptim,) }', we have g(p,) = X;8 + 0(T;).
2
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As indicated in Section 1, we allow X and T to be dependent. This is in general the case
for longitudinal /clustered data. A referee has pointed out the following problem in which
the original X and T are independent, but yet can be reparameterized and solved using the
proposed method. Specifically, suppose one of the §’s, say (i, in (2) is known to be a linear
function of T through 51 (T;;) = B0 + BuiTi;. It is easily seen that 51(7;;) X1 = BroXuij
+ Bu X7, where X{;; = Xy35T;;. Thus, model (2) still holds with the added covariate X7,
but the X7 is T" dependent even if the original X; is not. This reparametrization allows us
to use the proposed method without modification to obtain inference on £y and [i;.

Model (2) differs from a standard marginal GEE model (Liang and Zeger, 1986) mainly
by the nonparametric component 6(-). It is motivated by the fact that the effect of the
covariate 7' (e.g., time) may be complicated and would be better modeled nonparametrically.
Applications of marginal models are ample; see Diggle, Liang and Zeger (1994) and Heagerty
and Zeger (2000), among others.

Let ¥; = %;(X;, T;) and V; = V;(X;,T;) be the true and assumed “working” covariances
of Y;, where ¥; = var(Y;|X;,7;) and V; = Sil/QRiSil/z; S; denotes a diagonal matrix that
contains the marginal variances of the Y;;’s, and R; is an invertible working correlation ma-
trix. Throughout, we assume that V; can depend on a nuisance finite dimensional parameter

vector 7, where 7 is distinct from f.

3 The Estimation Procedure

Our estimation procedure is based on profile kernel estimating equations, where 6(t) is
estimated using a kernel GEE estimator accounting for correlations proposed by Wang (2003)
and [ is estimated using a profile-type estimating equation. The proposed method differs
from those proposed by Severini and Staniswalis (1994) and Lin and Carroll (2001a) only

in the way that g(t, B), the estimated 6(t) for a given 3, is constructed. This is motivated
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by a fact shown in LC that in order to reach the semiparametric information bound, the
within-cluster correlation needs to be properly accounted for in both the parametric and
nonparametric estimation procedures. The conventional kernel GEE estimator of 6(¢) (Lin
and Carroll, 2000) fails to do so, while new iterative kernel GEE estimator (Wang, 2003)
effectively accounts for correlation.

When the link function g is linear, both 3 and 8(t, 8) are simply linear estimators. Closed
form expressions of the proposed estimators can be shown to exist (Lin, et al, 2003). To
better appreciate the nature of the estimators, we present them in an iterative format. For
any given (3, start with an estimator g(t, B) of 6(t) and an initial estimator B of B satisfying
n'’2(8 — B) = O,(1). Such initial estimators can be easily obtained, e.g., using the WI
estimator that ignores the correlation structure entirely.

We concentrate here on a local linear estimator of 6(¢) proposed by Wang (2003). Let
Ki(s) = h 'K (s/h), where K is a mean zero symmetric density function. Define G;;(¢) to
be an m; X 2 matrix with the fth column e; x {(t — T;;)/h}* (¢ = 1,2), where ¢; is an
m; X 1 vector of 0 except the jth entry being 1. Our method starts with the WI estimator
and iterates between steps I and II below until convergence. The working covariance matrix
V; depends on a parameter vector 7, which is assumed to be distinct from S and which can

be estimated via the method of moments using quadratic functions of the responses.

e Step I: Let 6(-) be the current estimator of 6(-). Given 8, let @ = a(t,8) =
{ao(t, B), a1(t, B)} be the solution to the kernel equation

S5 Kt — Tl (8, Q) GL OV Y, — i {t, X, Ts, 8,8,0(T )} =0, (3)
i=1j=1

where the /th element of p*{t, X;,T;, 3, &, g(L-, B)} is

i [ XiB + 1 = ){Go + an(t — Tyj) [0} + I(£ # )B(Tie, B)]

Hosted by The Berkeley Electronic Press



and ,ugjl-)(ﬂ,&) is the first derivative of the function u(-) = ¢='(-) evaluated at X},5 +

Go + @1 (t — T;)/h. The updated estimator of 6(t) is 8(t, 8) = @q(t, B).

e Step II: Find B to solve the following profile-type estimating equation

f Ou{ X8+ 0(T;, B)}

& 57 Vit [ - X8+ 0T, )] = 0, )

Denote by {6(t), B} the estimates at convergence with 6(¢) = 8(¢, B). As mentioned above,
our algorithm differs from those previously proposed in step I by replacing the original kernel
GEE estimator by one that utilizes the correlations, while Step II of the algorithm is the
same. This modification turns out to be the key to constructing a semiparametric efficient
estimator of .

As shown in Section 4 and later illustrated in the simulation, the proposed 3 is insensitive
to the choice of bandwidth. The bandwidth A can be estimated using regular data driven
methods such as leaving-one-subject out cross-validation (Silverman and Rice, 1991; Hoover,
et al. 1998). Results for higher order local polynomials can be easily obtained by following

the derivations given in Ruppert and Wand (1994).

4 Theoretical Results

We emphasize that we assume in our asymptotic theory that the number of clusters n — oo,
while the cluster sizes m; remains bounded. If m; also tends to oo, the problem is quite
different, as pointed out by LC. We assume that the regularity conditions in the Appendix
hold. Denote by 3y and #(t) the true values of 3 and #(t). Let d)(-) be the rth derivative
of any function d(-), a, = h*0©(t)/¢!, vi* be the (j, £)th element of a matrix V;, and f;(t)
be the marginal density of the T;;.

Our results concerning f(t) are simple: they coincide exactly with those of Wang (2003),

who shows that g(t) can effectively account for the within-cluster correlation and is asymp-
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totically more efficient than the WI estimator. The main focus of this paper is on the
properties of B

LC gives the semiparametric efficient score for a multivariate normal partially linear
model with a known X for all 7. We use the same setup but allow the conditional mean to be
as given in (2) and conditional variance to be X;(X;, T;) with known 7. The results remain
the same with estimated 7. A discussion of this point is given in Remark 5.

A referees has also suggested that we provide a link of our work to the least favorable
direction principle in Bickel, et al. (1993). This link, described in Appendix A.1, provide an
alternative derivation of the efficient score than that given by L.C, and also allows extension
to the unequal m; case.

Under the assumed multivariate normal structure, we show that B is semiparametric effi-
cient (Proposition 1 and Corollary 1). The results are then extended to model (2) for general
outcomes with a working covariance V' and without distributional assumption (Proposi-
tion 2).

Hereafter, we assume that m; = m and that (Y, X;,T;) are i.i.d. This allows us to reduce
the complexity of notation needed for presentation and concentrate on the main concept.
Let A = A(X,T) be a diagonal matrix with the diagonal element being the first derivative
of u. We show in Appendix A.1 that the semiparametric information bound for S under the

multivariate normal assumption is

E[{X = epp (DAL AX — e (T)}]

where ¢, r(L) is an m X p matrix whose jth row is @.r;(7}), and @esr(T5) = {@err1(T5), - -,

©errp(Ti)}T. The function .z (t) solves

5B (83078 (X, — eeps (TO} 1T, = 1] () =0 )

NE

j
where o7 is the (j,£)th element of ! and Aj; is the(j,7)th element of A. Equation

Il
—

(5) corresponds to a Fredholm integral equation of the second kind (Kress, 1989, chap. 1),

6
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namely

eesr®) — {alt) = [ Ht.9)puss(s)ds} =0, (©
)

where, denoting fy;(-,-) the joint density function of (7;,T}), H(t,s) and ¢(t) are defined as

H(t,s) = ; 50 (7)

T B(A07 A X |Ty =
T E(0ii NG| Ty = 1) f;(t

(8)
respectively. Similar calculations were given in LC.

We next study the asymptotic distribution of our estimator B and show that it reaches
the above semiparametric information bound. Define §(t, §) = —85(75, B)/08t. We first show
that @(t, §) converges to @.rs(t), which is a crucial theoretical result of this paper and is the
key to the investigation of the asymptotic properties of B It is also used later to justify why
the proposed estimator does not require under-smoothing of 6(t) to obtain a y/n—consistent

estimator B .

Proposition 1 Let @ be the partial derivative of the final estimator of 0 w.r.t. B as defined

above, and ¢ be its limit as n — co. We have ¢ satisfies (6), that is, o(t) = @ess(t).

Corollary 1 Under the assumed multivariate normal structure, with h — 0,n — 00, at the

rate that nh® — 0, and nh/log(1/h) — oo, we have

n'2(B — Bo) = Normal (0, F [{X — @ess(T)FAST'A{X — 0ops(T)}])
in distribution, i.e., B reaches the semiparametric information bound.

The proofs of Proposition 1 and Corollary 1 are given in Appendices A.3 and A.4, respec-
tively. We now consider the properties of B in model (2) for general outcomes assum-
ing a working covariance matrix V' and without the normality assumption. The asymp-
totic properties of B are presented in Proposition 2. Recall that A; = A(X;,T;) =

diag{,ug-)}, and define X, = X; — o(T;, Bo)-

7

http://biostats.bepress.com/umichbiostat/paper11



Proposition 2 Let A(V) = E(X AV-'AX) and B(V,S) = E(X AV-! SV-1AX). With

h — 0,n — oo, at the rate that nh® — 0, and nh/log(1/h) — oo, we have

nl/Q(B — Bo) = Normal{0,Q(V, %)},

where  QV,3) = {A(V)} "B, ®) {AV)} . 9)
The asymptotic covariance Q(V,X) is minimized by V = %, and in this case equals A~ ().

The proof of (9) is sketched in Appendix A.4. Several remarks about our theoretical results

are in order.

Remark 1: LC showed that when the conventional profile-kernel method is used, except in
the special case where WI is assumed, a 1/n consistent estimator of 3 can be obtained only
if one artificially under-smooths the nonparametric estimator to eliminate an unwanted bias
term. That is, either the bandwidth must be chosen so that nh* — 0 or a nonparametric
regression algorithm with smaller bias than standard kernel regression must be used, e.g., the
twicing method. Even when () is undersmoothed, the conventional profile kernel estimator
assuming the true correlation is still inefficient. However, using our method, not only is
such under-smoothing unnecessary but also the resulting estimator of 5 is semiparametric

efficient.

Remark 2: Under local linear smoothing, Corollary 1 and Proposition 2 hold for a wide range
of bandwidths. That is, B is quite insensitive to the choice of bandwidth. For example, any
data driven methods of order Op(n /%) fulfill the requirements. With m; being finite, Wang
(2003) illustrates the following asymptotic phenomenon, namely that the proposed estimate
of 6 is essentially a locally weighted estimate of cluster-wise pseudo responses, where the
1th pseudo response is formed by a linear combination of responses in the ith cluster. This
implies that the derivations which justify the use of cross-validation under the independent

data scenario can be equivalently carried out here, and that the asymptotic bias and variance
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given in Wang can be used to show that the resulting choice of A is of order n='/% where n
is the number of subject.

On the other hand, since B is insensitive to the choice of bandwidth, the plug-in band-
width discussed in Wang (2003), the leaving-one-subject out cross-validation using the WI
estimated 6 rather than the proposed 0 would all serve the purpose. That is, with the pro-
posed estimating procedure, which data-driven bandwidth to use is not of particular concern,
at least asymptotically. An illustration of this phenomenon is provided through a simulation

study in Section 6.

Remark 3: Lin and Carroll (2001a) allowed different working covariances in their estimating
equations of #(t) and . This is motivated by the fact that the most efficient conventional
kernel estimator requires ignoring correlation, while a more efficient estimator of 3 requires
accounting for correlation. A similar approach can be adopted in our method by simply using
Vi; and Va; to replace V; in (3) and (4), respectively. The dependence of the result on V; is
implicitly embedded in X, while Q(V,X) needs to be replaced by Q(V5,X). However, there is
no advantage of doing this in our framework, since our results show that when V; = V5, =%,
our method gives the most efficient estimators of both 6(¢) and 8. Further, if we allow V;
and V5 to be different in our method, a consistent estimator of 5 requires undersmoothing.

The estimation framework considered by Zeger and Diggle (1994) is a special case of the
conventional profile-kernel estimating structure of LC. Specifically, they assumed working
independence V; for estimating 6(¢) and a non-diagonal V5 which accounts for the within-
cluster correlation for estimating 5. LC referred to an extension of their estimator as the
“under-smoothed profile-kernel estimator,” where 0(¢) is undersmoothed to guarantee the
estimator of § to be y/n-consistent. Even though Zeger and Diggle carry out their calculation
with a backfitting method and we really concentrate on kernel profile estimation, hereafter

we refer to the estimator of 8 using working independence V; and estimated V5 as the Zeger-
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Diggle (ZD) estimator to credit them for their original idea of choosing the pair (V1, V3).
Note that in theory this undersmoothed estimator is still not semiparametric efficient
even when assuming V5 = Y. Our numerical asymptotic relative efficiency study in Section 5
suggests that this estimator has a high relative efficiency. However, as pointed out in LC, the
consistency of the ZD estimator of 3 requires under-smoothing in estimating 6(¢). Further,
as also pointed out in L.C, a practical drawback of this estimator is that a “regular” sandwich
variance estimator cannot be utilized. A variance estimator would either involve empirically

estimating the complicated Z; and Z, terms given in Appendix A.5 or a bootstrap method.

Remark 4: Since Q(V,X) is minimized when V' = X, i.e., when the correct covariance struc-
ture is specified, Proposition 2 implies that the proposed estimator is more efficient than the

WI estimator that uses V = I, the identity matrix.

Remark 5: Parallel to standard GEEs (Liang and Zeger, 1986), it can be shown that our
estimator is still consistent when the working covariance matrix V' is misspecified and is
most efficient when V' is correctly specified. Obviously, more efficiency can be gained by
adopting a more complicated estimating equation for 8 under certain special models such
as those with part of 7 being [, i.e., there is information for 8 beyond the mean. This
has been done in parametric cases (see, e.g., Prentice and Zhao, 1991; Crowder, 2001). As
pointed out in the literature, also shared by our own experience, little information is gained
from the added complexity. A relevant discussion is given in Crowder (2001) for parametric
cases. In this respect, issues to be considered for proposed estimator are the same to those
in parametric models.

For simplicity, we assume in our asymptotic work that the working correlation parameter
vector 7 in V' is known. It can be estimated via the method of moments using a quadratic
function of Y’s. Following Lin and Carroll (2001b), it can be shown that once such an

estimator of 7 converges in probability to some 7* at a \/n-rate, then there is no asymptotic

10
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effect on our estimators of 5 and 6(-) due to estimation of 7, i.e., Proposition 2 still holds.
In addition, with 7 being of finite dimension, following remark 3.2 of Begun, Hall, Huang
and Wellner (1983), it can be shown that the semiparametric information bound given above
remains the same whether 7 is known or estimated. Consequently, in the case we consider,
our estimator of 3 is semiparametric efficient when 7 is y/n consistent to certain 7*. Following
Carroll, Wu and Ruppert (1988), one could iteratively update the estimated 7 and no more

than 3—4 iterations of this process should suffice even for second—order purposes.

5 Asymptotic Relative Efficiency of Estimated J

In this section, we study numerically the asymptotic relative efficiencies (AREs) of the
working independence estimator and the ZD estimator with respect to the semiparametric
efficient estimator. We concentrate on the efficiencies of the estimators of 5. The ARE of
the WI estimator compared to the proposed estimator of #(t) is the same as that reported
in Wang (2003).

We consider the case where the cluster size is constant (m; = m) and Xj; is a scalar
Gaussian covariate. The underlying model is Y;; = X;;8+6(T;;) +€ij. Let ¢, = (€1, -, €im) "
with ¢; ~ N(0,3), and o;; be the jth diagonal element of 3. To simplify calculations, we also
assume that T;; is Gaussian even though this violates the assumption that f;(¢) has to be
bounded away from 0. One can view the resulting efficiency calculation as an approximation
of that when T;; follows a truncated normal. The advantage of assuming normality is that the
integral equation (6) has a closed form solution and thus the semiparametric information
bound has a closed form. Specifically, we assume both X; (m x 1) and T; (m x 1) are
centered multivariate normal random variables with mean 0 and covariances cov(X;) =
0%xTxx, cov(T;) = 071y, cov(X;, T;) = oxorlxr, where Txx = {p3X}, Tor = {pj},

and ['xr = {pﬁT} are the correlation matrices. That is, we assume that all X;; share the

11
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same marginal distribution with a common variance 0%. Similarly, all T;; share the same
marginal distribution with a common variance o2.

We first calculate the semiparametric efficient score by solving the integral equation (6).
For simplicity, we suppress the subscript 7 in the following discussion. Under the above
multivariate normal assumption of X and 7', calculations sketched in Appendix A.5 show
that (6) has a closed form solution

XT
ox Z;n 1 Z;cn 10 kp]k

or Z] 1 Ek 1 O-Jkp]k

Pers(t) = ¢, (10)

where o7% is the (j,k)th element of 71, Let Xeff = X — @esf(T). The semiparametric
information bound of S is I;;(8) = E (Xfffz—lXeff).

For the working independence estimator, we assume the working covariance matrix is
Y4=diag(X). Using Result 1 of Lin and Carroll (2001a), the asymptotic information matrices

of the working independence (WI) and of the Zeger-Diggle estimator (ZD) are

~T . 1=~ ~T . o~ o ~T . 1=~
IWI(B) = E(KWIEd 1XWI)E’(KWIEdIEEd IKWI) IE(XWIZd IXWI)a

Lo(8) = BEX X' X,)E{(Z) — £,)"S(2, - Z,)} " EX 57" X ),

respeCtivelya where XWI = X - QOWI(I)’ (pWI( ) - {UX Z] 1 ]] pj]T}/{aT Z] 1 _]]1} t and
Z., Zy are defined in Appendix A.5. The two asymptotic relative efficiencies (AREs) of

interest are

IWI(B) IZD(B)
Less(B) Lss(B)

It can be easily seen that these asymptotic relative efficiencies are free of the marginal

ARE,(8) = ARE,»(B) =

variances of X and 7, i.e., of 0% and o%.
We performed a numerical asymptotic relative efficiency study by assuming an exchange-
able correlation structure on Y, X and 7', i.e., with I being the identity matrix and J being

a matrix of 1,

D=0 {(1-p)I+pJ}, Txx = (1~ px)I +pxJ, Trr = (1 = pr)I + prJ.
12

Hosted by The Berkeley Electronic Press



Furthermore, we let I'xy = pxr{(1 — )1 + 6J}, with 0 < 6 < 1. That is, corr(X;;,T;;)
= pxr and for j # k, corr(X;;, Tix) = dpxr, which could be smaller than the correlation
between the paired X;; and T;; measured at the same time. Throughout, we set § = 0.6 and
pr = 0.3.

Assuming the cluster size m = 4, the left and right panels of Figure 1 display the
asymptotic relative efficiencies ARE,; and ARFE,, as functions of p, the correlation among
the outcome Y. We assume the correlations among X and between X and 7" to be px =
pxt = 0.3, 0.6, which represent low and moderate levels of correlation. The results are
depicted by the solid (for 0.3) and dotted (for 0.6) curves.

Figure 1 shows that the WI estimator is subject to a moderate amount of efficiency loss
even when the correlation among the outcomes Y is modest. The loss of efficiency becomes
substantial when the correlation among the outcomes Y becomes large. The ZD estimate
which assumes the true correlation in estimating 5 has a much higher relative efficiency
compared to the WI estimator. For example, when p = 0.6, px = pxr = 0.3 and 0.6,
ARFE,,; and ARE,, are 44.7% and 98.8%, and 47.6% and 92.8%, respectively. Considerable
loss of efficiency is found in ZD only when p is very large.

The exchange of the relative positions of the two curves in the two panels of Figure
1 suggests that the relationship between the ARE and the level of correlation within and
among X and T differs between the WI and ZD estimators. For example, as the correlation
between X and T increases, the loss of efficiency of the ZD estimator increases, while that
of the WI estimator decreases slightly.

Concentrating on the scenario with px = pxr = 0.6, we use Figure 2 to illustrate the
changes in relative efficiencies with the cluster size m. As in Figure 1, the left and right
panels display the asymptotic relative efficiencies ARE,,; and ARFE ,;, as functions of p. The

curves from the top to the bottom correspond to m = 3, 4, 5, and 6, respectively. For both

13
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the WI and ZD estimators, the loss of efficiency increases with the cluster size m.

6 A Simulation Study

In this section, we report a simulation study to investigate the finite sample performance of
the proposed estimator and compare it with the WI and ZD estimators. We consider the
following longitudinal scenario. For each subject, the time varying covariates 7" and X; were
generated as sums of independent uniform [—1, 1] random variables and a common uniform
[0, 1] random variable. This made each X; and T dependent and gives px = pr = pxr = 0.2
and § = 1. We also included a time independent covariate X,, which equals 0 for half of the
subjects and 1 for the other half and mimics a treatment indicator. The response Y;; was
generated assuming a conditional mean E(Yj;|X;;) = sin(27;;) + £1X1ij + f2X2ij, a common
variance 1 and an exchangeable correlation structure with p = 0.6. We let §; = By = 1,
n = 100 and m = 4. We generated 250 data sets with X; and T re-generated each time. An
exchangeable correlation structure was assumed with p being estimated using the method
of moments. All estimates including the profile iterative kernel, WI and ZD methods were
computed using the Epanechnikov kernel for K.

To understand how insensitive the proposed estimator is to the choice of the bandwidth
h, we did the following. For the first 50 data sets, we estimated the bandwidth using a
method mimicking the idea of the empirical bias bandwidth selection method (Ruppert,
1997; Wang, 2003) and the leaving-one-subject-out cross-validation method used in LC. The
range of selected bandwidths was then further expanded to [0.35,0.65]. We then evaluated
the performance of the three estimators for 7 bandwidths equally spaced between 0.35 and
0.65. For the ZD estimate, each bandwidth was further multiplied by (n xm)~2/13 an under-
smoothing required for y/n—consistency of 3 estimation. The ratios of the resulting Monte

Carlo variances and mean squared errors (MSE’s) of each of the three estimates relative to
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the proposed efficient estimate as functions of bandwidths are displayed in Figure 3. The
top two panels are for the estimates of S;, while the bottom two are for the estimates of
B2. The solid, dotted and dashed curves correspond to the proposed, WI and ZD estimates,
respectively. These results show the estimates of 3 perform about equally well in this specified
range containing multiple data driven bandwidths for all data sets. This implies that any
reasonable data driven bandwidth can work well here. As a representative illustration,
Table 1 summarizes the averaged biases, SEs and MSEs of the estimates of 3 for bandwidth
h = 0.45.

The three estimates of By had very similar performance. This is consistent with the
theory. Since X, and T are independent and X, is balanced among all subjects, it is
expected theoretically that the three estimates should be equivalent at least up to the first
order. The relative ratios of the absolute biases among three estimators ranged from 0.7 to
1.55. There was no one estimator consistently better than another.

For 31, both the variance and absolute bias of the proposed estimate were uniformly
smaller than that of the ZD estimate for each bandwidth considered, and the variances and
absolute biases of both estimates were uniformly much smaller than those of the WI estimate.
Compared to the WI estimate, the proposed and ZD estimates reduced the variances by
more than 50%. The range of the absolute bias ratios of the WI estimate over the proposed
estimate varied from 1.29 to 11.18. Nonetheless, Table 1 and a comparison between the
variance and MSE plots in Figure 1 suggest that the bias is not of concern and the variance
is a dominating factor when comparing the MSEs among the three estimates. Selecting the
bandwidth equal to 0.45, the sandwich SE estimates of the proposed method agreed well
with the empirical SEs. For example, when A = 0.45, the Monte Carlo SE of Bl and Bg were
0.0567 and 0.1632 for the proposed method, while the averages of the corresponding sandwich

estimated SEs were 0.0551 and 0.1612, respectively. Finally, the new nonparametric estimate
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of §(t) was more efficient than the WI estimate. The average MSEs of the WI estimates over
the range of the bandwidths we considered were about 1.6 times of those using the proposed

method.

7 Application to the Longitudinal CD4 Count Data

We applied the semiparametric model given in (1) and (2) to the longitudinal CD4 count
data among HIV seroconverters previously analyzed by Zeger and Diggle (1994). This study
involved 369 subjects whose CD4 counts were measured during a period of 3 years before
to 6 years after seroconversion. A total of 2,376 CD4 measurements were available and the
number of CD4 observations per subject varied from 1 to 12, with the majority of subjects
having 4 to 10 observations. It was of interest to estimate the average time course of CD4
counts and the effects of other covariates. These covariates included age, smoking status
measured by packs of cigarettes, drug use with yes=1 and no=0, number of sex partners
and depression status measured by the CESD Scale (large values indicating more depression
symptoms). See Zeger and Diggle (1994) for a more detailed description of the data.

Let T be years since seroconversion. We conducted an analysis on the square-root-
transformed CD4 counts using working independence and the proposed efficient estimator.
The purpose behind the transformation is to reduce skewness of the original CD4 mea-
surements, as indicated in Zeger and Diggle (1994). Our results in Section 6 indicate that
neither estimator is sensitive to the choice of bandwidth. Therefore, we simply used a “par-
tial” leaving-one-subject out cross-validation which dropped 50 randomly selected subjects
one at a time to select a bandwidth of 1.86. To ensure our data analysis was indeed insen-
sitive to the bandwidth selection, we repeated the analysis by reducing and increasing the
bandwidth by 50%. The changes in coefficients and SEs were minimal. We hence report the

results using the bandwidth 1.86.
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For the proposed estimator, we used a working covariance structure described by ZD as
“random intercept plus serial correlation and measurement error’. More precisely, we as-
sumed a random intercept and an exponential decay serial correlation by specifying the
covariance structure as 721 + v?J + w?H, where J is a matrix of 1’s and H(j, k) =
exp(—a|T;; — Tix|). The covariance estimates obtained by ZD were £ = (72,7%,&?,a%) =
(14.1,6.9,16.1,0.22). By leaving out residuals in the boundary and coupling a least square
method in variogram analysis and a moment variance estimation approach, we obtained a
slightly different set of estimates, §A= (11.32,3.26,22.15,0.23). In Table 2, we referred to
our and ZD’s working covariances as “Scenario I” and “Scenario II” respectively.

Table 2 gives the regression coefficient estimates of the parametric covariates using the
WI and proposed efficient method. The SEs were all calculated using the sandwich method.
Based on the new method, smoking and the number of sex partners were significantly posi-
tively associated with the CD4 counts, while age, drug use and depression had no significant
effects. The readers will note some fairly large numerical differences between the WI and the
proposed estimates for smoking and drug use, a change of sign and statistical significance
for number of sex partners and overall much smaller SEs for our method.

The decrease in SEs is in accordance with our theory. The other phenomena are more
difficult to explain. Nonetheless, they are not unique to semiparametric GEE methods. Sim-
ilar discrepant outcomes occurred in parametric GEE estimation in which 6(¢) was replaced
by a cubic regression function in time. Furthermore, we simulated data using the observed
covariates but having responses generated from the multivariate normal with mean equal to
the fitted mean in the parametric correlated GEE estimation, and with correlation given in
Scenario II. The level of divergence between two sets of results in the simulated data was
fairly consistent with what appeared in Table 2. For example, among the first 25 generated

data sets, 3 had different signs in sex partners and 7 had the scale of drug use coefficient
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obtained by WI 1.8 times or larger than what obtained by the proposed method. Among
100 generated datasets, the relationship between Monte Carlo estimated SEs and the Monte
Carlo standard errors is basically the same as what obtained in parametric correlated GEE.

Comparing the estimates obtained in the two scenarios accounting for correlations, we
note that using a slightly different covariance estimate does not change the outcome much
even though the estimates are quite different with or without considering correlations.

The nonparametric curve estimates using the WI (dotted line) and proposed (solid line)
estimators are plotted in the left panel of Figure 4. The CD4 counts were stable before
seroconversion and sharply decreased after seroconversion. By accounting for correlation,
our method suggests that the decreasing trend remained after 2 years. The estimated SEs
are given in the right panel of Figure 4. The SE of the proposed curve estimate is uniformly

smaller than that of the WI estimate. The results agree with the theory.

8 Discussion

We have considered the marginal semiparametric partial generalized linear model previously
discussed in Lin and Carroll (2001a) for clustered data, where the effects of some covariates
X are modeled parametrically and the effect of a covariate T is modeled nonparametrically
as 0(t). LC showed the conventional profile-kernel method failed to yield a semiparametric
efficient estimator of 5. By simply replacing the nonparametric estimator in LC’s original
profile-kernel method by the newly proposed iterative kernel estimator g(t), we were able
to construct a semiparametric efficient estimator of S under the same multivariate normal
scenario given in LC.

Unlike LC, a regular bandwidth can be used and under-smoothing is no longer needed
to construct 1/n consistent estimates of 8 when accounting for correlations. In addition, the

proposed é(t) has less variation than the WI estimator. Our numerical results suggest that
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the proposed method performs well in finite sample and outperforms the WI method. They
also suggests that the proposed B is relatively insensitive to the choice of bandwidth.

Most importantly, we have shown that properly accounting for the within-subject corre-
lation can reduce variation of parameter estimates in the general semiparametric model (2),

just as in parametric models.

APPENDIX

Assume each f; has a compact support and that on its support, f; is bounded away
from 0. Throughout the appendix, we assume the equivalent convexity conditions given in
Carroll, et al. (1997) hold. These conditions ensure that the @ and 3 obtained in (3) and
(4) exist uniquely and lie in a compact set. We also assume that conditions equivalent to
Condition 2 of Carroll, et al. (1997) hold. The purpose behind these assumptions is to
establish uniform convergence of 0 and . The structure of the proof has been given in Mack
and Silverman (1982) and the proof of Lemma A.1 and equation (A.5) in Carroll, et al.
(1997). We further assume that [ [ H?(t, s)dtds < 1. This condition assures the existence
and uniqness of a solution to (6); see Kress (1989, chap. 2). With a linear link and i.i.d 77,

.., Tr,, this condition is equivalent to a constraint on dependent structure of the responses
from the same subject. Except in the first half of Appendix A.1, we concentrate on m; = m.

We let n — 0o, h — 0 at the rate that nh® — 0 and nh/log(1/h) — co.

A.1 Semiparametric Efficient Score

Under the multivariate normal model, the joint density of {Y;, X;, T} is

fY|X,T(g1; . 7£n|{£iati})fX,T(£1’ cc oy Ly, zla e 7tn)7 (A]-)

where fx 1 is the joint density of { X, T;} and fy|x,r is MVN with conditional means specified
in (2) and conditional variance ¥;(X;,T;). Following Bickel, et al. (1993, chap. 3), we first
define the following sub-models:
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P: {Model (A.1) with known 6y(-) and fxr(-)},
Py: {Model (A.1) with known 5y and fxr(-)}, and
P3: {Model (A.1) with known Sy and 6,(-).}.

For the parametric family P;, the score function for §j is

sﬂ_zxmz MY, — p{ X80 + 00(T) })-

=1

By linearly spanning the score functions of parametric submodels of P, with () replaced

by 6(n, -), the tangent space of P, is

Py = { S TIAS Y~ X+ T, where o() € L.

We only need to concentrate on P, because it is easy to see that Sz and any member in P,
are orthogonal to the score function in any parametric submodel of P3; consequently, they
are orthogonal to Ps.

By Theorem 1 of Bickel, et al. (1993, Section 3.4), the efficient score S; = Sp —
[1(S5|Py) is Si{ Xy — 0err(THFASTY, — u{X,80 + 00(T;)}], where @qf;(-) satisfies the
requirement that Sj is orthogonal to any member in P,. That is, ©ers needs to satisfy

E [{X Gerf(TH AT Ajip(T; )] = 0, for any ¢. This is equivalent to
nT Y SN B 807 A {Xie — e (Tia) } 0(Ty5)| = 0, (A.2)
i=1j=1/¢=1
Up to this point, we have not assumed m; = m. The results in the main text are reported
with this assumption for the purpose of a clean presentation. Without this assumption, but
with a bound of the m;, in the limit as n — oo, the efficient score (A.2) becomes the obvious
weighted average of the interior sums j,¢ =1, ..., m;.
When m; = m so that (Y;, X;,T;) are i.i.d., (A.2) is equivalent to
S E (A0 A {Xe = geps(Te)} o(T3)] =0,

j=1¢=1

which leads directly to (5).
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A.2 Asymptotic Structure of §

A condition guaranteeing a unique solution to (6) is given at the beginning of the Appendix.
The purpose of this section is to provide an asymptotic expansion for §[k] (t,5o) at the kth
iteration and at the convergence, when the iterations converge. As described in Section 3,
the WI estimator is used as an initial estimator and is denoted by 5[0] (t, Bo)- Its asymptotic

expansion is

~ 1
O (¢, Bo) — 0(t) = 25 o(t)h* + Wy H(t)n ™ Z Z /'[’Z] v Kn(Tyy — 1) (Yij — i)
i=1j=1
+ 0,(h? + {log(n)/nh}"/? + n=1/%), (A.3)
where by (t) = 0@ (t), and Wy (t Z E{AZ07|T; =t} f;(2). (A.4)

Recall that f;,(t, s) denotes the joint density of (7}, 7;) evaluated at (¢, s). Define

Qt,s) = Z;E[AﬁUﬂAa{Wz(TH}_lm =t, Ty = s]fj(t, 5); (A.5)
b () = bpo(t) — W5 (2) Zeg E {207 Ay (TH|T; =t} (1), (A6)

with by (t) defined in (A.4). It can be shown that the estimated 0(-) after one step update

of 5[0] has the following expansion:

- 1
0[1](t) B H(t) Qb[ ]( )h2 + W _1 ZZ/’[’Z] Kh Tz] _t {ZU — M }
i=1j=1
F LS S uuBQ(E T) (Vi — gus) + op(h? + {log(m)/mh}1/% + /%),
i=1j=1

Further define an integration operator A{B(-,-);t,s}:

ABst,s) = = 3 X B Al{Wa(T)Y BT, )Ty = 0,0, (A7)
J £y
For iteration k£ > 2, we have
B 1
it o) = 000) = by (D® + Wy (B3 3 D KTy~ t){z (Ve — 1)}
1=175=1 =1
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+ Wy O Y S i Qup (8 T {30 03 (Yie — o)}

i=1j=1 (=1

+ Wt On ™ Y Y u 0P Qo (¢, Tig) (Vig — puig)

i=1j=1

+ 0p(h” + {log(n) /nh}!/? + n~17%), (A.8)
where by () is defined in (A.6), Q1,1)(t,s) = 0; Q21i(t, s) = —Q(t, 5), and

Qum(t, s) = —Q(t,s) + A(Ql,[kﬂ};t, 5); Qom(t,s) = A(Qz,[kﬂ]; t, ).

At convergence, 6, (t) — 0(t) shares the same asymptotic structure as in (A.8) except that
by, @1,k and Q2] should be replaced by b,, Q1. and Qs , respectively, where A s given
n (A.7), b., Q1. and Q2. satisfy the corresponding integration equations:

bu(t) = 0D0) = Wy (1) 3D B { A0/ Aeb, (T0)|T; =t} £5();

J #

Ql,* (t’ S) = _Q(ta S) + A(Ql,*; ta 8); Q?,*(ta 5) - A(QZ,*; t; 3)-

A.3 Proof of Proposition 1

This appendix sketches a proof to show that in the Gaussian case assuming a linear link,
© = @efs, the latter given by (6) with A being the identity matrix. For the proof of the
general case, simply place elements in A (the first derivative of y) at the right places. At

convergence, using (3), it can be shown that, for a given 3, we have

0 = w2 Kalt =~ Ty) (o [Viy = X8 — 0, 6) ~ (T — 1)/}, )]
+20]l{ i — XuB — 9( zl;ﬂ)})

I#j

Taking derivatives with respect to 8 on both sides, direct derivations lead to

e nzi Kn(t = Ty) [0 3(2) — o {(Ty; — 1)/1} 06 (1, 8) /05
ZOJZXZl‘{“ZU 90 zZ:|

#]
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It is straightforward to show that n~' 37, 37, Kj(t — Ti;)) ol {(Tyj — t)/h} = 0,(1), and

[

1

nil i i O'ijKh(t - ITZ]) = {

i=1j=1

E(o”|T; = t)fj(t)} {14 0,(1)}, (A.9)

J

I\gE

i=1j=1

Il
—

j=1¢=1

WSS Kt - T,) ZaﬂXze = { ij(gjeXATj:t)fj(t)}{1+op(1)}(A.1o)

In addition, we have that

Y Kt - T (D (T} = 303 [ BT, = 05t it Ddte{1 + 0, (A1)

i=1j=1 £ J=14#

The combinations of (A.9), (A.10), (A.11) lead to

ZE o”|T; = 1)£;(t) iiE(UﬂX(e\Tj =1)f;(t)

] 1 _7:1[:1

Z Z/E (07T = t)@(te) foj(te, t)dte = 0p(1), (A.12)
J=18#5

uniformly on ¢. Dividing (A.12) by >, E(c%|T; = t) f;(t), noting that @(t) uniformly con-
verges to ¢(t), and comparing the second and third terms to (7) and (8) with elements in A

= 1, we can directly establish Proposition 1 by letting @(t) converges to ¢(t) in (A.12) and

noting that ¢(¢) fulfills (6).

A.4 Proof of (9)

The purpose of this section is to derive the asymptotic distribution of 3 . We first construct

the following Lemma, which is a consequence of Proposition 1.

Lemma 1 For any function A(-),

ik
Furthermore, N _
>3 E{X;00"AA(TL) | = 0. (A.14)
VAL
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Proof of Lemma 1: We rewrite (5) by
S S E{X;A0F ATy = t} fit) = 0. (A.15)
ik

Equation (A.13) is established by multiplying both sides of (A.15) by A(¢) and noting that
E {y}AjjUjkAkkA(Tk”Tk = t} =E {X?Ajj’l}jkAkHTk = t} A(t)

Equation (A.14) follows directly from (A.13).
Proof of (9): Following the same derivations as in LC and keeping only the essential terms,

some tedious calculations lead to the following asymptotic expansion for the profile estimator

~

B:
n2{B 8} = {AV)} " (Ba+ Cin = Con} +0,(1),

where A(V) is defined in Proposition 2,

By = 1720002 |0t 3030 S Dl uO Ko 0. (Tig) + hbn (Ty) + Op(2)}| {1+ 0,(1)};

i=1j=14¢=1

Cin = n 2 XAV U Y, — p);

i=1
CQn = { _1/22 ZZX’LJ/J’U U :U’zf) (W2_1(T;'E)n_1 Z Z :U’E’l])’ (Ui’)j’j’
i=1j=1¢=1 i'=1j'=1

[Kh(n’j’ — T3) {Z(Uz")j’l(yi'l - Mi’l)} + Q2 (Tig, Tirjr) (Yirjr — parjr)

l

QT o) {00 i = | | L 1+ 00,

!
with b,, @1+, and Q2. being defined in Appendix A.2 and b,; being the next order term in
a higher order bias expansion of 7 following the equivalent derivations in Theorem 1 of Fan,
et al. (1995). In general, for an estimator of 0, e.g., the WI estimator, the square bracket
term inside B, is of order O,(1). Thus one needs nh* goes to 0 to eliminate the bias term in
B,,. For the proposed estimator, as a consequence of (A.14), B,= 0,(1) provided that nh®

goes to 0.
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We now proceed to show that Cy, is of order o,(1). Write Cy,, = %1 Copn, Where

un = =3 8 o o £ EE wny - 0T el @ |

'=1j'=1 i=1j=1¢=1

{500 o = i} -+ 0,0,

l

where the term inside the first {} is asymptotically equivalent to

S5 B {807 A Wi (T)ITe =t} fot) i, (A.16)
it
Similarly, we have

Coon = Z Z g ()77 [E {)Afjﬂjjvjeﬁeewz_l(Te)QQ,*(Te,t)} t= Tz"j']

z’ 15'=1
(Y;"j — prgr {1+ 0p(1) };

Com = z S a0 (w077 [E {05507 AW (T) @1 (T )} 1t = T

’ 1 ]I 1

{ZW”% ) {1+ 0,1,

l

By Lemma 1, we observe that the expectation terms in (A.16), Co, and Cas, all equal zero.
They are also only functions of 7" and X. Thus, with h — 0 and n — oo at the rates that
nh® — 0 and nh/log(1/h) — oo, we obtain that B, Ca1, and Chy, are all of order o,(1).

It follows that

23— g) = {Av)} % ﬁ;XﬁAivﬁm — ) {1+ 0,(1)}. (A17)

which implies that n'/2(8 — 8) — Normal{0,Q(V, )}, where Q(V, %) is defined in Propo-
sition 2. An application of an extended Cauchy-Schwartz inequality given in Johnson and

Wichern (1982, §2.7) indicates that the best choice of V is ¥, which gives Q(V, X) = A~ 1(%).

A.5 Derivation of (10) and Structure of Z; and Z,
Under the normality assumption of X and T, F(X,|T; =t) = (oxpxr/or)t. This equation

and the structure of (6) imply that ¢.;;(t) = c¢(ox/or)t, where c is some constant. Plugging
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this into (6), it is straightforward to solve for ¢ and obtain (10). Similar calculations can be
used to obtain I,,(5) and I,,(5) given in Section 5, where using Result 1 of LC, Z; and Z,
in I,,(8) are Z, = ¥"'X,, and the k-th row of Z, is

Ulc_kl ZT:I 22”21 O-jeE(XWI,ﬂTE = Tk)

m —1
=105
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Table 1: Summary of simulation study results from 250 replications. The bandwidth used is
0.45. FEach entry equals the original value multiplied by 10.

Parameter Method Bias SE MSE

B =1 WI 0732 8564 .0739
ZD 0222 5803 .0337
NEW 0118 5675 .0322

Ba=1 WI 0135 1.6486 .2718
ZD 0134 1.6379 .2683
NEW .0107 1.6324 .2665

Table 2: Regression Coefficients in the CDJ cell counts study in HIV seroconverters using
the Semiparametric Efficient and the Working Independence Estimate. For the semipara-
metric efficient estimates, the working covariance parameter, SA =(11.32, 3.26, 22.15, 0.23)
for Scenario I, and € = (14.1,6.9,16.1,0.22), for Scenario II.

Working Independence Semiparametric Efficient Semiparametric Efficient

Scenario I Scenario 11
Estimate SE Estimate SE Estimate SE
Age .014 .035 .010 .033 .008 .032
Smoking 984 182 .549 .144 .579 .139
Drug 1.049 .526 .b84 331 .b84 .335
Sex Partners - .054 .059 .080 .038 .078 .039
Depression -.033 .021 -.045 .013 -.046 .014
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LIST OF ILLUSTRATIONS

Figure 1. Asymptotic relative efficiencies of the working independence estimator (left panel)
and the Zeger-Diggle estimator (right panel) for different px and px7r. The solid curves
correspond to a scenario with px = pxr = 0.3, while the dotted curves, px = pxr = 0.6.

For both scenarios, the cluster size m = 4, pr = 0.3 and 6 = 0.6.

Figure 2 Asymptotic relative efficiencies of the working independence estimator (left panel)
and the Zeger-Diggle estimator (right panel) for different cluster sizes, m. The curves from
top to bottom correspond to m = 3, 4, 5, and 6, respectively.

Figure 3 The Ratios of Monte Carlo variances and mean squared errors of each of the three
estimates of 3 relative to the proposed efficient estimate as functions of bandwidths. The
solid, dotted and dashed curves correspond to the proposed, working independence and
Zeger-Diggle estimates, respectively. The top two panels are for Bl, while the bottom two

are for Bg.

Figure 4 Two 0(t) (left panel) and their estimated pointwise SE’s (right panel). The solid
and dotted curves correspond to the proposed and the working independence estimates,

respectively.
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