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Regression Analysis of Recurrent Gap Times
with Time-Dependent Covariates

Ying Qing Chen, Mei-Cheng Wang, and Yijian Huang

Abstract

Individual subjects may experience recurrent events of same type over a rela-
tively long period of time in a longitudinal study. Researchers are often interested
in the distributional pattern of gaps between the successive recurrent events and
their association with certain concomitant covariates as well. In this article, their
probability structure is investigated in presence of censoring. According to the
identified structure, we introduce the proportional reverse-time hazards models
that allow arbitrary baseline function for every individual in the study, when the
time-dependent covariates effect is of main interest. Appropriate inference pro-
cedures are proposed and studied to estimate the parameters of interest in the
models. The proposed methodology is demonstrated with the Monte-Carlo sim-
ulations and applied to a well-known Denmark schizophrenia cohort study data
set.



1 INTRODUCTION

In some longitudinal follow-up studies of a group of participants, individual participant may
experience a series of successive occurrences of events as time progresses. The durations of
these successive occurrences of events is called event history (Lindsey, 1993, p. 235). In the
event history data, these events can be of different types, such as different stages of a disease.
For example, in the natural history of the disease of acquired immunodeficiency syndrome
(AIDS), the progression of the disease is often characterized as sero-negative—Human Im-
munodeficiency Virus (HIV) infection—AIDS—death (Brookmeyer & Gail, 1994). Or, these
events can be of same type, for example, recurrent hospitalizations of schizophrenic patients
(Eaton, et al., 1992b). When the events are considered as points occurring along the time
axis, they form point processes.

There are usually two basic sampling schemes to observe the point processes of the event
history data:

Incidence cohort sampling. The incidence cohort sampling forms a sample of the partic-
ipants from the incidence population. That is, individual participant is included in
the sample as soon as the initiating event occurs. Events of this type are frequently
observed from follow-up registry data collected in hospitals or health institutions.

Prevalence cohort sampling. The prevalent cohort sampling forms a sample of the partic-
ipants from a target population and their recurrent events are monitored during the
follow-up period. For example, the samples could be formed by the participants tested
HIV sero-positive at study-entry with recurrent opportunistic infections observed in the
follow-up period. Under this sampling scheme, it is possible to observe no recurrent
event within the follow-up period.

In practice, the above-mentioned schemes may interplay and form a mixed cohort of both
incidence and prevalent participants.

For general point processes, as pointed out in Cox & Isham (1980, p. 11), there are
three equivalent specifications to determine the processes: the intensity specification (the
complete intensity function of occurrences), the duration specification (the joint distribution
of durations between successive events) and the counting specification (the joint distribution
of the occurrence counts in any arbitrary sets). Although the three specifications are equiv-
alent to certain degree, the intensity and counting specifications are often more convenient
to be studied in general theory development (Lawless & Nadeau, 1995). However, it is also
often important in practice to study the duration specification. This is especially of interest
for the event history data of the recurrent events of same type, or simply, recurrent event
data, say. For example, in Eaton, et al. (1992b), the distributional pattern of durations
between the successive hospitalizations serves as an important index for the progression of
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the schizophrenic disease: do the durations have a pattern tending to be longer and longer,
or shorter and shorter? if there is such a pattern of trend, can it be tested and its magnitude
be estimated? what type of risk factors may play significant roles in describing or predicting
the observed patterns?

In some ideal situations, special examples of the point processes can be adapted to analyze
the recurrent event data. For example, if the independence of the durations is plausible, the
point processes become the renewal processes, or if some Markovian structure is further
added, the Markov renewal processes or semi-Markov processes can be used (Cox, 1962). In
reality, however, the interaction of two factors imposes a unique and prominent challenge in
studying the durations between the recurrent events:

Within-subject Correlation. Within-subject correlation is often hypothesized, when hetero-
geneity is observed as different distributional patterns of the durations for different
individuals. Part of the heterogeneity can be explained by the observed predictors,
such as some demographic and socio-economic status variables, or known risk factors,
e.g., smoking. But some other factors can cause the heterogeneity as well. These fac-
tors are either ignored in data collection, e.g., the participants’ exposure to unknown
environmental risk factors, or unable to be measured accurately, e.g., the participants’
genotypes. Therefore, even after accounting for the observed predictors, there may
still exist unaccountable heterogeneity left among the participants. As a result, it is
usually not appropriate to assume that the durations of the successive occurrences are
independent.

Censoring. A participant’s followup is called “censored” if its event history is not completely
observed. There are many possible reasons, e.g., early termination of follow-up due to
the predetermined limit of study time period, or loss to follow-up due to migration, to
prevent the entire history from being fully observed.

To see the challenge, consider a simplified example of two specific durations in the incidence
cohort sampling, i.e., the durations of the initiating event to the first event (77) and the first
event to the second event (73). In literature, sometimes it is assumed that the censoring
time (C') is independent of (71, 7%), while T} and Ty are correlated (Wang & Chang, 1999).
Based on the observed data, most of the traditional statistical methods, such as such as the
Kaplan-Meier product-limit estimators or the Cox regression models for censored survival
data, can be adapted to study the pairs of (77, C)’s, because of the independence of T} and
C. However, they may not be applied naively in analyzing (T3, C — Ti), where C' — T} is
the censoring time for T, and apparently dependent of T, due to the correlation between T
and Ty. That is, the probability of T, being censored depends on the magnitude of itself,
even though indirectly. This phenomenon was recognized when studying the time without
symptoms of disease and toxicity of treatment (TWiST) as end point (Gelber, Gelman &
Goldhirsch, 1989), and later called “induced informative censoring” (Lin, Sun & Ying, 1999)
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or “induced dependent censorship.” (Huang, 1999). More comprehensive discussion on this
phenomenon in incidence and prevalence cohort samplings can be found in Wang (1999).

Because of the potential bias in the traditional survival analysis of the duration times
in presence of the induced informative censoring, researchers have recently developed some
new statistical methodologies from various perspectives. The methods in Wang & Wells
(1998), Huang & Louis (1998) and Lin, Sun & Ying (1999) can be used in the estimation of
the joint distribution of duration times. When the duration times share identical marginal
survival functions, Wang & Chang (1999) proposed an estimator of the marginal survival
function. For hypothesis testing of duration times, Lin & Ying (2001) studied several two-
sample testing procedures based on the estimators in Lin, Sun & Ying (1999). Chang (2000)
developed a two-sample testing procedure using the accelerated failure time model. In Wang
& Chen (2000), significance testing and regression procedures are proposed for the trend
measures of duration times. The methods in Prentice, Williams & Peterson (1981), Chang
& Wang (1999) and Huang (2000) can be used in the regression analysis of duration times.

In this paper, the focus will be on the development of a regression method of the duration
times, when the recurrent events are of same type. The regression method will study the
pattern of duration times, for example, to identify the treatment efficacy over time or confirm
the stability of the duration times. Because of the special serial feature of the recurrent
event data and the potential complication caused by the induced informative censoring,
the recurrent event data are essentially different from clustered failure times collected from
families or litters. Therefore, we will first study the probability structure of the observed
duration times in §2.1. The regression models that fits such a structure and their estimation
are proposed and studied in §2.2. Numerical analyses including simulations and real data
example are in §4. Some remaining issues are discussed in §5. The technical proofs are
collected in the Appendix.

2 SEMIPARAMETRIC REGRESSION MODELS

2.1 Probability structure

Suppose that there are n independent participants recruited into a study. Let : = 1,2,...,n
be the participant index. And let ; = —1 denote the event of study onset, j = 0 the index
for the initiating event and j = 1,2,... the indices for the subsequent events. Let T}; be the
time between event j — 1 and event 7, for: = 1,2,...,nand 5 =0,1,2,.... Then T} is the
time from the study onset to the initiating event for participant 7. In the incidence cohort
sampling, the occurrence of the initiating event usually determines the study onset and, in
this case, Tjo = 0. In the prevalence cohort sampling, T;y represents the time from study
onset to the initiating event, which may be often observed subject to right-censoring.
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Furthermore, let N; = (Tio, Ti1, Ti2, . ..) denote the collection of all the duration times.
Let C; be the censoring time defined as the time from the study onset to the certain time
point of censoring. To explore the probability structure of the duration times, we initially
make two assumptions on 7j;’s. Given a specific participant, ¢, ¢ = 1,2,...,n, say:

Conditional independence. the duration times T}, 151, T;a, . . . are independently distributed;

Non-informative censoring. the censoring time C; is independent of N;.

The first assumption can be viewed as a general type of frailty condition — the participant
himself or herself is some unspecified matching criterion for the conditional independence.
The second assumption basically implies that the censoring mechanism is conditionally un-
informative of the event history process.

Suppose that (¢, %, ... 7ti7mi—17tj:mi) is an observed sequence of duration times of par-
ticipant 7. Here, M; = m; is the stopping time of event index such that for censoring time

OZ' = ¢4,

m;—1 m;
E tij < ¢, and E tij > ¢,
dtf =ec mi~14.. The ob d duration ti £t t; £ idered
and t; .. = ¢ — Z]‘:o ije e observe uration times ol t;0, 441, - .., Ljm;—1 are considere

as “complete” duration times, while the last duration time of ¢;,,, is always “censored.” To
simplify our discussion without loss of generality, we consider the situation when the under-
lying (Ti1, Tia, . . .) that generate (ti0,tit, . tim,—1, t;fmi) are also identically distributed.

For any fixed index 5 > 1 of the durations, it is more likely for relatively short duration
times 7}; to be observed as complete ¢;;, given C; and the durations that have occurred prior
to 7. In addition, although (7}, T}s,...) share identical distribution among themselves by
the assumption, the observed complete duration times #;;, 1 < j < m; tend to be shorter
and shorter as j increases. To see this, let W;; = C; — Zi;é t;x, which is the censoring
time of the jth duration time Tj;, given all the durations prior to jth duration. Then the
complete duration ¢;; is observed from the conditional distribution of T} given T} < W;;.
That is, conditional on W;; = w;;, the observed complete ¢;;, 1 < 3 < m; — 1 is sampled
subject to the independent right-truncation of T;; < w;; (Lagakos, Barraj & De Gruttola,
1988, Kalbfleisch & Lawless, 1989). Also as a result, as j increases, W;; becomes smaller,
and shorter complete ¢;; would be observed.

However, the last duration time of ¢; ,,; is observed subject to intercept sampling (Vardi,
1982). The backward recurrence time W, . can be considered as the truncation time in
a left truncation model. That is, given W, .. = w;,;, the last duration time {;,,, is in
fact sampled from the conditional distribution of Tj; given T; > w;,,,. It was noted that,
when the censoring time is a very large constant approaching +oc, its limiting distribution

is length-biased (Cox, 1962, p. 61).
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2.2 Proportional reverse time hazards models

Although the observed complete durations and the last censored duration are of opposite
directions in truncation, the truncation effect cannot be canceled with each other in analysis
by simply pooling them together (Wang & Chang, 1999). However, because of the unique
probability structure of the complete duration times as right-truncated observations, we will
be focusing on the models for them in this article.

As discussed in the previous section, the complete failure times are always right-truncated.
For right-truncated data, due to their complementary structure to the left-truncated data in
reverse time, researchers often adapt the usual life-table and survival analysis techniques in
reverse time to study their stochastic properties. For example, Lagakos, Barraj & De Grut-
tola (1988) and Kalbfleisch & Lawless (1989) developed nonparametric estimation of the
survival functions in reverse time. Kalbfleisch & Lawless (1991) and Gross & Huber-Carol
(1992) further extended the Cox regression models (Cox, 1972) to the reverse time hazards
functions.

Denote the cumulative distribution function F'(t) = Pr{T < t}, and F};(t) the cumulative
distribution function for the jth duration time of the ¢th subject, T;;, ¢+ = 1,...,n,5 =
1,2,.... Furthermore, let the reverse time hazard function be

N 1 Pr{t — At <T <HT <t}  dlog F(t)
(t) T Ao+ At B dt

As in Kalbfleisch & Lawless (1991), then the proportional reverse time hazards model for
the (7, j)th duration time is

k(11 Zij) = Kio(t) exp(8" Zij), (1)
where Z;; is p-dimensional covariate and # € B C RP is parameter for: = 1,...,n and 5 =
1,2,.... Here, K0(t)’s are the unknown baseline reverse time hazards functions (Kalbfleisch

& Lawless, 1991). The stochastic relationship of failure times can be seen more clearly in an
equivalent form of model (1):

F(117:) = Fo(t)™"7)
Now suppose that Z;; = z; would become z;; + 1 with one unit increment, then
F(t|ZZ] = Zij + 1) = F(t|ZZ] = Zij)eXP(B)‘

Therefore, T;; is stochastically longer for Z;; = z;; + 1 when 3 > 0, and shorter when 3 < 0.
( = 0 means no covariate effect.

The covariate Z;; in (1) is duration-dependent. For example, Z;; can be increasing with j,
which may represent an assigned trend measure for the jth duration time (Abelson & Tukey,
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1963). A special situation is when Z;; = j. Then the parameter 3 measures the direction
and magnitude of trend among the duration times. That is, # > 0 stands for longer and
longer duration times, while 3 < 0 for shorter and shorter duration times. # = 0 means no
trend.

As discussed by many authors, for the proportional reverse time hazards model, the
usual at-risk process for the proportional hazards models is not “adapted” to the history
process (Lagakos, Barraj & De Gruttola, 1988, Kalbfleisch & Lawless, 1991 and Gross &
Huber-Carol, 1992). But if a negative time scale were allowed, i.e., let T}; = —T;;, then T},
would be in theory to follow the usual proportional hazards model with identical regression

coefficients in model (1): for ¢ <0,
Aij (11 Zij) = Xio(t) exp(B'Zi),
where A;;(t) = k4j(—1).

As the proportional hazards model can be considered as the continuous version of the
logistic regression model of discrete failure times, the proportional reverse times hazards
model is the continuous version of the complementary log-log regression model (Kalbfleisch
& Lawless, 1991). Although the parameter is no longer interpreted as odds ratio or hazards
ratio in the proportional reverse time hazards or the complementary log-log models, it entails
simple interpretation on the cumulative distribution functions. In the later development of
estimation, it will become more evident that the proportional reverse time hazards model has
more advantages in utilizing the right-truncation probability structure of complete durations.

3 INFERENCE PROCEDURES

3.1 Biased risksets

The concept of riskset is useful in analyzing the right-censored and left-truncated data to
construct the Kaplan-Meier product-limit estimators and estimate the Cox regression models,
for example, see Woodroofe (1985) and Wang, Jewell & Tsai (1986). Brookmeyer & Gail
(1994, p. 89) used the same term for the right-truncated data, because it carries analogy
with the life-table analysis in reverse time, although its definition is different from the left-
truncated data. We first consider the usual risksets for the complete duration times as right-
truncated observations, and however argue that these risksets are “biased” in estimating
the parameters in model (1). A biased riskset means that not all its members share same
baseline distribution function even after accountable covariate adjustment.

According to the definition of risksets in Brookmeyer & Gail (1994), the individuals in
the riskset of certain time, ¢, are those “whose truncation times are greater than or equal to”
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t and “whose incubation periods [i.e., observed survival times] are less than or equal to” .
Therefore, with the assumption of conditional independence for subject 7, the seemly correct
riskset at ¢;; is

Rij:{k:tikgt”’<wik,k:1,...,mi—1}, (2)

where w;j are defined as in §2.1. Then the partial likelihood function in reverse time is

m;—1
=T )
j=1 EkERZ‘] eXp(/8 Zlk)

assuming that ¢;;’s are distinct complete duration times.

If R;; were unbiased, adjusted for the covariates in the reverse time hazards model, the
members in R;; would have comparability, which allows themselves to have fair chance to
compete to fail at ¢;;. This is because they would share the same baseline reverse time
hazard function, and more importantly, the members in the unbiased riskset would be a
random or unbiased sample from the corresponding underlying risk population. Thus, the
score function contributed by the ith subject, which is the derivative of log(PL;),

mi—1 > ke, Zik exp(B8T Zix)
SZ' = Zi' - = ’
(5) Z { ZkERi] eXp(BTZik) }

i=1

would be zero unbiased.

However, there is complication with the riskset defined in (2). That is, although t;; is
independent of wy, for any specific k, the truncation time wix = ¢; — >, , tq is apparently
a function of {;; defining the riskset R;; as long as j < k. Therefore the defined riskset R;;
does not fit the ordinary riskset for right-truncated observations. In fact, the members in
R;; do not have the comparability as needed for the riskset to be unbiased, either.

For a hypothetical example, suppose the censoring time C; = 10, Ty = 1 and (151, T2, Tis, . . .)
are as in Table 1.

[Table 1 about here]

As shown in Table 1, the earlier durations are more likely to be included in the risksets of
later durations, or equivalently, the later durations are less likely to be included in those of
earlier ones, because the truncation times becomes shorter and shorter for later durations.
Therefore the comparability of the subjects within R;; does not exist any longer.

Nevertheless, if the comparability in R;; were preserved, then one subject would be able
to be replaced by the other in the riskset. For example, the truncation time for T;; is W, = 8.
Hence T;; = 5 is observed and Tj;; in its riskset. However, if T;; were replaced by the value
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of Ti3, which is 5, then W;3; would be 4. As a result, T;; would not be fully observed but
censored at 4. Again, this essentially means T}; can by no means be comparable to T},. The
comparability in R;; is violated and therefore R;; is a biased riskset, which would lead to
biased inference procedures for the model parameters.

3.2 Unbiased reduced risksets

As discussed in the above section, the cause that leads to the biased risksets is clear, i.e.,
some of the subjects in the riskset, R;;, say, do not have their fair share of chance to compete
to fail at ¢;;. Therefore, an ideal treatment to correct such bias is to allow all the subjects
in the riskset being capable of competing to fail at ¢;;. That is, by replacing every subject
in Rij with Tij7
|Rij| Ti; + Z T < C;
keRY,

still holds, where |R;;| is the size of R;; and Rf; = {1,2,...,m; — 1} \ R;;. Then unbiased
estimating equations can be constructed based on the risksets satisfying this criterion. How-
ever, this way of construction is expected to be cumbersome because the criterion becomes
less likely to be satisfied as |R;;| becomes larger and consequently it will disqualify many
risksets as unbiased.

Naturally, more effective approaches can be considered by reducing the number of replace-
ments of T in R;;, which can be achieved by actually reducing |R;;|. The most aggressive
reduction is to include only one duration, {;; say, in R;; at a time, in addition to ;; itself.
That is, a reduced riskset ];’” at {;; would have at most two members, {;; and ¢;;. As pre-
viously discussed, we know that not every ;. is eligible to be included to form the reduced
unbiased riskset. Then the question arises naturally: what kind of ¢;;’s are eligible? For
illustration purpose, in Figure 1, we plot two hypothetical cases of #;; and ¢;; and further
explore the eligibility conditions of #;; to be in the reduced unbiased riskset of ¢;;:

Case 1. For k > 3, R;; is to include a later duration;

Case 2. for k < j, R;; is to include an earlier duration.

As shown in the figure of Case 1, the truncation time w;; of 4;; is shorter than that of ¢;;
by default because #;; happens later than ¢;;. Therefore, the usual condition of riskset for
right truncated observations applies. That is, £ < 1;; < wi, which allows t;; to fairly
compete with ¢;; to fail in fm’” In Case 2, the truncation time of w;; of ¢;; is however longer
than that of ¢;; by default because {;; now happens earlier than #;;. Although ¢;; may still
be shorter than ¢;;, it does have excessive advantage of being potentially longer than w;;,
which ¢;; will never have. Therefore, we need to modify, i.e., to curtail w;; to reduce such
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an excessive advantage. In fact, due to the right-truncation, the largest room left for ¢;; to
potentially grow is w;; — 1;;. This is also the largest room left for ¢;;, in order to allow ¢;; to
fairly compete with ¢;; to fail. Therefore, the curtailed right-truncation time for ¢;; should
be Wi; — tij + tik-

In summary, two members must be satisfying one of the two following criteria to let fx’ij
be unbiased:

N\

Criterton 1. When k > 3, 1 < 1 < wig;

Criterion 2. When k < j, tin < tij < Wi — tij + 4.

Therefore |fx’”| is 2 for reduced unbiased riskset if either condition holds, and 1 otherwise.
Later in the section of Discussion, we will point out that the above two conditions are
essentially to establish the so-called “comparability” of ¢;; and ¢;; in Bhattacharya, Chernoff
& Yang (1983), Efron & Petrosian (1999) and Wang & Chen (2000).

[Figure 1 about here]

3.3 Inference based on reduced risksets

The reduced unbiased riskset identified in the preceding section is neither necessarily existing,
nor necessarily unique even when existing. Denote fx’ijk, k=1,2,...,m;_q, for all the possible
reduced risksets, and d;;, = [{|fm’”k| > 1}, which is an indicator of unbiased fm’”k With the
assumptions in §2.1, given d;;, = 1, T;; and T} are independent and able to compete to fail
at t;;, accounting for appropriate covariate adjustment specified in model (1). Therefore, the
conditional probability for 7;; to fail at ¢;; is

exp(687 Z;;)
exp(BTZi;) + exp(BT Zix)’

(3)

and its corresponding score function is the derivative of the log of (3):

Siie(B) = Zij — Ziju(B);
where
Z.in(B8) = Zi; exp(B" Zij) + Zi exp(B" Zix)
. B exp(BTZi;) + exp(8T Zix)
Thus, E{S'uk(ﬁﬂﬂ’”k, deet=tloiit = 0. It is also true, although trivial, E{guk(ﬁ)ﬁ%”k, Sein =

0; 3} = 0. Therefore, we can use S;;x(3)’s as “building blocks” to construct an estimating
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function for subject 7 as
m;—1 m;—1 o
Dict ket OigeSiir(B)
m;—1 m;—1 ”
Dimt ket Oigh

As a result, the set of estimating functions of parameter 3 using observations of all n subjects

S(B)=n"" Z Si(B)

Si(B) =

If we let ) -
- o 6k Zik(6)
Zi;(B) = == mt—]15 - )
k=1 Yik
and §;; = Z;’l_l 8ijk, straightforward algebraic manipulation shows that S(f3) is actually
n m;—1
2 2 95d%i = Zi(A)}
i=1 j=1

where g;; = 4,/ Zml_l 8ij. The estimating function of S(3) is also unbiased, since

E{5(3)} =n~" Z E{5,(p

— —IZE[{ B)| Risnymiy j = 1,. mi—l,kzl,...,mi—l}}:0

Therefore an estimator of parameter 3 can be obtained by solving

S(B)=o. (4)

Noticeably, the proposed estimating function restricts the use of itself when Z;; = Z;
for every 1 = 1,2,...,n. This is because, for any subject-specific covariate, which is time-
independent over the entire study, the estimating function degenerates. The associated
parameters will disappear in the estimating function because of the product form of the
model. Therefore the proposed inference procedure is not able to estimate the subject-specific
covariates effects if only main effects are included. Nevertheless, if the interaction between the
subject-specific and duration-specific covariates are of major interest, the proposed inference
procedure is still able to make inference of the interaction terms. This echoes the similarity in
the conditional inference procedures of the fixed-effect logistic regression models for matched
case-control studies in epidemiology.

With the special way of constructing the reduced risksets, the standard martingale theory
for counting processes (Andersen, et al., 1993) in analyzing the usual right-truncated data
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(Kalbfleisch & Lawless, 1991 and Gross & Huber-Carol, 1992) may not be applied here in any
straightforward sense. However, in the Appendix, we will be able to show the existence of
the solution ofB in (4), its uniqueness and consistency as well under the following regularity
conditions:

Condition 1. There exist an [ € {1,2,...,n} and enough big constant Cy > 0 such that
fOCO Koi(s)ds < oco. In addition, Pr{z dijg >0} = 1.

(4,7,k)

Condition 2. There exists a finite M > 0 for a neighborhood Uy at 3y such that

sup [FE{Z;jexp(3'Zi;)}] < M.
(¢,5),8€Uo

Condition 3. There exist ¥(3y) and positive-definite D(3) such that

|£080) - 2(0)

and

3

| D(80) — D(A0)

respectively, where

PN 1 Oijk exp(BZix)(Zi; — Zix) ®2
X(B) = n Z { Zj >k 0ijk z]: zk: exp(87:;) + exp(8Z:) }

=1

and

8ijr exp(B7Zi;) exp(BZu)(Zij — Zin)®?
Z Z Zk dijk Z Z {exp(7Zi;) + exp(BZi) }? .

T

Here, v® =1, v® = v and v®? = vv', and || - || defines the Euclidean norm.

In addition, since S(3) is the sum of {S;(0)}%, as iid unbiased estimating functions, it is
true that n‘lﬂg(ﬁ) is asymptotically normal by the central limit theorem. Following the
consistency of B and a Taylor series expansion, we will be able to establish the asymptotic
normality of B under the stated regularity conditions. Details of technical proofs are given
in the Appendix.

Theorem 1. Under the above regularity conditions,

43 — o) 5 N0, D™ (o) B(Bo){ D~ (Bo)} ")

11
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And a consistent estimator of D7Y(B0)X(Bo){ D7 (B0)}T can be obtained by replacing [y
with 3: ) ) o )
n~ DTN AZ(BHDTH(B)}

Since the estimating equations are constructed from the conditional score functions based
on the eligible reduced risksets with equal weight, it is not expected that the proposed es-
timating equations would be fully efficient in general. However, if one prefers, deterministic
weights can be added to the components in 5(5) to enable potentially more efficient esti-
mating equations. For example, let

n m;—1

SB) =03 N G gid 2 — Z4(8)}

i=1 7=1
where (5;; is the diagonal matrix with identical diagonal elementsin £ [gij{Zij — Zy(ﬁ)}] o2,

In practice, to solve the estimating equation in (4), a Newton-Raphson iteration algorithm
can be adapted. That is, at the kth step of iteration, let the (k+1)st solution to the equation
to be

Bk — 304 D) (B30

To our experience, this algorithm is reasonably effective and the burden of computing is not
demanding. The variance estimation is also straightforward.

4 NUMERICAL STUDIES

4.1  Simulations

Monte Carlo simulation studies are conducted to evaluate the proposed estimation procedures
for the reverse time hazards models. We evaluate our estimation procedure in the scenario
when the underlying model is indeed with the reverse time hazards model as specified in (1)
with constant 3 for every individual.

The following reversed proportional hazards models are used in our simulation studies:

Fyj(t) = Fos(t)™27 %), (5)
where 7Z;; = (Zij1, Zij2) and (1, ;) are two-dimensional vectors, for j = 1,2,..., ¢ =
1,...,n. The censoring times ¢;, + = 1,2,...,n, are independently generated by the ex-

ponential distribution with mean p. For subject i, the recurrence times under model (5)
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are independently generated by first generating u;; from Uniform(0, 1) distribution and then
calculating
~log {1 gAY e
1] *

In the simulations the time to the initial event, ¢;9, is set to be zero. The observed data thus
include (%1, ..., tm,—1,1.), ¢ = 1,...,n, such that

Lij = F7 ' (ug)b

m;—1

m;
Z tij < ¢, and Ztij‘ > C;.
=1 7=1

For simplicity, the baseline hazard function is chosen to be independent of .. More specifically,
it i1s Weibull distribution function defined by

Foi(t) = 1 — exp{—(t/b)°},

where b,¢ > 0. We select ¢ to be 0.8, 1 and 2.5, while letting b be always 1, to represent
decreasing, constant and increasing baseline hazard functions, respectively. Sample sizes
are selected to be 100 and 250 to represent relatively small, moderate and large sample
sizes, respectively. Censoring times are selected to be 10 and 15 to represent relatively
short and long follow-up period, respectively. Two covariates are used: Z;;; = j for trend
measure, while Z;;, = ¢;; simulated from uniform distribution U[0, 1] to represent some
time-dependent confounding variable needed to be adjusted. True parameter 3y = (310, 320)
are selected to be (0,0), (1,0), (0,1) and (1,1), respectively. For each configuration, 10,000
simulations are conducted. Its empirical bias, defined as the difference between empirical
mean and the true parameter, and coverage probabilities are computed. Details of results
are listed in Table 2. As shown in the table, the proposed estimators are virtually unbiased
and the corresponding confidence intervals have proper confidence intervals.

[Table 2. about here]

4.2 Data analysis example

In 1938, the country of Denmark started systematic registration of mental health patients
admitted to hospitals for treatment. The registration includes all the cases from 86 psychi-
atric institutions in the entire nation of Denmark. In schizophrenic epidemiology, one of the
important scientific questions to be addressed is the progression of schizophrenia, which is
characterized by the trend pattern of between-hospitalization durations (Eaton, et al., 1992a,
Mortensen, et al., 1994). So naturally, in the Denmark schizophrenia study, the recurrence
time is the time between two consecutive hospitalizations. The recurrence times are mea-
sured by days. They are collected from 8,811 patients (5,493 males and 3,318 females) who
were admitted to the hospitals due to schizophrenic symptoms for the first time in their lives
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during the period April 1, 1970, through March 25, 1988. The distributional pattern of the
recurrence times can be used as an index for the deterioration or amelioration of the disease.

In Wang & Chen (2000), a testing procedure was proposed and applied to this data set
and detected that there is similar deterioration patterns of the disease among the patients
with onset ages less than 20 and those with above. A regression model based on the semi-
parametric accelerated failure time model was also used to estimate the magnitude of the
pattern. However, it is not clear whether or not their proposed regression estimator is unique
because of the discreteness of their proposed estimating functions. In addition, computer-
intensive methods such as bootstrapping have to be used to estimate the variance because
it involves unknown nonparametric component.

In order to contrast with the results in Wang & Chen (2000), we first choose the same
index of trend measure of Z;; = j and Z;; = /7 in model (1), as used in their paper. We found
that the F-estimates are -0.0196 and -0.1684, with standard errors (s.e.) of 0.0010 and 0.0069,
respectively. Both of associated p-values are extremely small, and their negative signs suggest
deterioration trend, which is consistent with what were reported in Wang & Chen (2000).
When model (1) is applied separately to the group with onset age < 20 and otherwise, the
(-estimates are -0.0155 (s.e. = 0.0018, p < 0.0001) and -0.0213 (s.e. = 0.0012, p < 0.0001)
for Z;; = j, respectively. This means there is same deterioration trend for both onset age
groups, although the later onset age group may show a stronger trend. Similar conclusions
are reached for Z;; = \/7: the B-estimates are -0.1585 (s.e. = 0.0145, p < 0.0001) and -0.1713
(s.e. =0.0078, p < 0.0001) for the younger and older onset age groups respectively.

Furthermore, we added one more potential confounding variable to adjust in the model,
which is the age at each hospital admission. Then it is interesting to find that the direction of
schizophrenia progression is reversed: the (-estimates are 0.0228 (s.e. = 0.0015, p < 0.0001)
for Z;; = j and 0.2757 (s.e. = 0.0135, p < 0.0001) for Z;; = \/7, respectively. This means that
the overall schizophrenia progression might be progressive amelioration if hospital admission
age is appropriately adjusted. Similar results are obtained for both separate onset age groups.

Because of the “stratification” nature of our proposed estimating functions, the grouping
effect, or the time-independent covariate effect, is not estimable by this methodology. How-
ever, similar to the conditional logistic regression models for the matched case-control study,
we are still able to estimate the interaction terms of the time-independent and -dependent
covariates. For example, we estimate that the interaction of trend measure and the onset age
grouping is 0.00071 (s.e. = 0.00017, p < 0.0001). This may suggest that the trend measures
are significantly different for the two onset age groups, although they share same direction
of progressive amelioration with adjustment of age at hospital admission.
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5 DISCUSSION

This paper explores the comparability condition from the perspective of appropriate risksets
of truncated data. Similar to the usual univariate right-truncated data, the proportional
hazards model does not serve as a natural model, but instead, the proportional reverse
time hazards model is a better choice. The comparability condition for the reduced risksets
identified in this paper subsequently fits the model, because the baseline hazard functions in
reverse time become nuisance. This is the same philosophy as in Wang & Chen (2000), which
is to identify comparable recurrence times, but with resort to different models. Actually
during the process of identifying the comparability condition, it is not difficult to draw the
similar kind of pictures to the Figures 1 and 2 in Wang & Chen (2000) for the comparable
pairs of complete recurrence times. As a result, the comparability condition identified in this
paper is equivalent to that in Wang & Chen (2000).

The comparability condition identified in this article has advantages in consistently esti-
mating the parameters of interest. However, it does have limitations to certain degree. One
major limitation is that the complete recurrence times are only considered as “comparable”
pairwise. So it is of greater interest but non-trivial to extend to the comparability condition
to more than paired recurrence times, which will allow us to gain more efficiency in estima-
tion. The other major limitation is that the effect of time-independent or subject-specific
covariates is not estimable, although its interaction with any time-dependent covariates are
still estimable. Therefore, a more elaborated approach to analyzing the recurrence time
data is in need when the effects of both time-dependent and -independent covariates on the
distribution of durations are indeed of scientific interest at same time.

In §1, we discuss in brief about the sampling schemes of duration times in practice.
Although the prevalence sampling scheme is more often encountered in practice than the
incidence sampling scheme, the former sampling scheme entails more complicated probability
structure than the latter one and thus more difficult to be analyzed. This article mainly
focused on the duration-specific covariate effect AFTER certain initial event occurs, which
is certainly of interest to be relaxed in the future research development.

There are also some other statistical issues left in this article not discussed. One impor-
tant issue is the evaluation of efficiency of the proposed estimators. Although various types
of weighting scheme can be applied to the proposed estimating equations, the existence of
the optimal weights, and, if yes, the properties of such optimal weights, are not rigorously
investigated. The other important issue is the model adequacy. In this article, the pro-
portional reverse time hazards models are used. Therefore the proportionality between the
reverse time hazard functions needs to be justified. In addition, compared with the accel-
erated failure time models in Wang & Chen (2000), the proportional reverse time model is
not necessarily to be a better choice, although it has its own merits. A formal statistical
procedure of selection may be of help to the practitioners with choosing the better one.
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APPENDIX
Asymplotics

Martingale theory has been useful in developing asymptotic theory for the inference proce-
dures of the Cox proportional hazards models (Andersen & Gill, 1982; Fleming & Harrington,
1991). However, martingales are concerned with future events conditioning on the entire his-
tory up to the time points at which risksets are constructed. Within the current framework,
however, the usual martingale theory is not able to be used in straightforward terms and
alternative techniques are applied in developing asymptotic properties in this article. In the
following development, without loss of generality, we further assume that 3 is a scaler. It
should not be difficult to extend all the results to the multivariate situation.

As shown in §3.3, the estimating function in (4) is unbiased. According to the conditions
in Foutz (1977) and later used in Pepe & Cai (1993), if the following conditions are satisfied:

Condition F.1. the partial derivatives of g(ﬁ) with respect to  exist and are continuous;

Condition F.2. the matrix n_l(@/@ﬁ){g(ﬁo)} is non-singular with probability converging
to 1 as n —+ oo;

Condition F.3. and the matrix n~' (0 /9B){S(B)} converges in probability to the function
A(B) = limy o0 E[n™(3/9B){5(B)}] uniformly in 3,

then there exists a neighborhood such that a unique consistent solution to g(ﬁ) = 0 exist
with probability converging to 1. It is straightforward to verify conditions F.2 and F.3
implied by regularity conditions 2 and 3 in §3.3, respectively. And since F.1 is an obvious
fact, the consistency and uniqueness are then established.

By the Taylor series expansion, we know that in the neighborhood of (3

s _95(Bo) +1‘025(3*)_(3_5)2
2 9B 0/

where (3* lies between 3y and B Straightforward algebraic manipulation shows that

n/2(B — fo) = {"_1 ' 85;50) +nt % Topr (B — ﬂO)} ' {_n_mg(ﬁo)} - (6)

By regularity condition 2 in §3.3, n 1{(82/882) ( )} is uniformly bounded in the neighbor-
hood of (3y. Therefore, n 1{(02/85 )S(B*)H B — Bo) converges to 0 in probability.

Because of the way of constructing S(3), n='(9/93)5(5) is an average of n iid random
variables with finite variance. Therefore, by the Weak Law of Large Numbers (WLLN),
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it converges in probability to D(8y) = F{(3/98)S:i(fo)}, + = 1,2,...,n. In addition, all
the Si(3)’s are iid zero-mean random variables, so by the central limit theorem, n='/25(3)
converges in distribution to a normal with mean zero and variance of (). Because of the
positive-definity of D(fy), it is straightforward to establish the asymptotic normality ofB as
specified in Theorem 1. Using the result in Andersen & Gill (1982) and the consistency of
B, the consistency of the variance estimators in Theorem 1 is also implied.
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Table 1: A hypothetical example of biased riskset

Duration j 12 3 4 )
Actual Tj; 1 5 2 6
Observed t;; 1 5 2 1+
I/I/ij:Ci—Zl<jtij 9 8 3 1
R;; ta ta

Lo ti3
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Table 2: Symmary of Simulation Studies

)

, a b 00 ~
nooptoc (0,0) (1,0) (BT (10 21 (1,1) fy?
A [f.}’“ ;'\)),\2 ﬁol 602 ﬁO
/801 %joé U1 \vJ
100 10.8 Bias® -0.0060 -0.0033 0.0059 0.0061 -0.0083 -0.0048 -0.00060048
Cov. Pr.d 0.9526 0.9472 0.9475 0.95290.9476  0.95038500.9506
1.0 Bias 0.0023 0.0026 0.0042  0.00060029 -0.0010.0081 -0.0030

wv. Pr. 0.9511  0.9473 0.9508  0.94980.9476  0.9403530.9522
/- -0.0100 0.0039 -0.0077 0.0024  0.0115 -0.0055 -0.0072
3 0.9511 0.9483  0.95190.9507  0.95004940.9488
5 -0.0083029 -0.0018 -0.0010.0011
.9472 0.94740.95080.9489
0.0053 -0.0022  -0.0075
0.95190&9514
83018 bo
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©® is mean censoring time. ¢’ is the shape parameter of the baseline hazard function.

Bias® is the average B’s minus 3. Cov. Pr.4is the coverage probability of the 95% confidence
intervals. All the entries are computed from 10,000 simulations.
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Figure 1: Illustrative example of two members in the reduced riskset of ¢;;

w(i,j): }
t(i,)): }
w(i,K): }
t(i,k): b
6 T T T T é:
(a) k=]
w(i.j) %
t(i,j) %
w(i,))-t(i,))+t(i,K):
t(i,k): —
6 T T T T é
(b) k<]
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