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Estimation of the Bivariate Survival Function
with Generalized Bivariate Right Censored
Data Structures

Sunduz Keles, Mark J. van der Laan, and James M. Robins

Abstract

We propose a bivariate survival function estimator for a general right censored
data structure that includes a time dependent covariate process. Firstly, an ini-
tial estimator that generalizes Dabrowska’s (1988) estimator is introduced. We
obtain this estimator by a general methodology of constructing estimating func-
tions in censored data models. The initial estimator is guaranteed to improve on
Dabrowska’s estimator and remains consistent and asymptotically linear under
informative censoring schemes if the censoring mechanism is estimated consis-
tently. We then construct an orthogonalized estimating function which results in a
more robust and efficient estimator than our initial estimator. A simulation study
demonstrates the performance of the proposed estimators.



1 Introduction

Bivariate survival data arise when study units are paired such as child and parent, or twins or paired
organs of the same individual. This paper addresses the survival function estimation in a general
data structure which includes time independent and/or dependent covariate processes which are
subject to right censoring. Consider a time dependent process X (t) = (X;(t), X2(t)) where X(¢)
includes a component Ry(t) = I(Ty < t),k = 1,2. Let the full data be X = (X;(T1), X2(12)),
where X = {Xj(s) : s € [0,¢]}. We will denote the maximum of T} and T, with T so that
we can represent the full data with X(T). Let C; and Cy be two censoring variables. Define
T, = min (7%, Cx) and Ay, = I(Cy > Tx), k = 1,2. Then the observed data is given by

Y = (Th Ah )Zrl(TIL T27 AQa )7(2(1?12))-

Such data structures easily arise in longitudinal studies where study units are monitored over a
period of time. In this paper, we are interested in estimating

p=S(t,t2) = P(Ty > t1, Ty > t9)

based on n i.i.d. Yij,---,Y, copies of Y. Let Fx denote the distribution of the full data X and
G(.| X) denote the distribution of bivariate censoring variables (Cy,C3) conditional on X. Then,
the distribution of the observed data Y is a function of Fx and G(. | X), which we will denote with
PFX,G-

There is no previous work on the estimation of such marginal parameter g with the generalized
bivariate right censored data structure. However, estimation of the bivariate distribution of survival
times when both study units are subject to random censoring in marginal data structures (no
associated covariate process) has received a considerable attention in statistical literature. Some
of the proposed nonparametric estimators are Dabrowska (1988), Prentice and Cai (1992), Pruitt
(1991) and van der Laan (1996). These estimators employ the independent censoring assumption.
Dabrowska, Prentice-Cai and Pruitt estimators are not, in general, efficient estimators. van der
Laan’s (1996) SOR-NPMLE is globally efficient and typically needs a larger sample size for good
performance. A review of most of the available estimators can be found in Pruitt (1993) and van der
Laan (1997). Recently, Quale et al. (2001) proposed a new estimator of the bivariate survival
function based on the locally efficient estimation theory. Their approach guesses semiparametric
models for Fx and G(. | X) and the estimator proposed is consistent if either one of the models is
correctly specified and locally efficient if both are correctly specified.

The generalized bivariate right censored data structure has two important aspects. Firstly, by
utilizing the associated covariate process of the data structure one can allow informative censoring.
Secondly, again through utilization of the covariate processes, one can gain efficiency in estimation of
the parameter of the interest. This paper is concerned with achieving these properties in estimation
of the bivariate survival function. Estimation of the parameter of interest with these type of general
bivariate right censored data structures are addressed in great details in Chapter 5 of van der Laan
(2002).

Firstly, we will propose an initial estimator for y that is a generalization of Dabrowska’s (1988)
estimator. Dabrowska’s (1988) estimator, which is developed for marginal data structures, is widely
used and depends on a smart representation of the bivariate survival function. It is only efficient
under complete independence when survival times and censoring times are all independent of each
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other (Gill et al., 1995) and becomes inconsistent when there is informative censoring. Our general-
ization of it deals with informative censoring through utilization of the covariate processes. In our
model, we leave the full data distribution completely unspecified and assume a model for G(. | X)
that will allow dependent censoring. One crucial assumption that we make on the censoring mech-
anism is that G(Ty, Ty | X) > § > 0, Fx — a.e. This assumption can be arranged by artificially
censoring the data as in van der Laan (1996). For a given 1y, mp satisfying G(r,m2 | X) > 0,
artificial censoring sets T. =7 and A, = 1if T, > 75, ¢ = 1,2. Our initial estimator remains
consistent under informative censoring if the censoring mechanism is either known or estimated
consistently. Subsequently, we will provide an orthogonalized estimating function that will result
in a robust and more efficient estimator.

The general organization of the paper is as follows. In the next section, we will describe
the methods to estimate the censoring mechanism in a way that allows dependent censoring. In
Section 3, we will briefly review a general methodology of constructing mappings from full data
estimating functions to observed data estimating functions, and introduce a new way of obtaining
such mappings by using the influence curve of a given regular asymptotically linear (RAL) estimator.
In Section 4, we use this method to obtain a generalized Dabrowska’s estimator. We will introduce
an orthogonalized estimating function and discuss its corresponding estimator in Section 5. The
practical performances of the proposed estimators are demonstrated with a simulation study in
Section 6. Finally, we end the paper with a summary of conclusions.

2 Modeling the Censoring Mechanism

We will represent the bivariate censoring variable as a bivariate time-dependent process. Let
Ar(t) =1(Cy < t), k=1,2, and we define C, = o0 if Cy > T, k = 1,2. For a given A = (A1, A2)
we define X4 = (X1(C1), X2(C2)). Moreover, let X4(t) = (X1(Cy A t), Xo(Cy At)) be the part
of X4 which is observed by time t. Here X 4(t) only depends on A through A(¢t~). Now, we can
represent the observed data as

Y = (A, X4), (1)

which corresponds with observing Y (t) = (A(t), X 4(¢)) over time t. The distribution of the observed
data Y is thus indexed by the distribution Fx of X and the conditional distribution of A, given X.

We now consider the modeling and estimation of the bivariate time dependent censoring process
A in the discrete and continuous case. Let g(A | X) denote the conditional distribution of this
bivariate process given the full data X. Firstly, we will assume that Ag(¢), &£ = 1,2, only change
value at time points j = 1,...,p (indicating the true chronological time points at which Ay can
jump). We will assume

9(AG) | AG = 1), X) = g(A(G) | A(G - 1), Xa(5)), (2)

for all 7 € {1,...,p}. This assumption is the analogue of the sequential randomization assumption
(SRA) in the causal inference literature (e.g. Robins, 1989b; Robins, 1989a; Robins, 1992; Robins
et al., 1994; Robins, 1998; Robins, 1999). Then, we have

g(A1X) = Tl9(AG) 1 AG - 1), X)

=i
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1:[ 3 1AG - 1), 1:[ )1 AG),AG - 1), Xa() (3)

Let Fi(j) = (A(j —
Fr(j)) = P(Cy =
Fr, k=1,2. Then,

ar(J | Fr(5)) = P(Ax(G) = 1| Fr(5)) = Ye(B)Ar(G | Fr(5)),

) and let Fa(j) = (A1(5), A(j — 1), Xa(j)). Moreover, define Ag(j |

Xa(j)) a
> 7, Fr(j)) to be the conditional hazard of Cj with respect to the history

1),
j1Cy

and
ge( A7) | Fi(5)) = an() (1 = ar ()0, k= 1,2,
where Y3 (5) = I(T} > j).
We propose to model the discrete intensities ay, k& = 1,2, with separate models. For example,
we could assume a logistic regression model

1
1+ exp(m (4, Wi(5) | 7))’

where Wi(j) are functions of the observed past Fj(j). One can model the effect of time j as
nonparametric as possible so that this model contains, in particular, the independent censoring
model which assumes that (Cq,C4) is independent of X. If the grid is fine, then the multiplicative
intensity model Ax(j | Fr(7)) = Ao(t) exp(vxWi(J)) is also appropriate for £ =1, 2.

The sequential randomization is a stronger assumption than the well known coarsening at
random assumption (CAR) (Heitjan and Rubin, 1991; Jacobsen and Keiding, 1995; Gill et al., 1997).
Under CAR, the likelihood Pr, ¢(dy) of Y factorizes in an Fx and G-part. Consecutively, the
maximum likelihood estimator of v = (y1,72) is given by:

Me(d | Fe(d)) = (4)

Yn = Max; H H 91y (A7) | Fri(5)) 92,00 (A2i(3) | Faild))-

i=17=1

If the models for g; and g2 have no common parameters, then

Yin = max ! H H 1 (7 1 Fri(i) 1 = @, (7 | Frs())} 40

i=1j7=1

and

Yon = maxw1 H H 0427% | }~2Z ))dA2 ]){1 O"Y2( | -7:22( ))}1 dAs(j )

i=13=1

If we assume the logistic regression model given in (4), then 74, can be obtained by applying the
Splus-function glm() or gam() with logit link to the pooled sample (Ax;(j), 7, Wi(3)),i=1,...,n,
j=1,...,mg = min(Cy;, T3;), treating it as N = 3", my; i.i.d. observations on a Bernoulli random
variable A; with covariates time £ and W.

If A(t) is continuous, then one can formally define g(A | X) as the partial likelihood of the
bivariate counting process A = (Aj, Az) with respect to the observed history F(t) = o(Y (t-))
(Andersen et al., 1993)

g(A| X)= H ap () A4k H(l — a.(t)dt) mAA ), (5)

t,k t

Hosted by The Berkeley Electronic Press



where

ay(t) = E(dA(1) | F(1))

is the intensity of Ay with respect to F(t) and a.(t) = S°7_, ax(t) is the intensity of A. = A; + A,.
To estimate g(A | X) one could assume a multiplicative intensity model ((Andersen et al., 1993)):

ak(t) = Ye() Akt | Fi(t)) = Yi(t)Aox(t) exp(yWi(1)),

where Yj(t) is the indicator that Ay is at risk of jumping at time .

To summarize, by treating the bivariate censoring variable (C, C3) as a bivariate time-dependent
process (Aq, Az) indexed by the same time ¢ as the full-data and assuming sequential randomization,
we have succeeded in presenting a flexible modeling framework that allows dependent censoring.
Moreover, parameters of these models can be estimated using the standard software.

3 Constructing an Initial Mapping From Full Data Es-
timating Functions to Observed Data Estimating Func-
tions

In this section, we will briefly review the main ideas of the locally efficient estimation methodology
which includes full data estimating functions and mappings into observed data estimating functions
(Robins and Rotnitzky, 1992; van der Laan, 2002). Consecutively, we will define a new way of
constructing observed data estimating functions using the influence curve of a given RAL estimator.

In order to construct an estimator for the parameter of interest p based on the observed data
Y1, -+, Y,, the estimation problem is firstly considered in the full data model since this class of
estimating functions is the foundation of the estimating functions in the observed data model. We
will firstly go over estimating functions of the full data model and then link these to the observed
data estimating functions.

Estimating functions in the full data model: Let pu(Fx) be the parameter of interest. We
will denote the model for Fx by M. Typically, we are interested in estimating functions whose
asymptotic behavior is not affected by the choice of the estimators of nuisance parameters. Find-
ing such class of estimating functions requires finding the so called orthogonal complement of the
nuisance tangent space at Fx for each Fx € M. The full data nuisance tangent space at Fy,
TF . (Fx), is a subspace of Hilbert space L2(Fx) (space of functions of X with finite variance and
mean zero endowed with the covariance inner product < f,¢g >r,= Fr, f(X)g(X)) defined as the
linear space spanned by all nuisance scores. A nuisance score is a score function which is obtained
by only varying the the nuisance parameters within one dimensional sub-models of Fx (i.e. varying

one dimensional sub-models F, through Fx at ¢ = 0 for which %M(Fﬁ) |c=o=0). We refer to Bickel

et al. (1993) for the general theory of tangent spaces. Let Tﬂj‘s (Fx) be the orthogonal complement
of T . (Fx). The representation of Tﬂj‘s(FX), VFx plays an important role in constructing the full
data estimating functions since this representation generally hints the form of a class of estimating
functions. Mainly, one tries to find a class of estimating functions { Dy (X | g, p) : h € H} such that
Dy, h € H falls into Tﬂj‘s(FX),VFX when evaluated at the true parameter values (u(Fx), p(Fx)).
Here, p(Fx) is a possible nuisance parameter of the full data distribution Fx and H represents an

4
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index set for this class of estimating functions. A template for constructing such a class is given in
van der Laan (2002). Ideally, one would like this class to be rich and cover the whole Tﬂj; (Fx). In
our model, since we will leave the full data distribution completely nonparamateric, there is only one

full data estimating function, namely D(X | u) = I(Th > t1,T5 > t3)—S(t1,t2), where p = S(t1,t2).

Estimating functions in the observed data model: Defining a class of observed data estimat-
ing functions requires the notion of orthogonal complement of the observed data nuisance tangent
space as in the full data model. Let G(C'AR) be the set of all conditional bivariate distributions
G(. | X) satisfying CAR. We will then represent the observed data model for the distribution of
Y as M(CAR) = {Pr, ¢ : I'x € MF G € G(CAR)}. Next, define Tecar(Pry c) as the tangent
space for G in the model M(CAR) at Pr, ¢. Tcar(Pry ) consists of all functions of the observed
data Y that have mean zero given the full data X. Let D, — ICo(Y | Qo,G, Dy) be an initial
mapping from full data estimating functions into observed data estimating functions which satisfies
Ec(ICo(. | Qo, G, Di(. | pyp)) | X) = Dn(X | p, p),VQo. Here, Qg refers to a nuisance parameters
of the full data model other than p. As established in Robins and Rotnitzky (1992), the orthogonal
complement of the nuisance tangent space T.-,. (Pr, ) in the observed data model M(CAR) at
Pr, ¢ is given by

Tk (Prye.c) = {ICo(. | Qo(Fx), G, Dp)~TI(ICo(. | Qo(Fx), G, Dy) | Toar(Pry.c)) : Du € Th (Fx)},

where II(ICo(. | Qo(Fx), G, Dr) | Toar(Pry a)) represents the projection of ICy(. | Qo(Fx), G, D)
onto Tear(Pry.c). As in the full data model, this representation of T .. can be used to construct
a mapping IC(Y | Q(Fx,G),G, Dy) from full data estimating functions {Dp(. | u, p), h € H} into
observed data estimating functions with the property that it falls into T% . (Pr, ) if evaluated at
the true parameter values of the data generating distribution. If the set of the full data estimating
functions with the index set H covers all of the T:;[g then the set of the corresponding observed
data mappings does not exclude any regular asymptotically linear estimator in the model M(CAR).
These mappings result in estimators that are more efficient that the estimators of the initial map-
pings and are protected against misspecification of either the censoring mechanism or the full data
distribution (Robins et al., 2000; van der Laan and Yu, 2001; van der Laan, 2002). This particular
way of constructing observed data estimating functions relies on projections onto T 4r which can
sometimes be burdensome. For the marginal bivariate right censored data structure, this projec-
tion operator does not exist in closed form but it is still possible to implement it algorithmically
and this was done by Quale et al. (2001). However, for the general bivariate right censored data
structure, the projection operator does not exist in closed form and is computationally much more
complicated to implement. Therefore, we propose to project onto Tsgra C Toar that is defined as
the tangent space for G in the model assuming only SRA. In essence, we will be orthogonalizing
the initial mapping with respect to Tsr4 instead of Toar. There are two key aspects of these
orthogonalized estimating functions. Firstly, they will provide more efficient estimators than the
corresponding initial mappings ICy(Y | Qo(Fx),G, D). However, since one is not projecting onto
Tc AR, this class of estimating functions will exclude some estimators, and which estimators are
included in the class will depend on the choice of initial mapping D — ICy(. | Qo(Fx),G, D).
Therefore, we propose a method to construct initial mappings that result in RAL estimators of
a specific choice, and hence guarantee that our class of estimators will include the specified RAL
estimators with good practical performances.
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Initial mappings that correspond with a specified RAL estimator: In order to obtain
a mapping Dy, — ICo(Y | Qo(Fx),G, D) from full data estimating functions into observed data
estimating functions that would result in an estimator asymptotically equivalent to a specified RAL
estimator for a particular choice h, we use the influence curve, IC(Y | Qo1 (Fx), ), of the specified
RAL estimator. Influence curve, IC(Y | Qo1(Fx),G), of a RAL estimator y,, of p is defined by

il — ) = %imm | Qo (Fx), &) + 0,(1).

The parameter (g1 (Fx) indicates that this influence curve depends on Fx only through a function
Qo.1(Fx) of Fx. Since IC(Y | Qo.1(Fx),G) is an influence curve it is an element of T . (Pry ).
Consecutively, it satisfies

Eq(IC(Y | Qui(Fx),G) | X) e TH (Fx) VF e M.

nuis

Let A* be such that Eq(IC(Y | Qo1(Fx),G) | X) = Dp«(X | p(Fx), p(Fx)). Let D, — U(Y |
Qo2(Fx),G, D) be a mapping from full data estimating functions into observed data estimating
functions which satisfies Eq(U(Y | Qo2(Fx),G,Dy) | X) = Dp(X | p,p),VFx. An example of
such a mapping would be an inverse probability of censoring weighted mapping and we will use
this as an example below. We define

[Coar(Y | Qo(Fx), G) = IC(Y [ Qo (Fx), G) = U(Y [ Qo2(Fx), G, Di=(. | i(Fx), p(Fx))), (6)

where QO(FX) = (Q071(Fx),Q072(Fx)). Note that Eg(ICCAR(Y | QO(FX),G) | X) =0VFyx €
MF . We now propose the following as an initial mapping from full data estimating functions into
observed data estimating functions.

ICo(Y | Qo(Fx),G, Di(. | pyp)) = U(Y | Qo2(Fx),G, Dr(. | g, p)) + ICcar(Y | Qo(Fx), G).

Note that Ea(ICo(Y | Qo(Fx), G, Du(- | p,p)) | X) = Da(X | ju,p), ¥Fx,G. Then, the corre-

sponding estimating equation is

1 n
0= ;Z I1Co(Yi | Qony Gy D(- | 1, p0)),

=1

where Qo n, pn and G, are estimates of (o, p and G respectively. We can then construct a one-step
estimator
1 i3
Nizﬂg‘i';ZICO(Yi |Q0,naGn7CmD('|Hg7pn)) (7)
=1
where ICo(Y | Qo.nGr,cn, D(. | 18, pr)) equals
-1

d 1
— T 2o TCVi | Qo Gy DI | 1))
=1

7

ICO(Y | QO,me D( | ,ug,pn)),

p=p?,

and pQ is a \/n consistent initial estimator. This is the classical one-step estimator defined in Bickel
et al. (1993), i.e. first step in the Newton-Raphson algorithm for solving the estimating equation
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of interest. The general asymptotic linearity Theorem 8.1 in the Appendix can now be applied
to this one-step estimator. Under the regularity conditions of this theorem, if (), converges to a
Q3 pn converges to p(Fy) and G, is an efficient estimator of G in the model G C G(SRA), where
G(SRA) is the set of all conditional bivariate distributions G(. | X) satisfying SRA, with tangent
space Ty(Pry ) then ul is asymptotically linear with influence curve

C(Y | Q(1)7G7D( | ,u,,O)) - H(IC(Y | Q(lJvaD( | va)) | TQ(PFX7G))'

If h = h* and Q} equals Qo(Fx) then we have the following properties of the one-step estimator.
Firstly, if the model G used for G is a sub model of the model G* that the RAL estimator poses
for G, pl is asymptotically equivalent to the RAL estimator, i.e. it has the same influence curve
since [I(/C(Y | Qo(Fx),G, D(. | i, p)) | T2(Pry ¢)) is zero. Moreover, if T5(Pr, ) contains scores
of submodels which are not in G*, then ,u}l is a more efficient estimator than the RAL estimator.

Consider the following example with the parameter of interest p = S(¢1,¢2) in the general
bivariate right censored data structure. Since the full data model is nonparametric the only full data
estimating function is I(Ty > 1, Ty > t2) —p. Let the U(Y | G, D(. | p)) = I(T > )A/G(T | X) -
be a mapping from full data estimating functions to observed data estimating functions. We
use shorthand notation I(T > t) to denote I(Ty > t1,T2 > t3). Let pu, be a RAL estimator
with the influence curve IC(Y | Qo(Fx),G) and satisfy Eq(IC(Y | Qo(Fx),G) | X) = I(T >
t) — i, ¥Qo(Fx). Then, the corresponding mapping with ~* indexed full data function is,

IT>HA
UY | G, Dps(. - Q.
0 G, Dl ) = 20 =
We have,
ICean(Y | QolFx),G) = IC(Y | QulFx). ) = 2 + u(F).
where we assume that p(Fy) depends on Fx only through Qo(Fx) (i.e. p(Fx) = p(Qo(Fx)))

Then, the proposed initial mapping equals

IC(Y | Qo(Fx),G,D(.|p)) = U |G, D(.| )+ ICcar(Y | Qo(Fx),G)
= % p+1C(Y | Qo(Fx),G) -

— u(Fx) - u+ IC(Y | Qo(Fx),G).

We solve this estimating equation for p by setting its empirical mean to zero and replacing Qo(Fx)
and G by their estimates (o, and GG,,. Here, GG, is a consistent estimate of GG according to a model
G C G(SRA).

In the next section, we will construct an observed data estimating function which has p(Qo )
equal to the Dabrowska’s (1988) estimator and IC'(Y | Qo(Fx),G) equal to its influence curve.

4 Generalized Dabrowska’s Estimator

A well known estimator of p = S(#1,t2) based on marginal bivariate right-censored data in the
independent censoring model G* for GG is the Dabrowska’s estimator (Dabrowska, 1988; Dabrowska,
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1989). The influence curve ICpu- (Y | F,G) of Dabrowska’s estimator of S(t1,%;) derived in Gill
et al. (1995) and van der Laan (1997) is given by

(T € du, Ay =1) — I(Ty > w)P(Ty € du | Ty >
ICDabr(}f|F7G) = S(tlytZ) - (16 et ) (E_U) (16 U| I_U)
0 Prpg(Ty > u)
/t2 ](TQ € du,Ag = 1) — I(TQ > U)P(TQ € du | Ty > ’U)
0 PF7G(T2 2 u)
+/l‘1 /1‘2 I(Ty € du, Ty € dv, Ay =1,Ay =1)
o Jo Pp(Th > u, Ty > v)
/tl /t2 I(Tl > ‘U,TQ > ’U)P(Tl € du,Tg € dv | T > u,Ty > ’U)
o Jo Pp(Th > u, Ty > v)
/tl /t2 I(Tl € du,Tg > U,Al = 1)P(T2 € dv | T > u, Ty > ’U)
o Jo Ppa(Th > u, Ty > v)
+/f1 /tz I(Ty > u, Ty > 0)P(Ty €du | Ty > u, Ty > v)P(Ty € dv | Ty > u, Ty > v)
0 0 PF7G(T1 Z ‘U,TQ Z ’U)
/tl /t2 I(Tl > ‘U,TQ € d’l],AQ = 1)P(T1 € du | T > u,Ty > ’U)
o Jo Ppa(Th > u, Ty > v)
N /fl /fz I(Ty > u, Ty > 0)P(Ty € du | Ty > u, Ty > v)P(Ty € dv | Ty > u, Ty > v)
0 0 PF7G(T1 Z U,TQ Z ’U) ’

Here F represents the bivariate distribution of (71,7T3) and Prg(Ty > 5, Ty > t) = S(s,t)G(s,1).
Firstly, we note that, as expected by the theory, EFq(ICpas (Y | F,G) | X)=1(Ty > t1,T2 > t2)—p
for all independent censoring distributions G' € G* satisfying G(t,t2) > & > 0, Fx —a.e. In addition,
if we replace (G in this influence curve by any G satisfying CAR and G(t1,t; | X) > 0, Fx — a.e.,
then we still have

EG(ICDQEW(}Z | F’7 G) | /Y) = I(Tl Z tl,TQ Z tg) 2 (8)
for all bivariate distributions F, as we show in the Appendix. This explicitly corresponds to
replacing Prg(Ty > s, Ty > t) = S(s,t)G(s,t) by S(s,t)G(s,t | X). We will refer to this resulting
influence curve as the modified Dabrowska’s influence curve. Note that (o 1(Fx) = F for this
influence curve. Also, note that this modification will enable us to use covariate processes when
estimating the censoring mechanism.

Let U(Y | G, D(.| p)) = I[(Ty > t1, Ty > t5)A/G(Ty, Ty | X) — . We now define
ICcar(Y | F,G) = ICpa, (Y | F,G) = U(Y | D(. | p(F))).

By (8), Fa(ICcar(Y | F,G) | X) =0 for all G € G(CAR) and bivariate distributions I
We now propose the following observed data estimating function for p indexed by the true
censoring mechanism G and the bivariate distribution I’ of (T4, T%)

ICo(Y | F.G,D(-| ) = U(Y | G, D(-| ) + ICoan(Y | F,G).

In this estimating equation bivariate distribution F of Ty, T; plays role of the nuisance parameter
Qo(Fx) of full data distribution. Note that this estimating function for u satisfies (8) and at the
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true g and F' it reduces to the modified Dabrowska’s influence curve (and to Dabrowska’s influence
curve at G(. | X) =G(.)).

Given consistent estimators F,, of F and GG,, of G, let ,ug be the solution of

12

=1

Moreover, we have the following closed form solution of this estimating equation

1 n
Ngzﬂ(Fn)—l_EZICDGbT(Yi | Fr, Gin), 9)

=1

where p(F,) which will be denoted with 2" is the Dabrowska’s (1988) estimator. We will refer
to ¥ as the generalized Dabrowska’s estimator. We estimate F nonparametrically by Dabrowska’s
estimator and this corresponds to replacing hazards in the numerator of ICp,p,- by their empirical

estimates and S(ti,ty) by ul

2. Consequently integrals in this expression simply become sums.

Conditional bivariate survival function G(. | X) of (Cy,Cy) can be estimated by low dimensional
models such as frailty models or by methods proposed in Section 2.

Under regularity conditions of Theorem 8.1, u® is asymptotically linear with influence curve
IC(Y) = NWIC(- | F,G,D(- | p)) | T4 (Pryc)), where Ts-(Ppy ) C Tcar is the orthogonal
complement of the observed data tangent space of G under the posed model G for G. Two results
emerge from the analysis of this estimator. Firstly, if the posed model for G is the independent
censoring model or a submodel of it, then the resulting generalized estimator is asymptotically
equivalent to Dabrowska’s (1988) estimator since ICy(Y | F,G, D(. | p)) is already orthogonal to
the tangent space, Tjn4ep, in this model. In fact, under this scenario > 7, I/E'Dabr(yi | Fn,Gr)
algebraically equals to 0, thus resulting a ¥ that is exactly equal to Dabrowska’s (1988) estimator.
Secondly, if the tangent space 15 (P, ) contains scores which are not in the tangent space of the
G in the model posed by the RAL estimator then the generalized estimator is more efficient than
the Dabrowska’s (1988) estimator even when (Cy, () is independent of X.

5 Orthogonalized Estimating Function and Correspond-
ing Estimator

In this section we discuss the orthogonalization of our initial estimating function ICy(Y | F, G, D(. |
) =1Co(Y | Qo(Fx), G, i) to improve efficiency and gain robustness. We define a new estimating
function at Gy € G(SRA)

IC*(Y | Q(FX7G1)1G17H) F ICO(Y | QO(FX)7G17N) - ICSRA(Y | QI(FX7G1)7G1)7 (10)

where ICspa(Y | Q1(Fx,G1),G1) = HUCH(Y | Qo(Fx),G1, 1) | Tsra(Pry.c,)) represents the
projection of ICy(Y | Qo(Fx),G1, u(Fx)) onto Tspa at Pp, ,. This orthogonalized estimating
function has the so called double robustness property (Robins et al., 2000; van der Laan and
Yu, 2001; van der Laan, 2002). The double robustness property allows misspecification of either
the censoring mechanism G(. | X) or the full data distribution Fx. Let I’y and G € G(SRA) be
guesses of Fx and G(.| X), respectively. Then, we have

EPFX,GIC*(Y | Q(F}(7G1)7G17N(FX)) =0
9
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if either G4 = G(. | X) and G/(. | X) satisfies the identifiability condition G(. | X) > § > 0, F'x —a.e.
or Fy = Fx and without any further assumptions on G(. | X). We refer to the General Double
Robustness Theorem in Chapter 1 of van der Laan (2002) for details and the proof of this result.
In order to obtain the double robustness property, special care must be paid to estimating the
nuisance parameter Q1 (Fx,G) for which we will have an explicit representation below. As we will
see shortly, specifying Q1(F'x,G) correctly is usually a much harder task due to the nature of the
projections of ICpas.(Y | F,G) onto Tsra. Therefore, in this section we focus on the scenario
where G is estimated consistently and satisfies the identifiability condition. We describe how to
obtain an estimator from the orthogonalized estimating function by estimating Qi (Fx,G) with
a regression approach. Then, in the subsequent subsection 5.1, we discuss an alternative way of
estimating Q1 (F’x,G) in the form of Monte-Carlo simulations that would allow misspecification of
G(.| X) when Qq(Fx,G) is correctly specified.

Given a consistent estimate GG, of G, and an estimate @,, of Q(Fx,G), we propose to estimate
i with the solution of

1 & N
— gZ[C (Yi | Qny Gy pt). (11)
=1

The closed form solution of this estimating equation equals
i, Mn——ZICSRAYIQm, n)s (12)
i=1

where 12 is the generalized Dabrowska’s estimator introduced in Section 4. This is also equivalent
to the one step estimator one would obtain from (11) by using generalized Dabrowska’s estimator
as the initial estimator. This estimator is asymptotically linear and consistent under the regularity
conditions of Theorem 8.1 if G is estimated consistently.

We now present the explicit representation of the projections onto Tsp4.

Lemma 5.1 Define the following functions of Y = (Tl,Tg, Aq, Ag,Xl(Tl) XQ(TQ)) A;(t)=1(C; <
t),7 = 1,2 where Cy,Cy are two discrete time-variables with finite support contained in j =1, ..., p:

dMg i (u) = I(Cy € u, Ap = 0) — Ap(u | fk(u))](Tk > u),
where

Fi(g) = (A - 1)7 ('))7 (13)
Fa2(5) = (A1(4), A — 1), Xa(4)) (14)
MG Fr(f) = P(Cr =3 | Cr > j, Fr(j)), k=1,2. (15)

Then, the nuisance tangent space of G at Pp, g under SRA is given by:

Tsra(Pry,c) = Tsra1(Pry.c) @ Tsraz2(Pry.a),
where

Tsrax(Pry ) = {ZH (j, Fr(5))dMa x(5) : H}

71=1
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Subsequently, the projection of any function V(Y) € Li(Pry ) onto Tspa(Pry.c) is given by

2 p

(V(Y) | Tsra(Pry,a)) = > Y Hi(3, F(4))dMa x(5),

k=1 ;=1

where

Hi(5, F (7)) = EV(Y) | dAx(G) = 1, Fi(5)) — E(V(Y) | dAk(5) = 0, F5(5))-

Proof: Firstly, by factorization of g(A | X) into two products under the assumption (2), we
have that Tspa(G) = Tsra,1(G) & Tsra2(G). By the same argument we have that Tspa 1 (G) =
Tsrak1(G)®...8Tsraky(G) where Tspa g ; is the tangent space for the j—th component of the
k—th product of (3). We will now derive the tangent space Tsra ;. Let Fi(j) = (A(j — 1), X4(j))
and F(5) = (A1(4), A(j — 1), X4(j)) be the observable histories. Let ax(j | F(j)) = E(dAx(j) |
Fr(7)),k=1,2. Then the k—th product, £ = 1,2 in (3) can be represented as:

,ﬁ b 1T D {1 — (5 | Fi())) 0.

Note that ax(j | F(5)) = MU | FeG)I(Tx > ]) where A\p (7 | Fr(y)) is the conditional hazard
of Cy, as defined in (15). Since ag(j | Fe(5))**W {1 — ar(5 | Fe(5))}'~ 44k(1) s just a Bernoulli
likelihood for the random variable dAy(j) with probability ax(j | Fx(j)), it follows that the tangent
space of ay(j | Fr(j)) is the space of all functions of (dAg(j), Fix(7)) with conditional mean zero
given Fi(j). It can be shown that any such function V' can be written as

VI(dAk(5), F(5)) — EV(dA(5), Fx(5) | Fx(5)) = AV (L Fr(5)) = V(0, Fi(4)) }dMe(7),  (16)

where

dMg r(j) = dAp(3) — ar(d | Fe(4)) i
= I(Cy=7) = MU | Fe(GDI(Tk > J).

Note that [(Cy = j) = I(Cr = j,Ar = 0).
Thus the tangent space of ay(j | Fi(j)) for a fixed j equals

Tsrak,;(Prx,c) = {H(Fe(1){dAc(j) — k(5 | F(4))}: H},

where H ranges over all functions of Fj(j) for which the right-hand side are elements have finite
variance. By factorization of the likelihood we have that

Tsrak(Pry.c) =Tsrar1 @ Tsrak2 - D TsrA k- (17)

Equivalently,

Tsrak(Pry,q) {ZHk (7, Fr(7))dMe 1 (5) : H}

71=1
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The projection of any function V(Y) € L(Pry.c) onto Tsrak ;(Pry.) is obtained by first pro-
jecting on all functions of dA(j) and the subtracting from this its conditional expectation given

Fi(7). Thus, we have

NV | Tsma(Prec)) = 303 {EV(Y) | dAG) = 1, 7()
k=1 j=1

— BEV(Y) [ dAx(7) = 0, F(5))} dMc 1 (5)-

This completes the proof. O
Application of this lemma with V(Y) = ICy(Y | Qo(Fx), G, i) gives

IHICo(Y | Qo(Fx), G, u(Fx)) | Tsra) = Zzp:{E(ICDabr(YvaG)IdAk(j)Zl,fk(j)) (18)
k=1j=1

— E(ICpa(Y | F,G) | dAg(5) = 0, F(j)) } dMe,k (5)- (19)

Let Qk(dAk( ) fk( )) (ICDabr(Y | F, G) | dAk( ) fk( )) for k = 1,2. Note that Ql(Fx,G)
n (10) represents Qr(dAr(7), Fx(3)), k = 1,2, 7 =1,---,p. Then, following the representation of
the projections onto T'sr4, the explicit form of the one-step estimator given in (12) becomes

- Ei{fzk(mm =1, 7i(j)) — Qu(dAx(4) = 0, Fi(j }dMGn, ()

k=1 j=1

where Qi(dAx(§), Fx(4)) is an estimate of Qx(dAx(.), Fx(.)), k¥ = 1,2 at j. One way to obtain
such estimates is to estimate the corresponding conditional expectations parametrically or semi-
parametrically by regressing the estimate of ICpa,(Y | F,G) onto time variable j and covariates
extracted from the past (Ag(t), Fi(t)). Making this conditional expectation dependent on time
covariate j allows us to evaluate it at all required j. Note that in order to avoid technical conditions
such as measurability in establishing the projections onto Tsra, we assumed that C; and C5 are
discrete on a grid {1,---,p}%. Since the time points can be chosen to be the grid points of an
arbitrarily fine partition this assumption can be made without loss of practical applicability.

We have observed in our simulation studies that models for conditional expectations in pro-
jection terms are often misspecified, leading to inconsistent estimates for Q(Fx,G). It is then
desirable to prevent a possible efficiency loss due to projections. We apply the general modification
proposed by Robins and Rotnitzky (1992) and use the following estimating function

IO*(Y | Q(FXaG)vcnuaG7H) — ICO(Y | QO(FX)aGmu) - CnuICSRA(Y | QI(FXvG)7G)7 (20)
where ¢, is defined as

Epy HCo(Y | Qo(Fx), G, 1) ICspra(Y | Q1(Fx,G), G)}
Ep o{Cspa(Y | Q1(Fx,G), G)*}

so that ¢, [Cspra(Y | Q1(Fx,G),G) = NICy(Y | Qo(Fx),G,u) | Tsra). Note that when
ICspa(Y | Q1(Fx,G),G) is the projection of ICy(Y | QO(FX) p) onto Tspa, Cpy equals 1.
In other words, this adjustment will only have an effect when Ql(FX, (7) is misspecified. Moreover,
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it guarantees that the resulting estimating function IC*(Y | Q(Fx,G), ¢pu, G, i) is more efficient
than the initial estimating function ICy(Y | Qo(Fx), G, ) even when @ (Fx,G) is estimated in-
consistently (Robins and Rotnitzky, 1992; van der Laan, 2002). ¢, can be estimated by taking
empirical expectations of the estimated ICo(Y | Qo(Fx), G, 1) and ICsra(Y | @1, G)). Specifically,
estimate ¢y, of €y, is given by

c _ Z?:l ICO(YYZ | QO(F ) GTL?M( ))ICSRA(Y | Ql n )
e S ICsrA(Yi | Q10, Gu)ICsraA(Y: | Qun, Gn)T

where Q)1 ,, is the estimate of Q1 (Fx,G). One practical aspect of this adjustment parameter is that
it provides a way of monitoring the goodness of fit of the projection term ICspa(Y | Q1,0 Gr).
Since ¢y, Will be approximately 1 at the best fit of the projection term, one can use this property
to choose the best fit.

5.1 Estimation of Q);(Fx,G) by Monte-Carlo Simulations

In this subsection, we will discuss a Monte-Carlo simulation method to estimate the nuisance
parameter (1 (Fx,G). This approach requires guessing a low dimensional model for the full data
distribution Fx and the censoring mechanism G, respectively. As a result, the corresponding
estimator of the orthogonalized estimating function (10) remains consistent if either of the guessed
models is correctly specified. We will use the longitudinal representation of observed data with the
notation of Section 2 over a discrete time axes (j = 1,---,p) given as

Vo= Xi(1), Xo(1), Au(1), Ag(1), Xy 201)(2); X2 401)(2), Ar(2), A2(2),
.'7)(I,A(p—l)(p%/YZ,A(p—l)( ), A1(p), Az(p).

Define L1(j) = X, 4(;_1)(J) and La(j) = X; 4(j_1)(j), then
Y = Li(1), L2(1), A1(1), A2(1), - -+, L1(p), L2(p), A1(p), A2(p).
Under SRA, the likelihood of the observed data is given by
p
dPra(Y) = [TIAMG) LG = 1), AG = D) fa(L2() | 1a(), LG = 1), AG = 1))

g1(A1(G) | AG = 1), L(5))92(A2(5) | A1(5), AG = 1), L(5))]

where L(j) = (L1(j), L2(j)). Since the likelihood factorizes under SRA, we have that the Fy and
G part of the likelihood are given by

Q) = TLAMG) | LG -1), A6 -1) f[ DTG EG - 1, 4G - 1), @21)
d41) = IO 46- 020D [T ta) | 40, 46 -0.26). e

s
Il
L

The modeling and estimation strategies proposed for the censoring mechanism in Section 2 applies to
both of these likelihood parts. Let (f1,0,, f2,6,) and (g1,5,,92,,,) be parametric or semi-parametric

13
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models for F’x and G part of the likelihood. Let (8 ,,602,) and (71, 72,,) be the maximum
likelihood estimators and Q,, = Q (01 n,02.,) and G,, = G, . ,,, . be the corresponding estimators of
Q(Fx) and G, respectively. Now, one can evaluate the conditional expectations in the projection
terms (18) and (19) under the known law Pg, g, with a Monte-Carlo simulation. Consider a
particular observation Y and let j be fixed. The following is the algorithm for performing Monte-
Carlo simulation on this observation:

e SIMULATE: This step simulates the complete observation from a fixed history. Set b = 1
and m=j+ 1.

1. With history (dA;(5) =1, F1(j)): Set dA;(j) =1 and
(A) Generate Ay(m — 1) from g3, (.| A1(m — 1) =1, A(m — 2), L(m - 1)).
— (B) Generate Ly(m) from fq,, (.| L(m — 1), A( -1)).
— (C) Generate Ly(m) from fag, (.| L1(m), L(m — 1), A(m — 1)).
— Set m = m + 1 and repeat steps (A), (B), (C) until the complete data structure
denoted by Yllj)* is observed.
2. With history (dA1(j) =0, F1(j)):
(A) Generate Ay(m — 1) from g, (- | Ay(m —1) =0, A(m — 2), L(m — 1)).
— (B) Generate Ly(m) from fig, (.| L(m —1), A(m — 1)).
(C) Generate Ly(m) from fyg, (.| L1(m), L(m — 1), A(m — 1)).
— (D) Generate A;(m) from g1, (.| A(m — 1), L(m)).
— Setm = m—I—l and repeat steps (A), (B), (C), (D) until the complete data structure
denoted by Y, b is observed.
3. With history (dA(j) = 1, F2(j)): Set dAz(5) =1 and
(A) Generate Ly(m) from fig, (.| L(m — 1), A(m — 1)).
(B) Generate Ly(m) from foq, (.| L1(m ) L(m — 1), A(m — 1)).
— (C) Generate Ay(m) from gy, (.| A(m — 1), L(m)).
— Set m = m + 1 and repeat steps (A), (B), (C) until the complete data structure
denoted by Y;f is observed.

4. With history (dAz(j3) = 0, F2(j5)):

(A) Generate Ly(m) from f g, ,
— (B) Generate Ly(m) from fy4,
(C) Generate Aj(m) from gy ,,

| Em = 1), A(m - 1).
| Ly(m), L(m — 1), A(m — 1))
1), L(m).
m), A(m — 1), L(m)).
(

— (D) Generate Az(m) from g,

sT12n

E
>AA"\A
s
3
|

— Setm = m—I—l and repeat steps (
denoted by Y; b is observed.

e EVALUATE: Evaluate ICpup- (Y | Fr,Grn) at Y = Yikb’*, k=1,2,i=0,1.
e REPEAT: Repeat the steps SIMULATE and EVALUATE B times and report

2
ICSRA(Y | Ql,ny n = Z [ICDabr 172,* | F’ran) - ICDabr(Yolfé* | F’ran)} dMkan (])
b=1 k=1

tU
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ICspa(Y | @10, Gr)(J) is now an estimate of the projection of ICpu, (Y | F,G) onto T'spaq,; &
Tsraz,j,j =1, --,p. Note that for each observation j runs up to the corresponding maX(Tl, Tg)
This way of estimating the projection terms guarantees that the resulting estimator of the or-
thogonalized estimating function (10) is consistent if either (fi,4,, f2,6,) Or (91,9, 92,4,) is correctly
specified.

5.2 Confidence Intervals

In this subsection, we will briefly discuss the ways of constructing Wald-type confidence intervals
for the proposed one step estimator given in (12). In particular, we will consider the case where we
assume that the model G posed for censoring mechanism is correct. Application of Lemma 8.1 in
Appendix shows that ! is asymptotically linear with influence curve IC*(Y | Q(Fx,G), G, u) —
HIC*Y | Q(Fx,G),G,pn) | T(G)) where T(G) is the tangent space of G for the chosen model.

Therefore, one can use

1>
72 = — IC(Y; nyUIn 0
G n; C(Yi | Qny Gy p15)

as a conservative estimate of the asymptotic variance of ul, and this can be used to construct a
conservative 95% confidence interval for u:

1 G
+1.96—.
l'[/n \/ﬁ
This confidence interval is asymptotically correct if ()., is a consistent estimate of (), i.e. conditional
expectations in the projection terms are estimated consistently. Moreover, it is freely obtained after
having computed pl.

6 Simulations

We performed a simulation study to assess the relative performance of x0, pP% and u!. In our

simulations, we generated bivariate survival and censoring times from frailty models with and
without covariates. Frailty models are a subclass of Copula models. The theory of Copulas dates
back to Sklar (1959) but their application in statistical modeling is a more recent phenomenon
(e.g. Genest and MacKay, 1986; Genest and Rivest, 1993; Oakes, 1989; Clayton, 1978; Clayton and
Cuzick, 1985; Hougaard, 1987). We have two main simulation setups. Below we describe these in
details, and the explicit formulas for data generation is provided in Appendix.

e Simulation I (Informative censoring): We generated binary baseline covariates 71,72 ~
Bernoulli(p) for each pair of subject. Consecutively, both censoring and survival times were
made dependent on these baseline covariates to enforce informative censoring. Survival times
Ty and T; are generated from a gamma frailty model with truncated baseline hazard. This
assumes a proportional hazards model of the type

it | W = w, Z; = 2) = Ao(t)we” ™, i=1,2,

where w represents a realization from the hidden gamma random variable. Truncated ex-
ponential baseline hazard was chosen to ensure that G(t1,t2 | X) > § > 0 Viq,t; in the

15
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support of Fx. Similarly, C', Cy were generated from a gamma frailty model with covariates
71, Zy using a constant baseline hazard. We adjusted the amount of dependence between
survival and censoring times through the coefficient in front of the Zs (8, for (11,71%) and f,.
for (017 Cg))

e Simulation Il (Independent censoring): We generated survival times as in simulation setup I,
but enforced censoring times to be independent of Ty, T5. This simply corresponds to setting
B. = 0 in the conditional hazard functions of C, 5.

Dab

n

6.1 Comparison of ;0 with p

We firstly report the mean squared error ratios for z2? and pC from a simulation study of setup I

for moderate informative censoring in Table 1. The two estimators are evaluated on a 4 x4 grid. We
observe that u® outperforms p2?® at all grid points. This result indicates that our generalization
of the Dabrowska’s estimator is truly accounting for informative censoring as expected.

[Table 1 about here.]

In Table 2, we report relative performance of the two estimators when censoring times are
independent of the failure times i.e. G(.| X) = G(.) (generating from setup II). In this simulation,
when constructing 2, G(. | X) is still estimated by a bivariate frailty model with covariates ignoring
independence structure. We observe from Table 2 that both estimators perform about the same
under this scenario. There is no efficiency loss since our posed model for G(. | X) includes the
independent censoring model as a sub model.

[Table 2 about here.]

Dab

n

6.2 Comparison of p?, pP®" and u!

We compare the performances of the three estimators on a simulated data set of sample size 250
generated from the simulation setup I. We estimated the quantity

E[ICDabT(Y | Fn,Gn) | dAZ'(t),]:i(t)]

by a linear regression model based on covariates extracted from the supplied history F;(¢). This
corresponds to using the regression approach described in Section 5. Covariates such as I(7; < ?),
t, I(T; <t)xT;, Z;i, I(C; <t) x4, t = 1,2 and some interactions with the time variable ¢ are
used and standard model selection techniques are employed. Moreover, the conditional hazards
in the projections are estimated by fitting a cox-proportional hazards model. Survival function
estimates at different grid points are given in Table 3. Firstly, since there is informative censoring,
10 outperforms p”? at all grid points. Secondly, we observe that the one step estimator sl
provides some improvement over the initial estimator 2 (i.e. the change in the estimator is in the
desired direction), however it is not big of a improvement overall. This is not a surprising result if
we look at the estimated adjustment parameter, ¢, ,, reported in this table. ¢, , is away from
1 at all grid points indicating that we are doing a poor job when estimating the projections (i.e.
nuisance parameter 1(Fx,G) is misspecified). It would be worthwhile to put effort in making the
projection constant close to 1 with real data applications. We also report the conservative 95%
intervals for the one-step estimator in column 6 of the Table 3.
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[Table 3 about here.]

7 Discussion

We firstly presented a general method of constructing mappings from full data estimating functions
to observed data estimating functions which results in estimators asymptotically equivalent to a
specified RAL estimator. This is a powerful method and application of it in general bivariate
right censored data structure resulted in a generalized estimator of Dabrowska’s (1988) estimator.
This proposed generalized estimator overcomes the deficiencies of the commonly used Dabrowska’s
estimator by allowing informative censoring and incorporating covariate processes. Secondly, we
constructed an orthogonalized estimating function that has the double robustness property. We
mainly considered the scenario where the censoring mechanism is specified correctly and constructed
a one-step estimator that improves on our initial estimator. We have shown with a simulation
study that generalized estimator is superior to Dabrowska’s estimator when censoring mechanism
is estimated consistently and the results are dramatic in favor of the generalized estimator when
there is dependent censoring. We used the one-step estimator together with Dabrowska’s estimator
and generalized Dabrowska’s estimator on a simulated data set that included informative censoring.
In this example dataset, one-step estimator did not improve much on the generalized Dabrowska’s
estimator since we did a poor job on estimating the projections onto T'sp4. We were able to monitor
this by the estimated adjustment parameter. One future research direction would be implementing
the Monte-Carlo simulation method of Section 5.1 for estimating the projection terms. This would
provide the desired flexibility to misspecify G(.| X).
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8 APPENDIX

Both the influence curve lemma and the asymptotic linearity theorem of Subsections 8.1 and 8.2
require the following Hilbert space terminology: L2(Pry ) is the Hilbert space of functions of Y
with finite variance and mean zero endowed with the covariance inner product < vy, v9 > Pry 6=

ﬂ/f'UIUZdPFX,G-

8.1 Influence curve of a asymptotically linear estimator when cen-
soring mechanism is estimated efficiently

The following lemma is from van der Laan et al. (2000).

Lemma 8.1 LetY be observed data from Pr, o where G satisfies coarsening at random. Denote
the tangent space for the parameter Fx with Ty (Pr, ). Consider the parameter o which is a real
valued functional of Fx. Let i, (G) be an asymptotically linear estimator of p with influence curve
1Co(. | Fx,G) which uses the true G. Assume that for an estimator G,

n(G) = 11 = 1 (G) = i+ B(G) = D(G) + 0p(1/3/7) (23)

for some functional ® of G,,. Assume that ®(G,,) is an asymptotically efficient estimator of ®(G)
for a given model {G,, : n € I'} with tangent space To(Pr, ). Then, pu,(G,) is asymptotically
linear with influence curve

ICY(. | Fx,G) =1Cy(. | Fx,G) = IL(ICo(. | Fx,G) | T2(Pry.q)).

Proof: We decompose L3(Pry ) orthogonally in T1(Pry ) & Ta(Pry.c) ® T (Pry,c), where
T (Pry,c) is the orthogonal complement of Ty (Pr, ¢) @ T2(Pry.c). By (23), pn(Gr) is asymp-
totically linear with with influence curve IC = ICy + IC,,,, where IC),, is an influence curve
corresponding with an estimator of the nuisance parameter ®(G) under the model with nuisance
tangent space 11 (Pry.q). Let ICy = ag + bo + co and 1Cyy = @py + by + €5y according to the
orthogonal decomposition of Lo(Pr, g). We will now use two general facts about the influence
curves. Firstly, an influence curve is orthogonal to the nuisance tangent space, and secondly ef-
ficient influence curve lies in the tangent space. Since IC), is an influence curve of ®(G) in the
model where Fx is not specified, it is orthogonal to 71(Pr, ), i.e. a,, = 0. Moreover, since
®(G,) is efficient, 1C),, lies in the tangent space 15(Pr, ) and hence ¢, = 0. We also have that
ICy + ICy, is influence curve of p,(G,) thus it is orthogonal to T5(Pry ), i.e. bo + by, = 0.
Consequently, we have that

IC1 + IC,, = ag + co = I(ICy | T3 (Pry ) = 1Co — N(ICq | To(Pry )

This completes the proof. O

8.2 Asymptotics assuming consistent estimation of the censoring
mechanism.

The following theorem (van der Laan, 2002) provides a template for proving asymptotic linearity
with specified influence curve of the one-step estimator ), given by (7, 12) (i.e., set ¢pypn = €y = 1)

18

http://biostats.bepress.com/ucbbiostat/paper109



or of the one-step solution of the estimating function (20) (if one uses the adjustment constant ¢, ).
The tangent space T3 = T5(Pr, ) for the parameter G is the closure of the linear extension in
L&(Pr, ) of the scores at Pr, ¢ from all correctly specified parametric sub-models (i.e., sub-models
of the assumed semiparametric model G) for the distribution G.

Theorem 8.1 Consider the observed data model M(G) = {Pr,.¢: Fx € MT . GeGC G(SRA)}.
Let Yi,...,Y, be n ii.d. observations of Y ~ Pp, ¢ € M(G). Consider a one-step estimator of
the parameter u € R' of the form pl = p® +c ' P IC(- | Qn, Gy Cnnny Dhy, (18, pn)). We will refer
to ;" IC(+ | Quny Gy Cruny Dy (12, p1)) also by IC(+ | Quy Gy Couny €y Dhyy (B2, pr)). Assume that

the limit of IC(.| Qu, Gny Cruny Dh, (12, pn)) specified in (ii) below satisfies:
EG(IC(Y | Q17Gvcnu7Dh(' | ,u,p)) | X) = Dh(X | :uvp) Fx —a.e. (24)
Di(-|uyp) € Toh(Fx). (25)

Assume (we write f ~ g for f =g+ op(1/y/n))

Cglpn {IC( | Qm Gm Cnu,m; Dhn (N?m pn)) - IC( | Qm Gm Cnu,n;s Dhn(:u7 pn))} ~p— N?z' (26)

and
EPFX,GIC(Y | @n, G, Cnuns Dy (15 pn)) = OP(l/\/ﬁ)' (27)
where the G-component of p, is set equal to G as well.
In addition, assume

(i) IC(- | Qny Gy Cons €ny Dy, (+ | 12, pn)) falls in a Pp, g-Donsker class with probability tending
to 1.
(ii) For some (h,Q") we have:

| IC (- | @ny Gy €y €y Dy (- | N?m pn)) — IC(- | Q' G, e, Di(- | 1, p)) HPFX,G_> 0,
where the convergence is in probability. Here (suppressing the dependence of the estimating functions
on parameters) c,, = (I1Co, IC] MIC, ICT V7Y is such that ¢, [Cy., equals the projection of 1Cy
onto the k-dimensional space < ICpy;,7=1,...,k > in Li(Pry G)-
(iii) Define for a G4
O(Gh) = Pry cIC(- | QY, G, enus € Di(p, ).
For notational convenience, let
1C(G) = IC(-| @n, G, crupny Cny Dy (15 pn))
1C(G) = IC(-| Q" G, eausc, Duln, p))-
Assume
Pr, c{1C,(G,) — 1C,(G)} = ®(G,) — ®(G).

(iv) ®(G,,) is an asymptotically efficient estimator of ®(G) for the SRA-model G containing the
true G with tangent space 1T5(Pr, ¢) C Tsra(Pry.q)-

Then pl is asymptotically linear with influence curve given by
paiEd H(IC(' | Q17 G, cpus €, Dh(' | My P)) | TZJ_(PFX7G))‘

If Q' = Q(Fx,G) and IC(Y | Q(Fx,G), G, couy Di(- | pt,p)) L T2(Pry ), then this influence
curve equals IC(-| Q(Fx,G),G, cpu=1,¢, Dy(, p)).
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8.3 Proof of Theorem 8.1.

For notational convenience, we will give the proof for ¢,,, = 1 and use appropriate short hand
notation. We have

nho= 0+ e P {IC(Qny Gy Diy (13, 1)) = 1C (@ Gy D ()
+6 Pl C(Quy G, Dy (10, 1))

By condition (26) the difference on the right hand side equals u — 2 + op(1/y/n). Thus we have:

M?l’L —p o= (P P)C;IIC(QmeDhn(van))
-I-C;lPIC(QmeDhn(,“’/?n))-

For empirical process theory we refer to van der Vaart and Wellner (1996). Condition (i) and
(ii) in the theorem imply that the empirical process term on the right hand side is asymptotically
equivalent with (P, — Pry, ¢)c” IC(-| @', G, Di(u, p)). So it remains to analyze the term

Cr_zlPIC(Qm G, Dp, (,u, pn))

Now, we write this term as a sum of two terms A + B, where

A = Cr_LlP{IC(QmGnthn(:uvpn))_IC(Q17G7Dh(,u7p)}
B = C;IPIC(leGaDh(va))a

By (24) and (25) we have B = 0. As in the theorem, let

1C,(G) = IC(-| Qn, G, Dp, (1, pu(G)))
IC(G) = IC(-| Q" G, Di(u, p))-

We decompose A = A; + Ay as follows:
A= Pp, c{I1C,(Gr) — IC(G)} = Pry, c{I1C,(G) — IC(G)} + Pry o{I1C,(G,) — IC,(G)}.
By assumption (27) we have that 4y = op(1/4/n). By assumption (iii)
Ag = 93(G) — P2(G) + op(1/4/n).

By assumption (iv), we can conclude that pl is asymptotically linear with influence curve IC(- |
QY, G, ¢, ey Dilpt, p)) + ICpuis, where IC,,;5 is the influence curve of ®3(G,). Now, the same
argument as given in the proof of Lemma 8.1 proves that this influence curve of ul is given by:

H(IC( | Q17G7C7 Cnuth(,uho)) | TQJ_)

This completes the proof. O
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8.4 Data Generation For The Simulation Study

Let W be a gamma random variable with mean 1 and variance a;. Let Z; and Z3 be Bernoulli
random variables with probability p. We assume the following proportional hazards model for T}
and T5:

/\i(t | W=w,7;,= Zi) = /\07T(t)w€ﬁt2i, 1=1,2,

where w represents a realization from the hidden gamma random variable W. The baseline hazard
Ao,7(t) is set to the hazard of a truncated exponential distribution and is given by

et
M(t) = —+——=

_ e—)\t'r ’

where A; is the rate and 7 is the truncation constant of the distribution. The bivariate distribution
of Ty and T3 conditional on Z = (71, Z3) is given by

_1
S(tl,tg | Z) = (Sl(tl | Z)_at + Sg(tg | Z)—Olt — 1) AL (28)
where
) Z —a -
Si(t]7) = (1+ e ZiNg(t)) 2, i=1,2.
We use a similar frailty model with constant baseline hazard, Aoc(t) = A, for the censoring

mechanism and denote the variance of the corresponding hidden gamma variable by a.. We now
provide the explicit formulas for generating data from the above defined structures. Let Uy, Us be
random draws from uniform distribution on the interval [0, 1]. Let Z; and Z; denote random draws
from Bernoulli(p). Then, Ty given (71, Z3) and Ty given (T4, Z1, Z3) can be generated as

(1 =U) -1
¢1 - ozteﬁtzl 3

o 1 log(l—e‘*t"')—qﬁl — T
T = —/\—tlog {e( )—I—e },

ap _O%

Py = [Ul STy | Z0) T = Si(T | Zy) T + 1] )

_ % -1
¢3 - &teﬁtz2 3
T, = —ilog {e(log(l—e—kt-r)_qg?)) + e—/\tT} ]

At

Similarly, we generate the censoring times Cy given 7y, Z3 and Cy given (Cy, Z1, Z3) as follows

1 [a-Uy)e -1
Cl - A_c [ aceﬁczl ] )

1

Qc

¢4 = [U;mSl(Cl | Zl)_ac — 51(01 | Zl)_ac +1 ,

1OHFHCS 1

C —_—
2 Ao agePeZ2
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8.5 Computational Remarks

We will now go over a few computational details that are required for estimation of G(. | Z). R
function coxph is used to estimate G/(. | Z) by a frailty model. This is a straight forward procedure
and is explained quite well in the help menu of R. Below we provide a piece of code for extracting
cumulative baseline hazard function from the R objects generated by coxph. datafr is a data frame
of the data.

fral_coxph(Surv(time,cstatus) “frailty(id)+strata(strat)+Z,data=datafr)
fral.sf_survfit(fral) #survfit gives the survival estimates at
#uncensored points with mean covariates.

fral.sum_ summary(fral.sf)

Si_frail.sum\$surv[fral.sum\$strata=="strat=0"] #P(T_1 >= tt1 | Z_1)
S2_frail.sum\$surv[fral.sum\$strata=="strat=1"] #P(T_2 >= tt2 | Z_2)
tti_fral.sum\$time[fral.sum\$strata=="strat=0"]#tt1
tt2_fral.sum\$time[fral.sum\$strata=="strat=1"]#tt2
alph_frail$history\$"frailty(id)"\$theta #extracts the variance of the gamma frailty.

#Extracting the cumulative baseline hazard at ttl and tt2 including time O:

ch1_c(0,(S1"(-alph)-1)/(alph*exp(fral\$coef*mean(Z1))))
ch2_c(0,(S27(-alph)-1)/(alph*exp(fral\$coef*mean(Z2))))

Once we have the estimates of the baseline cumulative hazard for various time points, we can
estimate G/(. | Z) using eq. 28.

8.6 PI‘OViIlg E ([CD(Y | F,G) | X) = I(Tl 2 tl,TQ 2 tQ) — S(tl,tQ)

We are going to first show that E(ICpa, | X) = I(Ty > t1,Ty > t3) — F(t1,t2) where ICpgy, is
the influence curve of Dabrowska’s (1988) estimator (without any modification) and X = (13, 1%).
Then, it is easily seen that conditional expectation of modified Dabrowska’s influence curve given X
also reduces to I(Ty > ty,Ty > t3)— F(t1,t). Note that we are using F(t1,t3) = S(¢1,12). Basically,
G(. | X) terms in denominator and numerator cancel out. Influence curve of Dabrowska’s bivariate
survival function estimator in the random censoring model is given by

IC(t1,t2) =
_ 0Ty edu,Ay=1)— I[(Ty > w)P(Ty €du | Ty > u
Fits, 1) _/ (T3 1 =1 - I(Th > w)P(Ty | Ty > u) (29)
0 P(leu)
~ /ta I(Ty € du, Ay =1) — I(Ty > u)P(Ty € du | Ty > u) (30)
P(TQ>U)
% /fl/f2ITleduT2€dvA1_1A2:1) (31)
P(Th > u, Ty > v)
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B /tl/tZ’I(leu,TQZv)P(]}Edu,TQEdv|T12u,T22v) (32)
P(Ty > u, Ty > v)

B /tl /t2 I(Ty € du, Ty > v,A1~: 1)P(£F2 Edv|Ty>u,Ty > v) (33)
P(Ty > u, Ty > v)

N /tl/t2 J(TIZU,TQZU)P(TIeduu}Zu,ngv)P(TQEdMTIzu,TQZU) (34)

P(Ty > u, Ty > v)

- /tl/t2]T1>uT2€dv Ao=1)P(Ty €du | Ty > u, Ty > v) (35)

P(T1 >u T2>v)

tr 2 J T1 > U,TQ > ?J)P(Tl € du | T > u,Ty > ’U)P(TQ € dv | T >u,Ty > ’U)
n / / L L .(36)
P(Ty > u, Ty > v)

Firstly, we will show that E(IC(ty,t2) | X) = I(Ty > t1, Ty > tg) — F(t1,t2) where X = (T1,T3).
We will take the conditional expectations of the terms (29), (30), (31), (32),(33), (34), (35), (36)
separately.
E /tlI(TlEdu,Alzl)—I(leu)P(TlGdU|T12’lL)X

0 P(Tl Z ’U)

w BT € du, Ay =1) | X| o B[I(Ty > u) | X| P(Ty € du | Ty > u)
- _/0 P(Ty > u) /0 P(Ty > u)

W [(Ty € du)P(CL > u| X) /tl Ty >uw)P(Cy>u| Ty >u)P(Ty € du | Ty > u)
0 P(leu)P(ClzzMTlZu) 0 P(leu)P(Clzu|T12u)

Term (29):

(i< ty) 1 u=hnh
T F(T,0) T F(u,0)],_,
(T <t) 1
B F(Ty,0) ~ F(Ty Aty,0)
L Mg ISt I(Tixt) o Hhih)
F(T,0) F(Ty,0) F(t1,0 - F(t1,0)
Term (30):
E _/t2I(TQ6dU,AQZ1)—I(TQZU)P(T2€d'U|T2Z’U) X
0 P(T, > v) :
o BI(Tyedv,Aa=1)| X| 62 E[I(Ty>v) | X| P(Ty € dv | Ty > v)
- _/0 P(Ty > v) /0 P(Ty > v)

t2 [Ty € du)P(Cy > v | X) /t2 [Ty > 0)P(Cy>v | Ty > v)P(Ty € dv | Ty > v)
0 P(TQZ’U)P(CQZ’UlTQZU) 0 P(TQE'U)P(CQZ'U|T22'U)

B I(T2 g t2) 1 ’U:Tg/\l‘g
B F(0,T5)  F(0,v)],_0
I(T < 12) 1

= _4s . 1
F0.T;) | F0.Ts A %)
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_ _I(T2§t2)+I(T 2 < ) ](T2Zt2)_1:I(T2Zt2)_1
F(07T2) ( T) F(Oth) F(07t2)
Term (31):
/fl/f2ITleduT2€dvA1_1 yAg=1) X
T1>’ZL T2>’U)
t1 s B TleduTQdeAl_lAg_lﬂX}
N / / P(T1>UTQZU)
B /t t2 I(Ty € du, Ty € dv)P(Cy > u,Cy > v | X)
N 0 PT1>U,T2>’U) (ClZ'U7CQZU|TIZ'U,TQZ'U)
. (Tl < tl,TQ < tg)
- F(Tl,Tg) '
Term (32):

E /tl/t2 I(TlZU,TQZ’U)P(TlEdu,TQEd’U|T1Z’U,TQZ’U) X
P(Ty > u, Ty > v)
# tQE{I(leu,Tng)|X}P(T1€du,T2€dv|T1zu,Tzzv)

A P(Ty > u,Ty > v)
J

1t I(Tl > u, Ty > ’U)P(Cl > ’U,CQ > v | /Y)P(Tl € du,Tg € dv | T >u,Ty > ’U)
P(Tl >u,t2 Z’U)P(Cl Z‘U,CQZ’UlTl Z‘U,TQZ’U)

1ATy /tQ/\TQ F du d'U)

1
1

g
- -
g

Term (33):

E /tl/t2 I(TledU7T22U7A1:1)P(TQEdU|T1Z‘U,TQZ’U) e
0 P(T1>UT2>U) }
/tl/tQE TleduT2>vA1_1)|X} (TQEd’U|T12U,T22’U)
B 0

0 P(T1 > u,Th > v)
B horte (T € du, Ty > v)P(Cy > u,Cy > v | X)P(Ty € dv | Ty > u, Ty > v)
N /0 0 Py >u, Ty >v0)P(Cy > u,cg > v | Ty > u, Ty > v)
B L [(Th <th, Ty >v)P(Ty €dv | Ty >T1,T; > v)
B /0 P(Ty > Ty, ta > v)

BAT> BTy, dv)
= I <t —_—l
( L= 1)/0 F(ThU)Q

v=t2ATy
= —ITi <t) =———
. GEPRESTITrTES
I(Ty < ty) a1 I(Ty <ty) 1Ty <t,Ty<ty) I(Ty <t1,Ty > 1) 4 I(Th <ty)
b N by ) F(1, 1) F(T1,t2) F(11,0)
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Term (34):

E /7“1/7‘L2 I(TlZU,TQZU)P(TlEdU|T1Zu7t22’l))P(TQ€d’U|T12U7TQZ’U) e
P(le’lL,TQZU) :
# mEWﬂzmﬂzmLﬂPmemﬂﬂszZMHRGMMﬂzmﬂzw

N / / P(leu,TQZv)

/tl/t2 I(TlZ‘U,TQZ’U)P(ClZU,CQZU|/Y)P(T1€(1U|T1Z’U,TQZU)P(TQEd’UlTlZU,TQZU)

P(Ty > u, Ty > v)P(Cy > u,Cy > v [ Th > u, Ty > v)

/tl/\Tl/tW\T?qu ,0) F(u, dv)

= u .

,0)3

Term (35):

E /tl/t2 Ty > u,Ty € dv, Ay = 1)P(Ty € du | Ty > u, Ty > v) ¥
0 0 P(T1>’ZLT2>U)
n/@E (Ty > u, Ty € dv, Ay = 1) | X| P(Ty € du | Ty > u, Ty > v)

/0 0 P(T, > u, Ty > v)
B t 7“2IT1>uT2€dv) (Cr>2u,Co>v | X)P(Th €du|Ty > u, Ty > v)
N /0 0 P(Ty > u, Ty > v)P(Cy > u,Cy > v | Ty > u, Ty > v)

/tl Ty > u, Ty <ta)P(Th € du | Ty > u, Ty > T3)

0

P(Ty > u,T; > Ts)

AT F(du, T)
= II; <t —_— =
( 2= 2)/0 F(‘U,T2)2
1 u=t1AT;
= —I{I<ty) =——
( 2= 2) F(u7T2) u=0
I(Ty <t,) I(Ty <ty)  I(Thy <t1,T3<ty) I(Th >t,,T; <ty) + I(T2 < ty)
F(T1 Nty TQ) F(O, Tg) F(Tl, Tg) F(tl, Tg) (0 T. )

Term (36) (same as the term (34)):

ELﬁvﬁﬂﬁZ%ﬂZ@HﬂéwWﬂZMBZ@HRGMVHZMEZ@X
0 0 P(Tl Z‘U,TQZ’I])
# hE ﬂ>mﬂ2mLﬂPmemﬂﬂszEMHﬂewﬂﬂzmﬂzm
/ / P(le’lL,TQZU)
. /tl/t2IT1ZU,TQZ’U)P(ClZU,CQZU|/Y)P(T1€(1U|T1Z’U,TQZU)P(TQEd’UlTlZU,TQZU)
- P(Ty > u, Ty > v)P(Cy > u,Cy > v [ Th > u, Ty > v)
/tl’\Tl /t2AT2 F( du v) (u,dv)

Note that
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Then, the sum of the terms (32), (34), (36) equals
ATy (AT du ,dv) _F(du,v)F(u,dv)
[ o
(u,v)? F(u,v)3
t1 ATy ta ATy 1 1
B / / ( (F(u, v)))

t1 ATy 1 1 1
- /0 du( F(u, tg/\Tg)_F(mO)}
1 1 1 1

F(LATy, t; ATy)  FELATLO0)  F(0,t5 AT) + F(0,0)

I(Th <1, Ty <ty)  I(Ty >t, Ty <ty) 111 <t1,Ty >t) I(Th > 11,1y > ty)

F(Ty,Ty) F(ty,Ty) F(Ty,t2) F(ty,ts)
IT1<ty) I(T1>t) I(T2<ty) 1(T22>1)
COFP(Ty,0)  F(t,0)  F(0,T,)  F(0,ty)

Bringing all the terms together we obtain

. = I(Th > th) I(T3 > 13) (T <14, Ty < 1)
E(IC(tl,tQ) |/X) — F(tl,tz){m—l W— F(TI Tz)

I(Th <1, Ty <ty) I(Th <t1, Ty >ty)  I(T) <t)
F(T1,T3) F(Ty,t9) F(Ty,0)

I <t,Ty <ty) 1Ty >t1,T5 <ty) I(T5 <ty)
P(T,T3) F(t1,Ts) F(0,T3)

+ I <t,Ty <ty) 1Ty >t,T5<ty) I(Th <t1,Ty >ty) I(Th > 11, Ty > ty)

F(Ty,T,) F(ty1,Ts) F(Ty,t3)

F(Ty,0) F(t1,0) F(0,Ty)  F(0,ty)
= I(Th > t1,Ty > t3) — F(t1,t2).

I(T1<t) 1(T1>t) 1(T2<ty) 1(T2>t) 1}

This completes the proof. O
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Table 1: MSE,,/MSE,pa based on 200 simulated data sets of sample size 250. (73, 73) and
(C1, Cy) are generated from frailty models with covariates (71, Z2) ~Bernoulli (0.5). G(. | X)
is estimated using a bivariate gamma frailty model with covariates. Correlations between T}

and C; and Ty and Cy are approximately 0.4. P(T1 < C1) = 0.65 and P(Ty < C3) = 0.65.

| | =01 [ =1 h=4 | t,=10 |

ty =0.1 | 0.961543 | 0.8015517 | 0.2000056 | 0.2023185

ty=1 10.9222071 | 0.6194325 | 0.2619613 | 0.2579991

ty =4 |0.1769921 | 0.3169093 | 0.1994758 | 0.2131806

ty =10 | 0.2335622 | 0.3569389 | 0.2638717 | 0.2433467
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Table 2: MSE,,/MSE,pa based on 200 simulated data sets of sample size 250. (T}, T,) are
generated from frailty models with covariates (71, Z3) ~Bernoulli (0.5). G(. | X) is from a
bivariate gamma frailty model (no covariates). G(. | X) is estimated using a bivariate gamma
frailty with covariates Z. Correlations between T} and ' and T and C are approximately

0. P(T1 < C1)=0.70 and P(Ty < Cy) = 0.70.

| [ 44=005 ] t4=02 | 4, =3 [ 4, =8 |

ty =0.05 ] 0.9990788 | 0.9985483 | 0.9702160 | 0.9813311

ty=10.2 | 0.9924038 | 0.9946938 | 0.9650496 | 0.9741110

ty=3 | 0.9814260 | 0.9789798 | 0.9504253 | 0.9650510

ty=8 ]0.9806082 | 0.9821724 | 0.9665981 | 0.9789226
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Table 3: pPe, pl, pl estimates of P(Ty > t1, Ty > t3) with 95% confidence interval calculated

for u! on a data set simulated from simulation setup I.

(tl, tg) P(Tl Z tl, T2 2 tg) /L,?ab /12 IM,}L 95% CI of M,}L Cnu,n

(0.1,0.1) 0.949409 0.974827 0.974531 0.9742604  (0.9381157,0.9981405) 2.510069
(0.1,1.0) 0.794018 0.826173 0.797576  0.7961396  (0.7290466,0.8632327) 2.300677
(0.1,4.0) 0.594459 0.720699 0.605632  0.6028978  (0.4939351,0.7118605) 2.361191
(0.1,10.0) 0.460084 0.658725 0.541393  0.5387704  (0.4232607,0.6542801) 2.404321
(1.0,1.0) 0.674216 0.696585 0.657125  0.6601110  (0.5843612,0.7298903) 2.460159
(1.0,4.0) 0.509527 0.620734 0.528965 0.5232135  (0.4216446,0.6247825) 3.649437
(1.0,10.0) 0.394196 0.571199 0.474861 0.46910810 (0.3595429,0.5786733) 3.441779
(4.0,4.0) 0.390691 0.539030 0.363114  0.3766390  (0.2439028,0.4823266) 2.525892
(4.0,10.0) 0.302516 0.482808 0.320330 0.3077152  (0.1829420,0.4324884) 2.539978
(10.0,10.0) 0.235763 0.453462 0.306258  0.2954581  (0.1740513,0.4168649) 3.399358
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