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ONE- AND TWO-SAMPLE NONPARAMETRIC INFERENCE
PROCEDURES IN THE PRESENCE OF DEPENDENT CENSORING

by Y. Park, L. Tian and L.J. Wei
Department of Biostatistics
Harvard University
677 Huntington Ave.
Boston, MA 02115

SUMMARY

In survival analysis, the event time 7" is often subject to dependent censorship. With-
out assuming a parametric model between the failure and censoring times, the parameter
© of interest, for example, the survival function of 7', is generally not identifiable. On the
other hand, the collection € of all attainable values for © may be well-defined. In this
article, we present non-parametric inference procedures for €2 in the presence of a mixture
of dependent and independent censoring variables. By varying the criteria of classifying
censoring to the dependent or independent category, our proposals can be quite useful
for the so-called sensitivity analysis of censored failure times. The case that the failure
time is subject to dependent interval censorship is also discussed in this article. The new

proposals are illustrated with data from two clinical studies on HIV-related diseases.

Keywords: Competing risks; Martingale; Simultaneous confidence interval; Sensitivity

analysis; Survival analysis.
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1. INTRODUCTION

In survival analysis, the time to the event of interest is often subject to dependent right
censorship. For example, in a recent double-blind clinical trial, ACTG 175, conducted
by the AIDS Clinical Trials Group, two thousand four hundred sixty-seven patients were
randomly assigned to one of four daily regimens (Hammer et al., 1996). The primary end
point was the time 7" from randomization to one of the following events, a > 50 percent
decline in the CD4 cell count, development of the AIDS, and death. One thousand
eight hundred ninety-nine event times were censored. Although the majority of these
event times were censored administratively, six hundred fifty-six patients were off the
treatments during the study due to, for example, toxicity or request from the patient or
investigator, which was likely related to the primary endpoint. As indicated by Tsiatis
(1975) and Peterson (1976) for handling the general dependent competing risks problem,
serious errors can be made in estimating the survival function of the primary end point for
a study such as ACTG 175 using the standard inference procedures in survival analysis.

With various parametric assumptions on the dependence structure between the event
and censoring times, novel inference procedures and sensitivity analyses were proposed, for
example, by Fisher & Kanarek (1974), Slud & Rubinstein (1983), Klein & Moeschberger
(1988), Klein et al. (1992), Moeschberger & Klein (1995), Zheng & Klein (1995), Lin et
al. (1996), DiRienzo & Lagakos (2001), and DiRienzo (2003). When auxiliary variables
are available, innovative research has been done, for example, by Robins & Rotnitzky
(1992), Robins (1993), Robins & Finkelstein (2000), Satten et al. (2001), and Scharfstein
& Robins (2002).

In this article, we consider the case that the failure time 7" may be censored by either
a dependent or an independent censoring variable under a purely nonparametric setting.
Although the parameter © of interest for this case may not be identifiable, the collection €2
of all possible values of © is often well-defined. For example, if © is the survival function
of T, Q is the collection of non-increasing functions which are bounded by Peterson’s

bounds (Peterson, 1976). Here, we propose inference procedures for 2 under various
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one- and two-sample settings. Specifically, we present a consistent estimate Q and a
(1 — ) confidence set Q for Q such that pr(Q € Qp) = 1 — @, where 0 < o < 1. Such
confidence interval estimation provides more informative than the single point estimation.
Moreover, by varying the criteria of classifying censoring to the dependent or independent
category, our proposal can be quite useful for sensitivity analysis of censored failure time
observations. The new proposals are illustrated with the data from the aforementioned
ACTG 175 study.

Lastly, we discuss the case that the failure time is subject to dependent interval cen-
sorship and present certain one- and two-sample inference procedures. The procedures
are illustrated with the data from a well-known study on the HIV-1 infection incidence

among hemophilia patients.
2. INFERENCES WITH RIGHT CENSORED OBSERVATIONS
2.1. ONE SAMPLE PROBLEMS

Let T be the continuous failure time of interest, D be the continuous, dependent
censoring variable, and C be the independent censoring variable. Also, let {(T;, D;, C;),i =
1,---,n} be n independent copies of (T, D, C). For the ith subject, one can only observe
(Xi,m:), where X; = min(7;, D;, C;), and

m=11ifX, =T,

First, suppose that we are interested in making inferences about the survival function
S(t) of T. In the presence of censoring, generally S(¢) cannot be estimated well nonpara-
metrically for small or large ¢, here we let the parameter © be the function S(-) defined
in a pre-determined, finite interval Z = |11, 72|, where 7 and 7, are known constants such
that pr(X < 7,7 < DAC) > 0 and pr(X > 75) > 0. Without assuming a parametric
dependence structure between 7" and D, S(-) is not identifiable. On the other hand, the
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set 2 of all attainable values of {S(t),t € Z} is the collection of non-increasing functions

which are bounded below by Sy (t) and above by Sy (t), where Sp(t) = pr(T'AD > t) and
1-=Sy(t)=pr(T <t,T < D), (2.1)

t € T (Peterson, 1976). In the competing risks literature, the right hand side of (2.1) is

the so-called cumulative incidence function.

Note that
t
Sy(t)=1— / exp(—Ar(s) — Ap(s))dAr(s),
0
and (2.2)
Sp(t) = exp(—Ar(t) — Ap(t)),
where Ap(s fo Ar(u)du, Ap(s fo Ap(u)du, and A\p(t) and Ap(t) are the cause-

specific hazard functions with respect to 7" and D, respectively (Aalen, 1978; Kalbfleisch
& Prentice, 2002, p.251). To obtain a consistent estimate Q) for Q, one needs to estimate

Sr(t) and Sy(t). To this end, let

dI(X; < s,mi=I(m=T)+2x I(m=D))
Z/ Zj:l I(X; > s) ,

where I(-) is the indicator function, and m = T, D. Then, the Aalen-Nelson estimator

Ap(t) is a consistent estimator for A,,(t), and a consistent estimator ) for  is a set of
non-increasing functions which are bounded above by Sy (¢) and below by S (t), where
Sy (t) and Sp(t) are obtained by replacing A, (t) in (2.2) with A,,(t),m =T, D.

To obtain a (1 — «) confidence set €2 of €, one needs the joint distribution of the

process {(S.(s), Sy(t)),s,t € T}. To this end, note that

Am(®) Z/ > S

where Mpi(s) = I(X; < s,my = I(m=T) 42 x I(m = D)) — [J I(X; > u)dAp(u), m =

T,D. Since Mr;(-) and Mp;(-) are orthogonal martingales (Fleming & Harrington, 1991,
p.42), it follows that the processes n'/?(Ar(s) — Ar(s)) and n'/?(Ap(t) — Ap(t)) converge
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jointly to a two-dimensional Gaussian process, for s,t € Z, as n — oo. To relax the con-
straint that the cumulative hazard function is non-negative, one usually re-parametrizes
this function by considering its log-transformation. By the functional d-method, for large

n, the distribution of the process, indexed by (s, 1),

log AT(S) log Ar(s)
log Ap(t) log Ap(t)

can be well approximated by that of the process

Z (s fo 2l

Z I(X; >u) (2 3)
. t dMp;(u ' '
=1 fo >, [(Xj>u) >u

Generally the distribution of a function of (2.3) may be rather difficult to obtain
analytically. On the other hand, we may approximate the distribution of (2.3) utilizing
a simple perturbation technique proposed by Lin, Wei & Ying (1993). To this end, let
{G1,---,G,} be a random sample from the standard normal, which is independent of the
data. Consider a process which is obtained by replacing M,,;(t) in (2.3) by G; x I(X; <
t,n; =I(m=T)+2xI(m=D)),m=T,D. Then, for large n, conditional on the data,
the distribution of the resulting process

i ; gy

ZGZ A—1 t dI(X;<u,n;=2)
i1 AD (t) A\AiSUNi=2)

0 Zj I(X;>u)

(2.4)

gives a good approximate to the unconditional distribution of (2.3). Note that the only
random quantities in (2.4) are G;,7 = 1,--- ,n. To obtain an approximation to the distri-
bution of (2.4), one may generate a large number, say, N, of independent random samples
{G;,i=1,--- ,n} to obtain N realizations of (2.4).

For convenience, define two random processes {(A%(s), A% (¢))', s,t € T} such that

log A%.(s) _ log/:\T(s) _ (24
log A% (%) log Ap(t)

It follows that the distribution of the process n'/2(Wy (s), Wy (1))’ = n'/?(log(— log Sr.(s))—
log(—log S1.(s)), log(—log Sy (t)) — log(— log SU(t)))' is asymptotically Gaussian and it

5
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can be approximated by the conditional distribution of the process n'/2(W; (s), W (t))' =
n!/?(log(—log S} (s))—log(— log S1.(s)), log(— log S (t))—log(— log Sy (t)))', 5, ¢ € T, where
S7(t) and S§(t) are obtained by replacing A,,(¢) in (2.2) with A (t),m =T, D. Let o(s)
and oy (t) be the estimated standard errors for W (s) and W(t), respectively. These
two standard errors can be obtained via the sample variances based on the above N
realizations of (W} (-), W (-))'.

A (1 — @) confidence set Qy for Q is the collection of non-increasing functions S(-)

which satisfy
log(—1log Sy (t)) — coy(t) < log(—log S(t)) < log(—log S.(t)) + cop(t), (2.5)

where t € Z and c is chosen to satisfy

Wilt) o Wi

r(inf
pr( ter ou(t)

teZ oy, (t)

< c|data) = 1 — a. (2.6)

Note that the probability measure (2.6) is generated by {G;,7 =1, --- ,n}, but conditional
on the data.

Now, we use the data from ACTG 175 study to illustrate the above inference proce-
dures. Although there were four treatment groups in the study, for illustration, we only
compare the AZT monotherapy with the other three treatments combined. Six hundred
nineteen out of 2467 patients were randomly assigned to the AZT monotherapy. There
were 423 and 1479 failure times were censored in the AZT and combined groups, respec-
tively. Here, we take a rather conservative way to define independent censoring. That is,
we let D be the time that the patient was off-treatment due to toxicity or the request of
the investigator or patient. There were 155 and 501 such dependent censored events for
the AZT and combined groups, respectively. In Figure 1, we present point estimate Q) and
0.95 confidence set € based on (2.5) and (2.6) for the combined and the AZT groups.
Here, for each group, 7, and 7, are chosen such that they cut off approximately the lower
and upper 5% of the observed failure times, respectively. For the AZT group, 7 = 140
(days) and 75 = 950 (days), and for the combined group, 7; = 170 and 7 = 995. The
standard error estimates oy (t) and oy (¢) and the cutoff point ¢ is obtained with N = 1000
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realizations of S};(t) and S} (t). The collection of non-increasing functions, whose upper
and lower bounds are denoted by the solid lines, is the point estimate Q, and the region
bounded by the dotted lines is the 0.95 confidence set Qu.

Now, suppose that we are interested in making inferences about the quantile process
of the survival function, for example, the median or upper and lower quartiles of 7. To
this end, let ¢, be the pth quantile of the survival function S(-), that is, 1 — S(t,) = p.
Here, the parameter © is a function ¢, of p € J = [p1, p], a pre-determined interval such
that [t,,,1,,] = Z. Let t;, and t,, be the “pth” quantiles for S;(-) and Sy (-), respectively.
Then, the set ) of all possible values of © consists of non-decreasing functions ¢,,p € J,
which are bounded below by the function ¢, and above by t,,. A consistent estimator {2
can be obtained easily via estimators flp and fup for ¢, and t,, by solving the equations:
Sp(t)=1—pand Sy(t)=1—p.

One may use the aforementioned perturbation technique to obtain a (1 —«) confidence
set () for Q. Since the process Wi (-) and W5(-) are tight, it follows that the asymptotic
distribution of the process n'/2(Wy(t,), Wy (tr))', indexed by (p,r), is the same as the
conditional distribution of n'/2(W; (t1,), Wy (fur))'. Conditional on the data, let ¢}, and ¢,

be the random variables such that
Wi(t,) = Wity), Wu(ty,) = Wete)-

Then, using the results from Goldwasser et al. (2004), for large n, the distribution of the
process (logt;, — logt,,logt,, — logt,,)’, indexed by (p,7), can be approximated well by
that of the process (logt}, — logty,, logt:, —logt,,)', where p,r € J. Let ¢, and ¢,, be

*

wp» Tespectively. Then, Qu consists of all

the estimated standard errors of logt;, and log?

non-decreasing functions ¢, such that
logty, — cyp < logt, < logty,, + cup, (2.7)

p € J. Here, c is chosen to satisfy

logt:, — logt logt;, — logt
pr(inf kit lur —c, sup &l Blip < c|data) = 1 — a. (2.8)
peJ ¢up peEJ ¢lp
7
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To illustrate the above estimation procedure, we again use the data from Study ACTG
175. In Figure 2, we present the point estimate Q) and a 0.95 interval estimate )y based
on (2.7) and (2.8) with J = [0.04,0.32] for the AZT group, and = [0.03,0.21] for the
combined group. Here, Q) is the region bounded by the solid lines, and Qu is bounded by
the dotted lines.

2.2. TWO SAMPLE PROBLEMS

In this section, we present non-parametric and semi-parametric inference procedures
for various parameters which quantify the relative merit between two independent groups
of failure times in the presence of dependent censoring. To this end, all the aforementioned
theoretical and empirical quantities in Section 2.1 are sub-indexed by their group member-
ship &,k = 1,2. For example, the data now consist of {(Xg;, i), i =1,--- ,ng; k =1,2}.

First, suppose that we are interested in © = {S(t) — S1(¢),t € L}, the difference of
two underlying survival functions, where £ is a pre-determined interval |11, 75] such that
pr(Xp1 < 71, Te1 < Dy A Cra, k= 1,2) > 0, and pr(Xg; > 79,k = 1,2) > 0. Note that

consists of functions Sy(-) — S1(-), which satisfy

Sor(t) — Sy (t) < Sa(t) — S1(t) < Sap(t) — SiL(t), (2.9)

t € L. A consistent estimator € of  can be obtained by replacing Sy, (t) and Syy(t) in
the lower and upper bounds of (2.9) with their empirical counterparts, k = 1,2. A (1 —«)

confidence set Qy is the collection of functions of ¢, which belong to the intervals

A

(Saz(t) = S1w(t) — (&, () + Ey ()2, Sy (t) — SiL(t) + (& () + &, (1)),

where &1 (t) and (1) are the estimated standard errors of Sj, (t) and Sj,(¢), k = 1,2,

and ¢ is chosen such that

. Syy(t) — St (8) — Sau(t) + Siz(2)

N R () =N 1) U R
S (t) = Sy (t) — Sor(t) + Siw () N
W@ g, sl
8
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Again, an approximation to the above cutoff point ¢ can be obtained via the perturbation
technique discussed in Section 2.1.

For Study ACTG 175, we let So(t) and S;(¢) be the survival functions for the combined
and AZT groups, respectively. First, we assume that the dependent censoring is due to
toxicity or the request from the patient or investigator. In Figure 3(a), we present a point
estimate (2 and a 0.95 interval estimate Qy for Q with £ = [170,950]. With N = 1000 sets
of realizations from {S;, (), Siy(-), k = 1,2}, Q is composed of functions bounded by the
solid lines, and Qu is the set of functions bounded by the dotted lines. In Figure 3(b), we
present a similar plot, but assume that the dependent censoring event is only due to the
request from the patient or investigator. There are 88 and 288 such events in the AZT
and combined groups, respectively. Lastly, we assume that all the censoring variables are
independent of 7', and in Figure 3(c) we provide the Kaplan-Meier estimate denoted by
the solid line, and a 0.95 confidence set () whose boundaries are the dotted lines. These
plots provide valuable information regarding sensitivity of the censoring assumptions.

Now, suppose that there exists an unknown constant © such that
log So(t) = €®log S (1), (2.10)

a two-sample proportional hazards model. We are interested in making inferences about

©. Note that for t € L,
O (t) = log(—log Sar (t)) — log(—log S1L(t)) < © <

log(—log Sz1.(t)) — log(—log S1v(t)) = Ou(?).
Let ©p, = sup,c, ©1(t) and Oy = inf,c . Oy (t). It is not difficult to show that any member
of the interval Q = [©, 0] is an attainable value for © in Model (2.10). Let ©(¢)
and Oy (t) be the estimators obtained by replacing S(t) with S(¢) in ©.(¢) and Oy(t),
respectively. Similarly, ©7 (t) and ©Oj;(¢) are obtained with S(¢) replaced by S*(t). A
consistent point estimator for Q is Q = [©, 0], where O, = sup,.. ©O,(t) and Oy =

infteL éU (t) .
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To derive a (1 — «) confidence set Qu, unfortunately, it is rather difficult, if not
impossible, to obtain the joint distribution of 6 and (:)U analytically or numerically.

Now, consider the following class of interval estimates for €2, indexed by time t € L,

(Or(t) = cpr(t),  Oult) +ctpu(t)), (2.11)

where 9, (¢) and 9y (t) are the estimated standard errors for ©F (¢) and ©F(¢). Note that
for any pre-determined t € L, an interval (2.11) with ¢ &~ 1.96 is a valid 0.95 confidence
set, for €2. However, such an interval for {2 can be quite large. To obtain a robust interval

estimate, first, we let the cutoff point ¢ in (2.11) be chosen such that

et OO =00 650~ Ot

teL Yy (t) tel (1)

With this relatively larger threshold value than 1.96, the set of intervals (2.11) is a (1 —«)

< c|data) = 1 — a. (2.12)

simultaneous confidence band for €2 across ¢t € L. Thus, the “narrowest” interval from
this band is a valid (1 — «) confidence set for €. For example, a possible choice for Qu is

the interval

(sup{OL(t) — cyr(t)}, WOy (1) + ey (1)})- (2.13)

tel

For Study ACTG 175, first, let us assume that the dependent censoring event is due to
toxicity or the request from the patient or investigator. For this case, with £ = [170, 950]
the cutoff point ¢ based on (2.12) is 2.48. In Figure 4, we present a 0.95 simultaneous
confidence band (2.11) with ¢ = 2.48. The minimizer for {Oy(t) + 2.48¢y ()} is t = 844,
and the maximizer for {©(t) — 2.48¢(t)} is t = 812. It follows from (2.13) that a
0.95 confidence interval for © is (—1.21,0.03), indicating that even without assuming
a parametric model between the failure and dependent censoring times, patients in the
combined group were doing better than those in the AZT group. It is interesting to
note that for any predetermined ¢ € [600, 800], the corresponding 0.95 confidence interval
(OL(t) — 1.96¢. (), Oy(t) + 1.96¢y(t)) is almost identical to our interval (—1.21,0.03).

On the other hand, if one chooses t < 500, the resulting interval for © is quite wide.
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For example, when ¢ = 200, the pointwise interval is (—2.21,0.50), which is much larger
than ours. Lastly, if one assumes that all censorings are independent of 7', the maximum
partial likelihood estimate for © is —0.60 and the corresponding 0.95 interval for © = ()
is (—0.78,—0.43).

Now, suppose that there exists an unknown © such that S,(e®t) = S;(¢),t > 0,
the so-called two-sample accelerated failure time model (Kalbfleisch & Prentice, 2002, p.
217-46). We are interested in making inferences about ©. Note that

Or(p) = logty, —logtiy < © < logty,, —logty, = Ou(p),

for p € M = [p1,p2], where t,, and t,, are the lower and upper boundaries of L. Let
O = sup,ye Or(p) and Oy = inf,cp Oy (p). Then, Q =[O, Op]. Let OL(p) = log oy, —
10g t14p and Oy (p) = logfau, — logtyy,. Also, let O3 (p) = log ty, — logti,, and O (p) =
logt3,,, — logt],,. The point estimate Q= [@L, @U], where ©;, and Oy, are the empirical
counterparts of @, and Oy, respectively. Moreover, it follows from a similar argument in
Section 2.1 that the distribution of (©(p) — O (p), Oy (r) —Oy(r))’ can be approximated
well by that of (6% (p) — OL(p), O} (r) — Ou(r))’, where p,r € M. Similar to the case of
the proportional hazards model discussed above, a (1 — «) confidence interval Qu of Qs

(sup{©1(p) = (6, +83) "}, Inf{Ou(p) +el(dhy + 1) "D, (214)

where the cutoff point ¢ is chosen such that

pr(int 20®) OulD) | _, oo O10) ~Ou(p)

PEM (¢%up + ¢%lp)1/2 pPEM ( %up + ¢%lp)1/2

To illustrate the above estimation procedures with Study ACTG 175, we only consider

< c|data) = 1 — a.

the most conservative case that the dependent censoring is due to toxicity or the request
from the patient or investigator. With M = [0.04, 0.21], a 0.95 confidence interval (2.14)
for © is (—0.20,1.07).

3. INFERENCES WITH INTERVAL CENSORED DATA

11
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Suppose that for each T}, one cannot observe T; directly, but only observe an interval
(ELi, Ey;) which contains T}, = 1,--- ,n. When Ep; and Ey; are independent of Tj,
nonparametric estimation procedures for S(t) were proposed, for example, by Peto (1973),
Turnbull (1976) and Gentleman & Geyer (1994). Regression methods have been studied,
for example, by Bacchetti (1990), Rabinowitz et al. (1995), Rosenberg (1995), Huang
(1996, 1999), Huang & Wellner (1997), Kooperberg & Clarkson (1997), Joly et al. (1998),
Betensky et al. (2001, 2002), and Cai & Betensky (2003).

Unlike the case with the dependent right censorship, for the interval censored data,
even if one can identify which interval censorings are informative and which are not, it is
not clear how to utilize this valuable information to obtain sharp theoretical bounds such
as the Peterson bounds for S(t). Here, we propose inference procedures which are valid
even when all interval censorings are informative. To this end, let Sy, (¢) and Sy (t) be the
survival functions of Er; and Epy;, respectively. The parameter © is {S(t),t € N'}, where
N is the pre-determined interval [, 73] such that pr(Ey; < 71) > 0, and pr(Ez; > ) > 0.
The 2 consists of non-increasing functions S(t) such that S (t) < S(t) < Sy(t),t € N.
The Si,(t) and Sy(t) can be estimated well by Sp,(t) = n~* 3" I(Ey; > t) and Sy(t) =
n~' S " I(Ey; > t), and a consistent estimator 2 for Q can be obtained accordingly.

To obtain a (1 — a) confidence set Qy of €, note that for large n, the distribution of

the process

Wi(s)\ _ (log(~log Si(s)) — log(~log Si(s))
W (t) log(—log Sy (t)) — log(—log Sy (1))

can be approximated well by the conditional distribution of

Wil)) _ g, (QosGulDSutN U Fuz 9 =5u6D)

A

wit)) = \Hlog(Su())Su®)} ' (I(Bui > t) — Su(t)
where s,t € N. Now, let S (s) and S} (t) be the random processes such that

log(—log S (s)) — log(—log 51(s)) _[(Wils)
log(—log Sg(t)) — log(—log Su (1)) Wi (1)
12
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A (1—«) confidence set of Q is exactly like (2.5), where o, (t) and oy (t) are the estimated
standard errors for the W (t) and W(t) via (3.1), and the cutoff point ¢ is obtained via
(2.6) with the current W (t) and W (¢).

Now, we use the so-called “five-center cohort” data set from a well-known, multi-center
study on the HIV-1 infection incidence among hemophilia patients to illustrate the above
interval estimation procedures for Q (Kroner et al., 1994; Betensky et al., 2002). During
the 1980s, persons with hemophilia had high risk of infection with HIV due to their need
for infusion of factor VIII or factor IX concentration, products manufactured from the
donor’s plasma. For this five-center cohort, patients were enrolled without regard to their
HIV antibody status. For each patient, repeated serum samples were taken between early
1978 and early 1987, and HIV seroconverters were individuals with both a last negative
and first positive serum sample. Thus each infected subject was assigned a “window” of
time in which he/she seroconverted. It is not clear from the literature if the sampling
times for the patient were independent of the underlying 7'. In Figure 5, the solid lines are
the upper and lower boundaries of the point estimate Q) and a 0.95 interval estimate Qg
is the region bounded by the dotted lines. Here, we let 7 = 1000 (days) and 75 = 5000
(days).

Now, for comparing two independent groups of failure times {7T};, i = 1,--- ,ng; k =
1,2} with the interval censored data {(Exri, Exv:)}, let us assume that the two failure
times follow a proportional hazards model with parameter ¢®. Using the arguments via
(2.11)-(2.13) with the current Sy (t),Sy(t), S (t) and S¥(t), one can obtain a (1 — «)
confidence interval (2.13) for ©.

Let us illustrate this interval estimation procedure for © with the five-center cohort
data from the above study for hemophilia patients. One of the goals of the study was to
examine if the patient’s average annual dose of non-heat-treated factor VIII concentrate
used from 1978 (or birth) to 1984 was related to the time of seroconvertion. For all
the analyses done for this study in the literature, the dose level was classified as high

(> 20,000 U), low (1 — 20,000 U) or none. Let us assume that the failure time T5;

13
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for the high dose and Tj; for the group without using factor VIII concentration have a
proportional hazards structure. First, we obtain the two bounds corresponding to (2.11)
for 2500 < ¢t < 4500 and ¢ = 2.67. Then, it follows from (2.13) that a 0.95 confidence
interval Q) is (2.1, 3.6), indicating that even without any parametric assumption between
the failure and interval censoring times, the high dose group of patients tended to have a
much higher HIV incidence rate than the group of patients who did not use this particular

concentration.
4. REMARKS

To the best of our knowledge, under the present nonparametric setting there are no
confidence interval estimation procedures available for the set of all attainable values
of the parameter of interest in the presence of a mixture of dependent and independent
censoring. Our proposals for one- and two-sample problems are derived based on the sharp
theoretical bounds for the underlying, non-identifiable survival function. Extending our
procedures to the general regression problems seems quite challenging due to the difficulty

of identifying possible values of the regression parameters with dependent censorship.
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Figure 1: Q and 0.95 confidence set )y for possible values of S(-) with data from ACTG

175 (solid lines are the boundaries for Q) dotted lines are boundaries for QU)
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Figure 2: Q) and 0.95 confidence set Qy for possible values of pth quantiles with data from
ACTG 175 (solid lines are the boundaries for Q) dotted lines are boundaries for QU)
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Figure 3: ) and 0.95 confidence set () for possible values of Sy(-) — Si(-) with data
from ACTG 175 under various independent censoring assumptions (solid lines are the

boundaries for Q; dotted lines are boundaries for QU)
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Figure 4: 0.95 simultaneous confidence band for [0y (t),©y(t)] under the proportional
hazards model with data from ACTG 175

1.0

-1.5 -1.0 —-0.5 0.0
| | | |

—-2.0
|

225
|

200 400 600 800

Days

18

http://biostats.bepress.com/harvardbiostat/paper12



Figure 5: € and 0.95 confidence set (y for possible values of S(-) with data from

hemophilia study (solid lines are the boundaries for Q); dotted lines are boundaries for

Qp)
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