
Memorial Sloan-Kettering Cancer Center
Memorial Sloan-Kettering Cancer Center, Dept. of Epidemiology

& Biostatistics Working Paper Series

Year  Paper 

Estimating the Empirical Lorenz Curve and
Gini Coefficient in the Presence of Error

Chaya S. Moskowitz∗ E. S. Venkatraman†

Elyn Riedel‡ Colin B. Begg∗∗

∗Memorial Sloan-Kettering Cancer Center, moskowc1@mskcc.org
†

‡

∗∗

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/mskccbiostat/paper12

Copyright c©2007 by the authors.



Estimating the Empirical Lorenz Curve and
Gini Coefficient in the Presence of Error

Chaya S. Moskowitz, E. S. Venkatraman, Elyn Riedel, and Colin B. Begg

Abstract

The Lorenz curve is a graphical tool that is widely used to characterize the concen-
tration of a measure in a population, such as wealth. It is frequently the case that
the measure of interest used to rank experimental units when estimating the em-
pirical Lorenz curve, and the corresponding Gini coefficient, is subject to random
error. This error can result in an incorrect ranking of experimental units which
inevitably leads to a curve that exaggerates the degree of concentration (variation)
in the population. We explore this bias and discuss several widely available statis-
tical methods that have the potential to reduce or remove the bias in the empirical
Lorenz curve. The properties of these methods are examined and compared in a
simulation study. This work is motivated by a health outcomes application which
seeks to assess the concentration of black patient visits among primary care physi-
cians. The methods are illustrated on data from this study.
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Abstract

The Lorenz curve is a graphical tool that is widely used to characterize the concentration

of a measure in a population, such as wealth. It is frequently the case that the measure of

interest used to rank experimental units when estimating the empirical Lorenz curve, and the

corresponding Gini coefficient, is subject to random error. This error can result in an incorrect

ranking of experimental units which inevitably leads to a curve that exaggerates the degree

of concentration (variation) in the population. We explore this bias and discuss several widely

available statistical methods that have the potential to reduce or remove the bias in the empirical

Lorenz curve. The properties of these methods are examined and compared in a simulation study.

This work is motivated by a health outcomes application which seeks to assess the concentration

of black patient visits among primary care physicians. The methods are illustrated on data from

this study.
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1 INTRODUCTION

The Lorenz curve is a graphical statistic that was first introduced in 1905 as a tool for exhibiting the

concentration of wealth in a population [1]. In this context members of the population are ranked

in terms of their wealth and the cumulative wealth is plotted (on the y-axis) against the cumulative

proportion of the population (on the x-axis). One can then select any quantile to characterize

concentration using a statistic such as “Y% of the wealth is owned by X% of the population.”

Alternatively a summary index of concentration, the Gini coefficient [2], is frequently used.

Both the Lorenz curve and Gini coefficient have been primarily utilized in the economic and

social sciences over the last century. In recent years, however, these methods have also seen appli-

cation in other areas such as medical and health services research. For example, the Lorenz curve

has been used to describe patterns of drug use. Hallas and Støvring [3] use the Lorenz curve to

show that in 2003 in the County of Funen in Denmark 1% of users of opiod analgesics accounted

for 19.3% of opioid consumption whereas 1% of users of insulin accounted for 4.7% of insulin con-

sumption. They infer that there are not many heavy users of insulin, but, in contrast, there is a

group of heavy users of opioid analgesics. The Lorenz curve and Gini coefficient have also been

used to explore the distribution of health professionals in relation to the population distribution

of patients. Chang and Halfon [4] examined the pediatrician-to-child ratios in the 50 states and

showed a fourfold difference between the states with the highest (Maryland) and lowest (Idaho)

ratios. The authors used Lorenz curve analyses to show that the concentration was greater among

pediatricians than among all physicians, and that during the period 1982-1992, despite a 46% in-

crease in the number of pediatricians nationwide, there was essentially no change in the national

distribution, as evidenced by a minimal change in the Gini coefficient. Similar kinds of studies

have been conducted by Brown [5] in Alberta who examined and compared the distributions of

various kinds of health practitioners, and by Kobayashi and Takaki [6] in Japan who examined the
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distribution of general physicians across 3,268 municipal entities.

As is described in further detail below, the estimation of both the Lorenz curve and the Gini

coefficient involves ranking the units of observation on the basis of some quantity of interest and

then estimating cumulative proportions. When there is error or variation in the measurement of the

quantity of interest, an analysis that does not account for this error or variation may incorrectly rank

the units and result in biased estimates for the Lorenz curve and Gini coefficient. This situation can

arise in many different circumstances. For instance, the Lorenz curve has traditionally been used

to study the distribution of income in a population. In this case, depending upon the study design,

there may be variation in the measurement of income from a number of possible sources including

error in the reported income (i.e. measurement error) and variation attached to estimating income

if the income must be estimated for each member of the population.

In this manuscript we are particularly interested in the bias that may occur in a specific type

of data configuration that can occur frequently in practice. This configuration is nested in that

members of the population, or experimental units, are the primary units of analysis, but within each

experimental unit there are multiple observations that are aggregated to form the outcome whose

distribution is of interest. For example, using Lorenz curves and Gini coefficients Prakasam and

Murthy [7] look at couples within states in India as the unit of analysis to explore the acceptance

of family planning methods for different levels of literacy. Tickle [8] divides the North West Region

of England into market areas and studies children in these areas who were included in the 1995/6

NHS epidemiology survey to examine the distribution of the frequency of dental caries using Lorenz

curves and Gini coefficients. Elliot et al. [9] study geographical variations of sexually transmitted

diseases across regions of Manitoba, Canada by looking at individuals within each region who have

a reported infection. Nishiura et al. [10] use data on 76 provinces in Thailand to estimate the

distribution of physicians, nurses, and hospital beds across the population.
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Within this framework, our motivation for this work arises from a study of whether black patient

visits to physicians are concentrated among a select group of physicians. Described in more detail

below, this analysis involves ranking physicians (the primary units of analysis) on the basis of the

proportion of patient visits to each physician that were made by black patients (that is, the patient

visits constitute the multiple observations to be aggregated within physician). In this study one

observes the number of black patient visits in a sample of patient visits for each physician.

To understand the problem, consider the fact that the goal of this research is to evaluate

the extent to which care of black patients is concentrated within the population of physicians.

Consider, for example, the extreme hypothesis that patients receive care from physicians randomly,

i.e. without regard for race. Then, in the long run, the proportion of black patient visits in each

physician’s profile should converge to the same proportion, the population relative frequencies of

black visits. However, since the Lorenz curve is constructed after ranking the physicians on the

basis of the observed proportion of blacks, an observed “concentration” of blacks in a subset of

the physicians is necessarily observed, with the degree of observed concentration increasing as the

number of patients sampled per physicians decreases. In other words, the degree of concentration

increases as the error variance increases. Thus, the “empirical” curve not only reflects the inherent

degree of maldistribution of patients to doctors, it is also systematically influenced by the sample

sizes one elects to use. That is, if we studied the doctors for two years rather than one year, we

would inevitably observe less “concentration.” Our goal in this article is to redefine the problem in

such a way that the definition of “concentration” that we are endeavoring to estimate is invariant

to the sampling used in the design of the study.

To our knowledge, this problem has been explicitly recognized by a limited number of investiga-

tors. Lee [11] compared the potential for “bias” in this setting with the inherent bias in estimating

predictive accuracy for a model when the same dataset is used to both build and test the model, an
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issue that has been studied widely by statistical theorists. Lee proposed the generation of bootstrap

samples to reorder the experimental components while using the original data to estimate the Gini

coefficient. Pham-Gia and Turkkan [12] proposed a parametric approach in the context of a study

of inequality in income distributions when the incomes are measured with error, and in principle

this has the potential to resolve the bias issue. In their formulation, they reason that true income

= observed income + error and model the observed income with a parametric distribution and

the error with a separate parametric distribution. They derive theoretical results for obtaining the

distribution of the true income and the corresponding Lorenz curve assuming the observed income

and error are independent and follow either beta or gamma distributions.

We are interested in “nonparametric” methods for estimating a Lorenz curve and Gini coefficient

in this type of data configuration, where the methods are nonparametric in the sense that the

ranking of the experimental units is unconstrained. The method by Pham-Gia and Turkkan is

not directly applicable to the nested data configuration we consider and the assumption that the

error and the observed concentration of observations are independent may not reasonable. While

the bootstrap approach is a nonparametric method, we show that it has features that limit its

applicability to data of this nature. In addition to the bootstrap, we consider three other approaches

using random effects models for estimating the Lorenz curve and Gini coefficient.

In the next section, we describe the health services application that was our motivation for

undertaking this work in more detail. In Section 3, we define the Lorenz Curve and Gini coefficient

and discuss the potential bias in more detail. In Section 4, we present several different analytic

strategies that can be used to estimate the Lorenz Curve and Gini coefficient. Section 5 contains

the results of a simulation study evaluating these methods. In Section 6 we return to the health

services application and use this dataset to illustrate the different methods. We make our concluding

remarks in Section 7.
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2 MOTIVATING APPLICATION

In a recently published article, Bach et al. [13] explore whether the quality of health care received

by patients in the United States is associated with race. The authors study a sample of Medicare

patients together with the patients’ primary care physicians in order to assess if black patients

receive a lower quality of care than do white patients. The analysis involved several different

components, including a Lorenz curve type analysis studying whether patient visits made by black

patients to their physicians were concentrated among a select group of physicians.

Specifically, they examine a sample of 5% of black and white Medicare beneficiaries who were

treated during 2001 by 4,355 primary care physicians who participated in the 2000-2001 Community

Tracking Study survey. The distribution of the black patients across these physicians was charac-

terized by a Lorenz curve in which the cumulative proportion of black patient visits was plotted

against the cumulative proportion of physicians in the population. A curve was constructed by

ranking the physicians on the basis of the proportions of blacks in the physicians’ profiles. In this

case, the proportions of blacks patient visits in a physician’s profile had to be estimated from the

actual proportions of their patients who made office visits during 2001, submitted a suitable claim

to Medicare, and were included in the 5% Medicare sample. Consequently, the observed proportion

of blacks in an individual physician’s profile varies considerably from the actual proportion that

characterizes the physician’s profile of patients.

3 LORENZ CURVE AND GINI COEFFICIENT

Suppose that N observations (patient visits) are dispersed among n experimental units (physicians).

We represent the number of observations for each experimental unit as mk, k = 1, ..., n. Interest lies

in studying the concentration or distribution of a feature of each of the N observations across the
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n members of the population. Let the individual observations be denoted by Yjk, j = 1, ...,mk, and

let Xk denote the value of some summary for the kth experimental unit. In terms of our example,

N is the number of patients in the sample seen by the n primary care physicians. Y is a binary

indicator of whether or not a patient is black, and Xk =
∑mk

j=1 Yjk is the number of black patients

in the profile of the kth physician.

The Lorenz curve is constructed by ranking the units in terms of the measure of concentration,

in our case the proportion of black patients in the physicians’ profiles. Let t̃k = Xk/mk, k = 1, ..., n,

be the observed proportions, and for notational convenience let the n units be ranked in ascending

order on the basis of t̃k. Suppose that tk = E(t̃k) is the expected value of t̃k. Let the n experimental

units be conceptually re-ordered on the basis of these unknown proportions {tk}, and let {k∗} denote

this re-ordering. Further, set

L(t) =

∑
tk∗≤t mk∗tk∗∑n
k∗=1 mk∗tk∗

and G(t) =

∑
tk∗≤t mk∗

N
. (1)

Then the underlying true Lorenz curve is a plot of L(t) versus G(t), i.e. it is a plot of the fraction

of all black patients seen by the k physicians with the lowest proportions of black patients in their

patient profiles against the fractions of all patients seen by the k physicians. (We note that this

definition conditions, for convenience, on the observed sample sizes in each experimental unit.)

In practice the Lorenz curve is constructed empirically. That is, the experimental units are

ranked on the basis of the observed proportions t̃k, k = 1, ..., n. In this case, the axes of the

“empirical” Lorenz curve are given by L̃k = (
∑

t̃k≤t mk t̃k)/(
∑n

k=1 mk t̃k) and G̃k = N−1 ∑
t̃k≤t mk.

In this formulation the metric for plotting the curve is the patient, though only one point is plotted

for each unit, i.e. physician. That is, the kth physician will be plotted a distance mk/N to the right

of the (k − 1)th physician.

The definition of the Lorenz curve in (1) differs from the standard definition [14, 15, 16]. In the

standard Lorenz curve analysis, there is a single quantity measured for each experimental unit, and
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the metric for the horizontal axis is the proportion of experimental units. However in the context

of our example, it is more relevant to quote concentration statistics in terms of patients rather than

doctors.

The Gini coefficient is a commonly used numerical summary of the Lorenz curve and in appli-

cations frequently accompanies graphical presentation of the curve. A theoretical formula for the

Gini coefficient is (1/2)
∫

L(t)dG(t). We estimate it as

GC =

∣∣∣∣∣1 −
n∑

k=1

(G̃k − G̃k−1)(L̃k + L̃k−1)

∣∣∣∣∣ (2)

where G̃0 = L̃0 = 0. The coefficient is an estimate of the ratio of the area between the Lorenz curve

and the 45◦ degree line to the area below the 45◦ degree line. The Gini coefficient ranges from zero

for perfect equality in a distribution to one for maximum inequality.

In the hypothetical situation where there is perfect equality in the distribution so that the

proportions of the features are evenly dispersed among the experimental units, t̃k = t̃l ∀k, l, and

the Lorenz curve will fall on the 45◦ degree line connecting the origin (0,0) of the unit square to

the top right corner (1,1). In this case the Gini coefficient will be zero. On the other end of the

spectrum when all of the features are concentrated in a minimum number of experimental units

(maximum inequality in the distribution), the Lorenz curve will lie along the horizontal axis before

increasing linearly. The corresponding Gini coefficient in this case is one. In practice, the Lorenz

curve lies somewhere between these two extremes.

The problem with which we are concerned arises because the quantities used to calculate the

empirical Lorenz curve and Gini coefficient must be estimated from the data. Specifically, for each

experimental unit we observe only an estimate, t̃k, of the true unobserved measure tk, where each

of these estimates is based on a limited sample and/or limited time period of study, characterized

by mk. Thus, while the empirical Lorenz curve is estimated as described above using the {t̃k},

the true curve involves a ranking of the data according to the {tk}. The problem is that when
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t̃k 6= tk not only will the estimated relative frequencies {t̃k} be subject to random error, but also

their ordering in the construction of {L̃k} will be redistributed in such a way as to maximize the

apparent concentration. Members of the population with values of t̃k that are larger than their

corresponding true tk will be ranked higher than they should be while members of the population

with values of t̃k that are smaller than their corresponding true tk will be ranked lower than they

should be. Consequently the empirically estimated Lorenz curve will be biased in the direction of

increased apparent concentration, and the Gini coefficient will be overestimated.

Because of this systematic bias, we are interested in methods that will produce bias-corrected

Lorenz curves. We next propose several methods that could be used for this purpose and describe

them in detail. In these approaches we focus on adjusting the estimates of the proportions t̃k

in recognition of the fact that the distribution of empirical proportions will always have greater

variance that the distribution of true proportions from which they are generated.

4 ANALYTIC STRATEGIES FOR UNBIASED ESTIMATION

In this section we discuss a series of candidate analytic methods that have the potential to reduce

or eliminate the bias. Three of these approaches involve random effects models while the fourth is

a modification of the bootstrap approach discussed by Lee [11]. As mentioned in the Introduction,

these are all nonparametric approaches in the sense that they do not impose constraints on how

the experimental units are ranked.

4.1 Random Effects With Logistic Regression

The first method we consider is a random effects model. By using programs that are available in

standard statistical software packages, we can estimate a random effect for each experimental unit.

A random effects model of this nature induces “shrinkage” in the random effects estimators for the
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empirical estimates. The effect is to reduce the spread of the proportions between physicians and

consequently to reduce the Gini coefficient and raise the height of the Lorenz Curve toward the

45o line. The degree of shrinkage should be inversely related to the sample sizes of the individual

experimental units. In this approach we consider the model:

E[Yjk] = logit(tk) = θ + γk

for j = 1, ...,mk and k = 1, ..., n. Here the Yjk are assumed to be independent Bernoulli variables

conditional on the experimental unit, denoted by the subscript k. θ is a fixed effect common to

all experimental units, and the {γk} are the random effects. In order for the random effects to be

identifiable, we need to postulate a model for their distribution. We follow convention and assume

that γk, k = 1, ..., n, are independent observations from a Normal(0, σ2) distribution. tk is then

estimated as t̂k = eθ̂+γ̂k/(1 + eθ̂+γ̂k).

The parameters in this model can be estimated using previously developed methods for nonlinear

mixed models. A number of such methods have been proposed and are available in statistical

software packages. (Pinheiro and Bates [17] and Davidian and Giltinan [18] contain reviews of these

methods.) In this article we use a numerical quadrature approach to integrating the likelihood of

the data over the random effects. This approach is easily implemented for reasonably sized datasets

in the software SAS through the PROC NLMIXED program.

4.2 Normal Random Effects Analysis

Although the preceding approach is conceptually appealing, it becomes computationally burden-

some in large datasets. Historically, it has often been shown that analyses of binary data in large

samples can be accomplished by simply using the more available and computationally less bur-

densome normal mixed models, in effect treating each binary outcome as if it were a continuous

normal variate. We include this model for its accessibility and computational speed, and compare
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its results with the preceding logistic regression model in our simulations. In this model

E[Yjk] = θ + γk

where γk represents the independent normal random effect for the kth physician. Since the variance

of the Yjk really reflects the variance of the binomial variate Xk, we must perform a weighted

regression, with weights 1/mk to more appropriately characterize the contributions of each patient.

tk is then estimated using t̂k = θ̂ + γ̂k.

Multiple standard statistical software packages provide programs that can be used to estimate

the parameters in this model. These packages use either maximum likelihood or restricted maximum

likelihood to estimate the variance parameters and solve the mixed model equations to obtain

estimates of the fixed and random effects.

4.3 Bayesian Random Effects Analysis

In this approach we assume that Xk follows a binomial distribution and consider the hierarchical

model

Xk|tk ∼ Binomial(mk, tk)

logit(tk) = rk

rk ∼ Normal(µ, σ)

where we place priors on the parameters of the normal distribution:

µ ∼ Normal(µb, σ
2
b )

σ ∼ Gamma(δ1, δ2).

We have used the Gibbs sampler as implemented by WinBUGS to obtain posterior estimates of

the {tk}.
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In our simulations we utilized relatively diffuse priors for µ and σ. In conducting our simulation

studies we found that when using very diffuse hyperpriors for the Gamma distribution at times the

Gibbs sampler had problems updating the model, particularly when there was a very high degree

of inequality in the data. We found, however, that the choice of δ1 = 0.01 and δ2 = 0.01 worked in

all scenarios. Further, in several scenarios we studied the difference between the simulation results

presented below and other results (not shown) using a hyperprior of Gamma(0.0001, 0.0001) and

found no substantial differences. We used µb = 0 and σ2
b = 10, 000 as our prior for µ.

4.4 Bootstrap

Lee [11] suggested using a bootstrap approach to estimate the Lorenz curve and Gini coefficient.

The configuration examined by Lee was somewhat simpler than the one in which we are interested,

in that there was only one observation per experimental unit (not multiple observations that need

to be aggregated within unit), and the observation was assumed to be continuous or categorical.

Lee applied the Lorenz curve and Gini coefficient to study how well a feature differentiates between

two populations (for instance, using a biomarker to distinguish between diseased and non-diseased

individuals). He proposed drawing bootstrap samples of experimental units within each population,

then within each bootstrap sample reordering the data based on the bootstrap sample, using the

original data to calculate the Gini coefficient in each bootstrapped sample, and then averaging the

estimated Gini coefficients across the bootstrap samples to obtain a bias-corrected Gini coefficient.

To use a bootstrap approach to accommodate a two-stage design with multiple observations

per experimental unit where the goal is to draw a Lorenz curve showing the concentration of a

feature within a single population, we must apply the bootstrap differently from Lee’s approach.

We ideally want a resampling scheme which reflects the two-stage nature of our data. This can be

achieved by first drawing bootstrap samples of experimental units (physicians) and then bootstrap
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samples of observations (patients) within the bootstrapped units. Within each bootstrap sample

we calculate the outcome measures {t̃k} and use these measures to estimate the cumulants of the

Lorenz curve.

Specifically, for this approach we draw a bootstrap sample of experimental units. Within each

experimental unit we resample observations. Let X
(b)
k be the number of observations that have

the binary feature Y for the kth bootstrapped experimental unit and m
(b)
k be the total number of

observations for the kth bootstrapped experimental unit. With the bootstrap sample we compute

the proportions t
(b)
k = X

(b)
k /m

(b)
k . We rank the bootstrapped experimental units according to

the t
(b)
k and then calculate L

(b)
k =

∑k
i=1 X

(b)
i /

∑n
i=1 X

(b)
i and G

(b)
k = N (b)−1 ∑k

i=1 m
(b)
i where N (b) =

∑n
i=1 m

(b)
i . We use these quantities to estimate the bootstrapped Gini coefficient, GC(b) by plugging

the L
(b)
k and G

(b)
k into equation (2). We repeat this process B times to obtain B values of L

(b)
k , G

(b)
k ,

and GC(b). Let GCB = 1
B

∑B
b=1 GC(b). An estimate of the bias in the empirical Gini coefficient is

then b̂iasGC = GC − GCB . In other words, the bootstrap bias corrected Gini coefficient is equal

to GCB∗ = GC − b̂iasGC .

Constructing the bias corrected Lorenz curve is a little more complicated. The values of G
(b)
k will

be different across the bootstrap samples. That is, the points will be spaced at different intervals

along the x-axis for different bootstrap samples. Therefore, simply averaging estimated cumulants

across bootstrap samples is not ideal. Instead, we specify a set of Z points, g1, ...gZ , for the x-axis

and use these points to interpolate the Lorenz curve in each bootstrap sample. In other words,

for each specified point, gz, we find the two values of G
(b)
k such that G

(b)
k1

< gz ≤ G
(b)
k2

. Using

linear interpolation, the point on the y-axis corresponding to gz is L
(b)
z = L

(b)
k1

+ (gz − G
(b)
k1

)(L
(b)
k2

−

L
(b)
k1

)/(G
(b)
k2

− G
(b)
k1

). Separately for each value of gz, we take the average across bootstrap samples,

LB
z = 1

B

∑B
b=1 L

(b)
z . In order to construct a bias corrected curve, we must also interpolate the

empirically estimated curve. In the same manner as just described we obtain interpolated empirical
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values {L̂E
z }. The biases in the estimates of the cumulants are b̂iasLz

= LB
z −L̂E

z . The bias corrected

estimates of the cumulants are then LB∗
z = L̂E

z − b̂iasLz
= 2L̂E

z − LB
z . A bias corrected curve is

obtained by plotting {gz , L
B∗
z }.

This approach is not necessarily an admissable approach for obtaining a bias corrected curve.

By definition a Lorenz curve must be convex [14, 16]. By subtracting the bias from the empirical

estimate on a cumulant basis, the resulting curve is not constrained to be convex. In the simulations

and application we consider below, the curve still looks reasonable. However, it is technically not

a Lorenz curve. Note that this is an issue only in our estimation of the Lorenz curve, not the

Gini coefficient. Future work might consider how to obtain a bootstrap bias corrected curve that

is restricted to be a convex function.

There are two potential problems that we foresee with this approach. The first is that it is

unlikely to work well when there are a large number of experimental units in which none of the

observations possess the binary feature Y = 1. In this case the bootstrap sample will continually

estimate the probability as zero even though the true probability of occurrence is non-zero. Con-

versely, for experimental units in which all of the observations have the binary feature Y = 1, the

bootstrap sample will continually estimate the probability as one. The second problem is that in

order for the bootstrap estimate to converge to the “true” underlying parameter, we require that

mk → ∞, not just that n → ∞. In other words, we expect the bootstrap to be sub-optimal in the

applications we consider because of the finite cluster sizes.

5 SIMULATION STUDY

We conducted a simulation study to (1) assess and characterize the magnitude of bias present in

the empirically estimated Lorenz curve and Gini coefficient and (2) to evaluate the ability of the

methods defined in Section 4 to produce bias-corrected estimates of the Lorenz curve and Gini

14
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coefficient.

5.1 Simulation of Data

We generated data to have specific degrees of concentration as quantified by the Gini coefficient

while also controlling the overall proportion of the observations with the feature Y = 1. The details

of how we generated data are as follows:

We specified the total sample size, N , and the number of experimental units, n, and studied

equal sample sizes per unit, m1 = mk ∀k, and unequal sample sizes generated from a multinomial

distribution with probabilities αk ranging from 1/n, ..., 1, but scaled by the sum of these proba-

bilities,
∑

k αk, so they add to one, in order to study potential bias when there is wide variation

in sample sizes. Independently of N and the cluster size, we generated latent variables Zk from

a Normal(λ, 1) distribution where λ was prespecified, and then obtained probabilities t∗k = Φ(z)

where Φ is the cumulative distribution function for the standard normal distribution. In this

scheme, the value of λ controls the degree of mal-distribution/concentration. When λ is large, the

Zk are large, and transforming them onto the Φ scale yields probabilities that are spread out across

the range from zero to one corresponding to distributions with little concentration. As the value

of λ decreases, the values of Zk also decrease. When transformed onto the Φ scale, small Zk values

yield probabilities that are very small and restricted to a narrow range corresponding to distribu-

tions with higher degrees of concentration. In order to fix the value of π = P (Y = 1), we first

obtained {t∗k} as above, and then scaled the values iteratively until we obtained
∑

(tkmk)/N = π.

The observed {Xk} were then randomly generated from Binomial(mk, tk) distributions.

In the simulations shown here, we fixed N = 5000. We studied situations where π = 0.10 and

0.25. We varied λ so as to obtain distributions with very little inequality, GC = 0.05, with moderate

inequality, GC = 0.25 and GC = 0.50, and with high inequality, GC = 0.75. We also varied the
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parameter n using values n = 50, 100, 500 which resulted in average cluster sizes of 100, 50, and

10. For each scenario we simulated 1000 datasets and report the mean values of the estimated Gini

coefficients across the 1000 simulations.

In running these simulations, we found that in order to obtain convergence of the PROC

NLMIXED program for the logistic regression, we needed to constrain the estimate of the vari-

ance of the random effects to be greater than zero.

5.2 Results

In Figure 1 we show examples of empirically estimated Lorenz curves from data simulated with

equal cluster sizes. For this figure, data were generated with fixed π = 0.10, N = 5000, and then

the cluster size and Gini coefficient were varied. Each estimated curve represents data from a

single simulated dataset. Figure 1(a) depicts data with little inequality. The curve drawn using

the “true” probabilities (which would be unobserved in a real application), lies very close to the

45◦ degree line (black line). The curve estimated from data with large cluster sizes of 100 (red

line) lies close to this curve, but is clearly distinct from it suggesting a slightly higher degree of

inequality in the data than is really present. The curve estimated from data with cluster sizes of

50 (green line) lies just below it. The Lorenz curve estimated from data with comparatively small

cluster sizes of 10 (blue line) lies much further away and is very different from the true, unobserved

curve. It incorrectly indicates a substantially larger degree of concentration in the data, and clearly

represents a substantial degree of bias.

Figure 1(b) shows data with a slightly greater degree of inequality (GC = 0.25). Here all

the estimated curves lie closer to the solid line depicting the true curve, but the overall trend is

similar to that seen in Figure 1(a). Figures 1(c) and (d) show Lorenz curves drawn from data

with increasing amounts of inequality. The estimated curves now lie increasingly closer to the true
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curves. Figure 1(d) has all four curves relatively close to one another suggesting that in this scenario

an empirically estimated curve may estimate the degree of inequality in the data with minimal bias

regardless of cluster size.

There are two important general trends to observe from Figure 1. The first is that there is

an inverse relationship between cluster size and the degree of bias in the estimated curve. As the

cluster size decreases, the bias increases. The second point is that the degree of bias appears to

decrease as the amount of concentration in the data increases. While there is substantial bias

present in Figure 1(a) where GC = 0.05 (little concentration), the bias is small by Figure 1(d)

where GC = 0.75 (high concentration).

We next explored the estimation of Lorenz curves using the analytical strategies presented in

Section 4. In Figure 2, data were simulated with unequal cluster sizes with π, N , and n fixed at 0.10,

5000, and 500 respectively, to give an average cluster size of 10 for each curve. As before, the first

panel, Figure 2(a), depicts data with little inequality. Here, the empirically estimated Lorenz curve

(orange line) is the curve furthest away from the true, unobserved Lorenz curve. It incorrectly

suggests a substantially larger degree of inequality than is actually present. The Bayesian and

logistic random effects models produce curves (light blue and green lines, respectively) that lie on

top of each other. These curves are the closest to the true curve and appear to do a reasonable

job of correcting the bias in the empirically estimated curve. The curve produced by the normal

random effects analysis (blue line) lies between the true curve and the empirically estimated curve.

Out of the four analytic strategies, the bootstrap approach (magenta line) does the worst job of

correcting the bias, yielding a curve that is relatively close to the empirically estimated curve.

Figure 2(b) shows data with a slightly greater degree of inequality. Here again the empirically

estimated curve lies far away from the true curve. The Bayesian and logistic models now appear

to over-correct for the bias, producing Lorenz curves that lie above the true curve. The normal

17

http://biostats.bepress.com/mskccbiostat/paper12



regression curve lies slightly below the true curve, and of the four analytic strategies gives the curve

that is closest to the truth. In this situation, the bootstrapped curve only minimally corrects for

the bias.

Figure 2(c) shows data with a moderate of inequality, and Figure 2(d) illustrates the situation

when there is a high degree of inequality in the data. When the GC there appears to be relatively

little bias.

Overall, these plots indicate that there is the potential for bias when estimating the Lorenz

curve, that the bias decreases as the inequality in the data increases, and that a careful analysis of

the data may help correct for the bias. It is difficult to draw general conclusions, however, based

on the entire curve. To further characterize the bias and to simplify the table we utilize bias in the

Gini coefficient as our measure of concentration.

Tables 1 through 4 contain these results. Table 1 and Table 2 summarize data that were

simulated with π = 0.10. Table 3 and Table 4 summarize data that were simulated with π = 0.25.

Table 1 contains results when the cluster sizes are equal, and Table 2 contains configurations where

they vary. Looking first at the empirically estimated Gini coefficients in both tables, we see that

the magnitude of bias depends at least partially on the cluster size. The bias can be determined by

comparing the estimated GC with the known value in the first column. Thus, in the first row of

Table 1, the logistic and normal GC estimates are 0.03 and 0.02, respectively, lower than the true

value of 0.05. By contrast the empirical (0.18) and bootstrap (0.13) values clearly overestimate the

true GC. Bias decreases as cluster size increases. For the case when GC=0.05, the difference in bias

between the configurations where the average cluster size is 100 and where the average cluster size

is 10 is considerable. Similar trends are evident in simulations with varying cluster sizes (Table 2).

The results in Table 3 and Table 4 are similar to the results in the first two tables. In these

tables, we explore the effect of increasing the prevalence of the measure of interest to 25% (π = 0.25
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in contrast to π = 0.10). The same pattern of increasing bias accompanying decreasing inequality

and cluster size that was seen in Tables 1 and 2 is evident here as well. In contrast, however,

in Tables 3 and 4 the bias in the empirically estimated curve is slightly less than we observed

previously.

To understand why the bias decreases as the inequality increases, consider the following small,

hypothetical example illustrated in Table 5. Suppose there are n = 10 experimental units and

N = 200 equally distributed observations across the experimental units (ie. equal cluster sizes

with 20 observations each) with π = 0.1. We consider first the situation where there is very little

inequality in the distribution of the tk’s across the population. This scenario is represented in the

first four columns of Table 5 where GC is approximately 0.05. Because the cluster sizes are equal

and there is little concentration, all the tks have similar values in the region of about 10%. The

order in which the units should be ranked based on those values is shown in the fourth column of

the table. However, the estimates t̃k vary quite widely due to random variation, and the rankings

based on these estimates (column 5) necessarily introduces a considerably increased correlation

between the rankings and the t̃k values. This ranking is clearly very different from the ranking

based on the tk (column 4). The rank correlation coefficient comparing {tk} with {t̃k} is 0.30.

Consider now a similar data structure except with a moderate degree of concentration in the

data. This scenario is represented in the right hand side of Table 5. Here the 10% of the observations

with Y = 1 will tend to be concentrated in a limited number of experimental units. That is, roughly

half the units have very small values of tk while the remaining units have comparatively larger values

of tk. The observations for experimental units with small values of tk will tend to have consistently

small values of t̃k. Conversely, the experimental units with higher values of tk will generally tend

to have higher rankings. In this case, the rank correlation coefficient comparing the two rankings

is 0.92. Although this is a small and contrived example, it serves as a conceptual explanation of
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why a low GC will lead to relatively high bias, and vice-versa. When there is little inequality in

the population, there is great potential for variation in the estimates of the tk and this necessarily

results in a low rank correlation between the true rankings and the observed rankings. Conversely,

when there is a large degree of inequality in the populations, there is less potential for disruptions

of the appropriate ranking of the experimental units.

6 Health Care Data

Bach et al. [13] analyzed a 5% sample of black and white Medicare beneficiaries who were treated

by 4,355 primary care physicians to assess whether visits made by black patients to physicians were

concentrated in a relatively small proportion of physicians. Due to computational limitations, we

illustrate the methods using only 500 of these physicians. There were 4892 total patient visits made

to these 500 physicians. Three hundred and fifteen of the visits (6%) were made by black patients.

The number of patient visits in the profile for a physician ranged from one to 58. The average

number of patient visits to each physician was approximately 10 visits with a standard deviation

of 8.8. Figure 3 shows the estimated Lorenz curves for these data. Of the 500 hundred physicians,

71% had no black patient visits in the 5% sample investigated. Because of this large number of

zeros observed for the X̂k, as evidenced by the flat line in the empirically estimated curve along the

x-axis, we suspect that the empirical estimate may be exaggerating the degree of concentration of

the core of black patients in a small group of physicians. The empirically estimated curve suggests

that 81% of black patient visits are concentrated in a relatively small group of physicians (94 out

of the 500 in our sample), and these physicians account for only 20% of the total patient visits.

The empirically estimated Gini coefficient corresponding to this Lorenz curve is 0.81.

All of the analytic strategies for reducing the potential bias that are considered here suggest that

the degree of concentration of black patients within physicians is considerably less than suggested
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by the empirical curve. The various methods suggest that between 64% to 78% of black patient

visits are concentrated among physicians that have the highest concentrations of blacks and account

for 20% of the total visits. These methods yield Gini coefficients ranging from 0.60 to 0.71. The

Bayesian approach suggests the least amount of inequality. Based on our simulations it seems likely

that the true Gini coefficient is in the middle of this range.

The interpretation of the Lorenz curve in the context of these nested data is not particularly

intuitive. Ultimately, we would like to be able to make statements such as “Y % of black patients

are seen by X% of physicians.” This type of statement is simpler to understand and carries

more meaning (and impact) than summarizing the Lorenz curve with the Gini coefficient. This

information, however, cannot be directly obtained from Figure 3 where it is more difficult to

articulate precisely what the individual points along the curve mean.

As an alternative, we suggest plotting the cumulative proportion of black patient visits (keeping

the vertical axis the same) by the cumulative proportion of physicians. That is, we plot L̃k by Qk

where Qk = k/n. In the situation where all physicians have the same patient volume (i.e. the

mk are equal across experimental units) this curve is equivalent to the Lorenz curve defined in

equations (1). In contrast, when patient volumes differ across physicians the two curves are not

equivalent. The same methods that we explore for estimating the Lorenz curve can be applied to

this curve as well. The t̃k are estimated in the same way, used to rank the physicians, and then

used to compute the L̃k just as with the curve in (1). The only difference is the quantity plotted

along the horizontal axis. The bias we observed in the empirically estimated Lorenz curve together

with the performance of the various methods we studied to correct this bias pertain to this curve

as well.

It should be pointed out that the curve that we propose is technically not a Lorenz curve. Recall

that a Lorenz curve must be convex. Our proposed plot can result in a curve that is not convex.
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Consider the curves in Figure 4. The empirically estimated curve suggests that 84% of all black

patient visits are concentrated within 20% of physicians. In contrast, the curves constructed using

the other estimation methods we studied suggest that between 67% to 76% of all black patient

visits are concentrated within 20% of physicians. The lack of convexity is especially noticeable for

the bootstrap curve.

7 Discussion

In this manuscript we have studied the problem of estimating the Lorenz curve and Gini coefficient

from a study in which the measure of interest is estimated with error for each experimental unit.

We have demonstrated that ignoring variation in the outcome may lead to substantial bias in

the empirically estimated Lorenz curve and Gini coefficient causing overestimation of the degree

of concentration. This bias is most profound when there is relatively little concentration of the

measure of interest in the population, and a relatively large error.

We have considered four analytic strategies to correct the bias. We are unable to conclude that

a single method works best in all situations. For data with a relatively high degree of concentration

(i.e. GC ≥ 0.50), all of the methods possess reasonably good properties. The bootstrap does not

work well, though, in data with little inequality. In this case, logistic regression with random effect

provides better estimates, as does the closely related Bayesian hierarchical model, However, in data

with a moderate degree of concentration (GC = 0.25 and GC = 0.50) and small cluster sizes, all

of the methods are prone to noticeable bias.

In studying the Bayesian approach, we used diffuse hyperpriors for the distribution of the

random effects centered at zero on the logit scale. However, in an application where there is

prior information on the distribution of random effects, this information could be incorporated into

the choice of parameters which may lead to an analytic approach for bias correction with better
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properties than were seen in our simulation studies. Further, in the literature pertaining to the

Bayesian random effects model, it has been pointed out that ranking experimental units based on

the posterior estimates of the tk may not work well (for example, Laird and Louis [19] and Louis

and Shen [20]). Louis and Shen suggest using a loss function that is appropriate specifically for

the ranks themselves and then using the posterior means of the ranks to rank the units. In this

spirit we might order the experimental units based on the average of these posterior ranks and then

use the estimated proportions, {t̂k}, to compute the Lorenz curve. This approach, however, could

result in a curve that is at least partially concave. One avenue of future research might be to try

to incorporate use of the posterior ranks while somehow restricting the curve to be convex.

In constructing the empirical Lorenz curve and Gini coefficient we have used maximum likeli-

hood estimates (MLEs) of the probabilities {tk}. As pointed out by Chew [21], in some applications

point estimates other than the MLE may be preferred. Because the applications we consider have

the potential for a relatively large number of zeros, the MLEs may not be the best point estimates

to use. We explored constructing the empirical Lorenz curve and Gini coefficient using two other

point estimates suggested by Chew. The first is based in game theory, assumes a squared error loss,

and minimizes the expected loss. The second point estimate we studied was a Bayesian estimate

which assumes that the prior probability density function for the probabilities is a Beta distribution

with the first shape parameter equal to Xk and the second shape parameter equal to mk − Xk.

However, these methods do not perform as well as the bias correction methods we studied (data

not shown).

Finally, in analyzing the 5% sample of Medicare benficiaries for this manuscript, we have ignored

the fact that patients may have visited more than one physician. Patient level information that

would have allowed us to track individual patients across potentially multiple visits to different

physicians was not readily available to us. Future work might consider how to incorporate this
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aspect of the data into the modelling process.
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Table 1: Equal cluster sizes: Average Gini coefficients across 1000 simulations when the mk are

equal. Data were generated with N = 5000 observations, π = P (Y = 1) = 0.1 and GC=0.05

for data with little inequality, GC = 0.25 and GC=0.50 for data with moderate inequality, and

GC=0.90 for data with high inequality.

GC n Cluster Estimated GC

size Empirical Logistic Normal Bayes Bootstrap

0.05 50 100 0.18 0.03 0.02 0.03 0.12

100 50 0.24 0.03 0.02 0.04 0.15

500 10 0.50 0.02 0.02 0.03 0.35

0.25 50 100 0.31 0.22 0.21 0.20 0.26

100 50 0.35 0.19 0.18 0.19 0.27

500 10 0.55 0.11 0.11 0.10 0.41

0.50 50 100 0.52 0.48 0.47 0.49 0.50

100 50 0.62 0.47 0.45 0.48 0.51

500 10 0.64 0.45 0.43 0.36 0.58

0.75 50 100 0.75 0.74 0.74 0.74 0.75

100 50 0.77 0.76 0.75 0.74 0.76

500 10 0.81 0.73 0.71 0.71 0.78
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Table 2: Unequal cluster sizes: Average Gini coefficients across 1000 simulations when the mk vary.

Data were generated with N = 5000 observations, π = P (Y = 1) = 0.1 and GC=0.05 for data with

little inequality, GC = 0.25 and GC=0.50 for data with moderate inequality, and GC=0.90 for

data with high inequality. Also shown are average cluster size, range in cluster sizes, and average

variation in cluster sizes across the simulations.

GC n Cluster size Estimated GC

Avg. Range Variation Emp. Logistic Normal Bayes Boot

0.05 50 100 1-251 3298.4 0.17 0.03 0.09 0.04 0.11

100 50 1-133 839.6 0.24 0.02 0.13 0.03 0.15

500 10 1-38 35.9 0.50 0.03 0.26 0.03 0.38

0.25 50 100 1-237 3299.3 0.30 0.20 0.24 0.21 0.26

100 50 1-133 839.6 0.34 0.19 0.24 0.21 0.27

500 10 1-38 35.9 0.54 0.12 0.31 0.11 0.45

0.50 50 100 1-246 3304.2 0.51 0.48 0.47 0.45 0.50

100 50 1-136 840.3 0.54 0.47 0.47 0.44 0.51

500 10 1-37 35.9 0.65 0.40 0.45 0.36 0.57

0.75 50 100 1-237 3300.4 0.75 0.73 0.73 0.79 0.76

100 50 1-133 841.2 0.77 0.75 0.74 0.74 0.76

500 10 1-37 35.9 0.81 0.74 0.72 0.70 0.78
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Table 3: Equal cluster sizes: Average Gini coefficients across 1000 simulations when the mk are

equal. Data were generated with N = 5000 observations, π = P (Y = 1) = 0.25 and GC=0.05

for data with little inequality, GC = 0.25 and GC=0.50 for data with moderate inequality, and

GC=0.75 for data with high inequality.

GC n Cluster Estimated GC

size Empirical Logistic Normal Bayes Bootstrap

0.05 50 100 0.12 0.04 0.04 0.05 0.08

100 50 0.15 0.03 0.03 0.03 0.10

500 10 0.31 0.02 0.02 0.03 0.20

0.25 50 100 0.27 0.24 0.24 0.24 0.26

100 50 0.29 0.23 0.23 0.23 0.26

500 10 0.38 0.17 0.17 0.16 0.30

0.50 50 100 0.51 0.50 0.49 0.49 0.50

100 50 0.52 0.50 0.49 0.49 0.50

500 10 0.56 0.46 0.45 0.45 0.52

0.75 50 100 0.75 0.75 0.75 0.73 0.75

100 50 0.76 0.75 0.75 0.74 0.75

500 10 0.75 0.75 0.75 0.75 0.75
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Table 4: Unequal cluster sizes: Average Gini coefficients across 1000 simulations when the mk vary.

Data were generated with N = 5000 observations, π = P (Y = 1) = 0.25 and GC=0.05 for data

with little inequality, GC = 0.25 and GC=0.50 for data with moderate inequality, and GC=0.75 for

data with high inequality. Also shown are average cluster size, range in cluster sizes, and average

variation in cluster sizes across the simulations.

GC n Cluster size Estimated GC

Avg. Range Variation Emp. Logistic Normal Bayes Boot

0.05 50 100 1-251 3299.4 0.11 0.04 0.07 0.04 0.08

100 50 1-133 842.2 0.15 0.03 0.09 0.03 0.10

500 10 1-38 35.9 0.31 0.02 0.16 0.03 0.20

0.25 50 100 1-237 3299.1 0.27 0.24 0.24 0.25 0.26

100 50 1-133 841.6 0.29 0.23 0.24 0.24 0.26

500 10 1-38 35.9 0.39 0.18 0.25 0.17 0.31

0.50 50 100 1-246 3297.7 0.50 0.50 0.50 0.49 0.50

100 50 1-136 840.2 0.51 0.49 0.49 0.48 0.50

500 10 1-37 35.9 0.56 0.47 0.48 0.46 0.53

0.75 50 100 1-237 3302.1 0.75 0.76 0.75 0.73 0.76

100 50 1-133 841.3 0.75 0.75 0.75 0.74 0.75

500 10 1-37 35.9 0.75 0.75 0.75 0.75 0.75
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Table 5: Example of potential error in ranking experimental units. Data generated with N = 200,

n = 10, and π = 0.10

GC=0.05 GC=0.50

tk t̃k t̃k = Xk/mk Ranked by tk t̃k t̃k = Xk/mk Ranked by

tk t̃k tk t̃k

0.0466 0 0/20 1 2 0.2655 0.20 4/20 9 4

0.1084 0 0/20 6 3 0.1533 0.20 4/20 8 4

0.1069 0.15 3/20 4 1 0.3756 0.15 3/20 10 3

0.1084 0.20 4/20 6 2 0.0545 0.05 1/20 6 2

0.1079 0.05 1/20 5 4 0.0186 0 0/20 3 1

0.1086 0.15 3/20 8 5 0.0283 0.05 1/20 4 2

0.0895 0.15 3/20 2 1 0.0013 0 0/20 1 1

0.1085 0.30 6/20 7 3 0.0137 0 0/20 2 1

0.1086 0.10 2/20 8 1 0.0307 0.05 1/20 5 2

0.1067 0.15 3/20 3 1 0.0586 0.05 1/20 7 2
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Figure 1: Bias in the empirically estimated Lorenz curve for data simulated to have equal cluster

sizes of size 10, 50, and 100. Data were generated with N = 5000 observations and π = P (Y =

1) = 0.1.
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Figure 2: Analytic strategies for estimating the Lorenz curve from data simulated to have unequal

cluster sizes of average size 10. Data were generated with N = 5000 and π = 0.1.
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Figure 3: Lorenz curves (and Gini coefficients) showing the concentration of black patient visits

within a random sample of 500 physicians.
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Figure 4: Alternate curve showing the concentration of black patient visits within physicians. In

contrast to the Lorenz curve, here the cumulative proportion of physicians is plotted along the

x-axis.
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