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Statistical Evaluation of Evidence for Clonal
Allelic Alterations in array-CGH Experiments

Colin B. Begg, Kevin Eng, Adam Olshen, and E S. Venkatraman

Abstract

In recent years numerous investigators have conducted genetic studies of pairs
of tumor specimens from the same patient to determine whether the tumors share
a clonal origin. These studies have the potential to be of considerable clinical
significance, especially in clinical settings where the distinction of a new primary
cancer and metastatic spread of a previous cancer would lead to radically different
indications for treatment. Studies of clonality have typically involved comparison
of the patterns of somatic mutations in the tumors at candidate genetic loci to see
if the patterns are sufficiently similar to indicate a clonal origin. More recently,
some investigators have explored the use of array CGH for this purpose. Standard
clustering approaches have been used to analyze the data, but these existing sta-
tistical methods are not suited to this problem due to the paired nature of the data,
and the fact that there exists no “gold standard” diagnosis to provide a definitive
determination of which pairs are clonal and which pairs are of independent origin.
In this article we propose a new statistical method that focuses on the individual
allelic gains or losses that have been identified in both tumors, and a statistical test
is developed that assesses the degree of matching of the locations of the markers
that indicate the endpoints of the allelic change. The validity and statistical power
of the test is evaluated, and it is shown to be a promising approach for establishing
clonality in tumor samples.
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SUMMARY 

 
In recent years numerous investigators have conducted genetic studies of pairs of tumor 
specimens from the same patient to determine whether the tumors share a clonal origin. 
These studies have the potential to be of considerable clinical significance, especially in 
clinical settings where the distinction of a new primary cancer and metastatic spread of a 
previous cancer would lead to radically different indications for treatment. Studies of 
clonality have typically involved comparison of the patterns of somatic mutations in the 
tumors at candidate genetic loci to see if the patterns are sufficiently similar to indicate a 
clonal origin. More recently, some investigators have explored the use of array CGH for 
this purpose. Standard clustering approaches have been used to analyze the data, but 
these existing statistical methods are not suited to this problem due to the paired nature of 
the data, and the fact that there exists no “gold standard” diagnosis to provide a definitive 
determination of which pairs are clonal and which pairs are of independent origin. In this 
article we propose a new statistical method that focuses on the individual allelic gains or 
losses that have been identified in both tumors, and a statistical test is developed that 
assesses the degree of matching of the locations of the markers that indicate the endpoints 
of the allelic change.  The validity and statistical power of the test is evaluated, and it is 
shown to be a promising approach for establishing clonality in tumor samples. 
 
Keywords: clonality; array CGH; permutation test.
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1. INTRODUCTION 

 

Clinical investigators frequently conduct experiments to determine whether 

tumors share a clonal origin. That is, one wishes to determine if the tumors are derived 

from the same “clonal” cell. In addition to informing the interpretation of experiments 

about the mechanistic development of cancers, comparisons of samples of cells from 

pairs of tumors from the perspective of clonality can have important clinical implications. 

For example, a patient treated effectively for a localized primary head and neck cancer 

may at a later date present with a solitary lung nodule. If the nodule is a localized second 

primary lung cancer it can be treated effectively by surgery, though lung surgery is risky 

and very invasive. On the other hand, if the tumor is a metastasis from the head/neck 

primary, the prognosis of the patient is necessarily poor, as the cancer will almost 

certainly have also metastasized to other parts of the body (even though these other 

metastases may not yet be detectable). In this case invasive surgery would impose 

needless risks and morbidity on a patient who will have relatively little time left to live.  

 

Currently, pathologists make this call on the basis of histopathologic 

characteristics, but this is not a definitive strategy. Recently, many investigators have 

begun to study the issue by using molecular profiling of the tumors. For example, 

investigators studying lung cancer have used microsatellite markers to distinguish 

microsatellite instability (Huang 2001, Dacic 2005, Geurts 2005, Leong 1998, Shin 2001) 

and several investigators have also used mutational analysis of the important cancer 

genes p53 and/or K-ras (Hiroshima 1998, Holst 1998, Lau 1997, Shimizu 2000, Shin 

2001, Murase 2003, Matsuzoe 1999, Sozzi 1995, van Rens 2002). Similar studies have 

been conducted to distinguish contralateral breast cancers fron metastases, and in other 

cancer sites (Imyanitov 2002, Regitnig 2004, Kollias 2000, Janschek 2001, Tse 2003, 

Schlechter  2004, Stenmark-Askmalm 2001, Chunder 2004). These studies have 

evaluated clonality in a range of clinical settings, including the comparison of 

synchronous or metachronous multiple primaries, comparisons of primaries with 
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metastatic tumors, and studies of multiple potential clones within tumors that harbor 

multiple histologies. By studying the mutational pattern, one can establish a genetic 

fingerprint of the tumor. When the mutational profiles of two apparently independent 

primary tumors from the same patient are compared, it is possible in principle to see 

whether these genetic fingerprints are sufficiently similar that we can determine with 

confidence that they share a clonal origin, i.e. the second primary is really a metastasis 

from the first primary.  

 

The comparison of mutational profiles of tumors to determine clonality is a 

challenging statistical problem, and a number of authors have proposed techniques for 

this purpose. The fundamental goal is to examine the profiles of the two tumors to see 

whether the evidence favors a clonal versus an independent origin for the tumors. In 

earlier work we examined candidate statistical tests for this purpose, based on the setting 

in which the frequencies of mutational events (usually LOH) at candidate loci are 

assessed for correlation, with a view to determining if the correlation exceeds the level 

that is plausible on the basis of chance (Begg et al. 2006). These tests take advantage both 

of the information in the correlation of mutational events and the extent to which 

common mutations at the same locus occur on the same parental allele. The tests have 

been shown to be reasonably powerful provided that information is available from a 

considerable number of candidate genetic loci that experience mutational events with 

reasonably high frequency in the cancer under study, and that the signal is relatively 

strong, i.e. the preponderance of the mutations occur in the clonal phase of development. 

Other authors have approached this problem in different ways. For example Sieben et al. 

(2003) and Brinkmann et al. (2004) both construct likelihood ratios to distinguish the 

evidence favoring the two hypotheses, though the construction is somewhat different in 

each case. A different approach was advocated in earlier work by Kuukasjarvi et al. 

(1997), who proposed a measure of clonal relatedness based on the frequency of 

occurrence of concordant mutations in the tumors, and this measure has been used by 

other authors such as Jiang et al. (2005) and Goldstein et al. (2005a,b).  
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The preceding methods are all based on the setting in which we observe mutations 

in a pre-specified set of candidate markers in each tumor, and we evaluate the collective 

concordance of these markers. Since the common somatic mutations in tumors are 

frequently losses or gains of segments of DNA, the issue of clonality can be studied for 

the entire genome using array technology, specifically array comparative genomic 

hybridization (ACGH) (Pinkel et al. 1998). By scanning the entire genome for copy 

number changes this technology has the potential to provide a more comprehensive 

comparison of the two tumors, and to provide insights beyond those available from 

studies of LOH at individual markers. In particular, ACGH can detect both copy number 

gains and losses, and it can pinpoint the places in the genome where these gains and 

losses begin and end, although it does not distinguish the specific allele on which the loss 

or gain occurs.  Despite the potential precision with which a specific allelic gain or loss is 

determined, statistical methods used in this context have employed strategies that simply 

count mutational events, as in the methods described above for studies based on 

candidate loci. For example, investigators have used the data from the arrays to define the 

presence or absence of, say, LOH at the level of the chromosome arm (Jiang et al. 2005) 

or chromosome band (Teixeira et al. 2004) in order to define the unit of analysis for the 

use of statistical tests or clustering algorithms, or for the computation of the clonal 

relatedness index. 

 

Our strategy in this article is to take advantage of the aspect of ACGH data that 

distinguishes the nature of the information from that obtained in studies involving 

candidate genetic loci, namely the granularity of the information regarding the allelic 

gains and losses. This feature of the data provides the ability to pinpoint the start and stop 

regions of these allelic changes, with a view to determining an exact match between the 

mutations on the two tumors. In so doing, our method offers the potential to establish 

clonality on the basis of a single allelic gain or loss simply on the basis of the closeness 

of the match, regardless of the possible absence of concordance of bystander somatic 

events that may have occurred after the two tumors developed as separate clones. Even 

though a clonal allelic gain or loss is necessarily identical on both tumors, noise in the 

measurement of the CGH markers results in statistical uncertainty regarding the precise 
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start and stop points of the allelic change. The goal of our approach is to see if the 

estimated start and stop points of allelic events on the two tumors that appear to be 

possibly clonal are sufficiently close that events of such a degree of similarity are 

unlikely to have occurred by chance. The construction of a valid statistical test for this 

purpose is challenging for several reasons, including the fact that gains or losses of 

independent origin are likely to be correlated, since their locations on the genome do not 

occur independently. 

 
 

2. METHODS 
 

Array comparative genomic hybridization is a technique for determining allelic 

copy number changes across the entire genome.  Samples of tumor tissue and normal 

tissue are differentially labeled and co-hybridized to a slide containing genomic markers 

with a view to determining regions of allelic loss or gain in the tumor.  Several array 

techniques have been developed to increase resolution in order to permit identification of 

relatively small allelic changes (Pinkel and Albertson 2005).  The result is a linear map of 

marker values which represents the copy number in the tumor at sequential locations 

across the genome.[The measurements are relative but they reflect the absolute copy 

number of the tumor.]  These marker values are, of course, subject to random variation, 

and so the determination of regions of gain or loss requires statistical analysis, and 

several techniques for this purpose have been developed (reviewed in Lai et al. 2005). 

 

  Our goal in this article is to compare the ACGH profiles from two tumors in the 

same patient, with a view to determining whether the tumors arose independently, or 

were derived from a single clonal cell that experienced one or more of the observed 

allelic changes.  If there are “clonal” mutations in the two tumors then these are 

necessarily identical.  Thus the estimated regions of gain or loss must be very similar in 

the two tumors, though estimates of the precise markers at which the regions of gain or 

loss begin and end will not necessarily be identical, due to random fluctuations in the 

marker values, and the resulting imprecision of the methods in identifying the regions of 

gain or loss.   
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An example of data from two tumors from the same patient is provided in Figure 

1. The horizontal lines show estimated regions of constant copy number, and 

discontinuities within chromosomal arms indicate positions of presumed allelic loss or 

gain. The key question is whether one (or more) of the somatic events can be 

convincingly demonstrated to be clonal, on the basis of the exactness of the match. The 

arrows in the diagram point to changes that look plausibly similar at first glance, and our 

test is designed to examine these plausible matches individually. In other words we 

reduce the problem to an evaluation of the likelihood of a match for the specific 

concordant allelic changes observed in both tumors. Our method addresses whether any 

of these changes are close enough to convince us that the tumor is of clonal origin. 

 

Regions of gain or loss are evaluated within chromosome arms, and these 

frequently involve the gain or loss of an allele across the entire chromosome arm.  Other 

patterns include partial arm alterations, simple alterations and complex alterations. A 

simple alteration is one in which a single allelic gain or loss occurs within the 

chromosome arm. Partial arm alterations are, in essence, simple alterations in which one 

of the two endpoints occurs at a boundary. A complex pattern of alterations involves 

more than one gain or loss (see Figure 2).  As background for this article we examined 

high-resolution ACGH data from a series of 38 patients with diffuse large B-cell 

lymphoma diagnosed between 1984 and 1998 (Chen et al. 2006). Among all of the 

chromosomal arms examined, changes were identified in 18%. Excluding whole arm 

changes, the preponderance of alterations were either partial arm (46%) or simple (43%) 

changes. Since the presence of a whole arm alteration is relatively common it is not 

improbable that the same alteration will occur by chance on both tumors. Consequently, 

the occurrence of a concordant whole arm gain or loss on the same chromosomal arm on 

both tumors will not provide strong enough evidence on its own to establish a clonal 

origin for the tumors, though it will be relevant in aggregating the evidence from the 

entire genome.  Most of the remaining types of mutational events are either partial arm 

alterations or simple alterations.  We focus in this article on the challenge of comparing 

concordant simple or partial alterations that occur on the same chromosome arm of the 
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two tumors.  By “concordant”, we mean that either both changes are gains or both are 

losses, and that each one represents a statistically significant allelic change on the basis a 

statistical test for detecting allelic change.  We develop a new statistical test for 

comparing the estimated start and stop markers in the two tumors. We regard the 

resulting test as being the building block for interrogating the entire pattern of mutations 

on the two tumors.   

 

Our general strategy is conceptually straightforward.  After defining notation in 

the next section, we propose a test statistic that represents the “closeness” of the observed 

allelic changes on the two tumors.  We then outline an approach to determining a 

reference distribution for this statistic under the null hypothesis that the two mutations 

occurred independently.  This is a challenging task for several reasons that are discussed 

in detail.  Later we examine the validity and power of the test using simulations, and 

apply it to data from various patients. 

 

2.1 Notation and Test Statistic 

 

Let ukx represent the measurement of the thu  marker of the thk  tumor, 

where ,,..,1 nu =  and .2,1=k   Consider the setting in which there is a concordant gain (or 

loss) on the two tumors.  Let the copy number change begin at marker ki  and end at 

marker kj  for the thk  tumor. That is, markers ki  through kj , inclusive, represent the 

markers of allelic gain (or loss). If the tumors are clonal then 21 ii =  and ,21 jj =  and this 

represents the alternative (clonal) hypothesis in our formulation.  The null hypothesis is 

that the regions of gain or loss have arisen independently and consequently that the 

endpoints of the allelic change are very unlikely to be identical. [Note: we recognize that 

an exact match could occur by chance, though this is highly improbable at the levels of 

granularity of the arrays in which we are interested.] 

 

The endpoints need to be estimated using an algorithm for detecting regions of 

allelic change.  In our simulations we use the CBS (circular binary segmentation) 
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algorithm (Olshen et al., 2004), although in principle any similar method could be used.  

The CBS algorithm obtains estimates of the endpoints, denoted kî  and kĵ , by maximizing 

the mean difference between the markers in the hypothesized region of gain or loss and 

the remaining markers.  In fact, the CBS algorithm chooses kî  and kĵ  to maximize ijkz  

where  
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and where .
1
∑
=

=
l

u
uklk xS  [Note that in the Olshen et al. (2004) manscript the region of 

change is defined as 1+ki  through ,kj  rather than ki  through .kj ] A permutation 

algorithm is used to determine whether the detected change is statistically significant.  In 

the published version of the CBS algorithm (Olshen et al. 2004) this process continues 

until all statistically significant change points are detected. In the strategy for this article 

we limit the CBS algorithm to the initial step for detecting the single, most highly 

significant allelic change.  In our testing strategy for clonality, we start with the 

assumption that the CBS algorithm has detected concordant allelic changes on each 

tumor, both of which are statistically significant.  The changes are concordant if 21 δδ = , 

where ])(max[ ijkk zsign=δ . Based on these conditions our test statistic is defined as  

.ˆˆˆˆ
2121 jjiit −+−=                                                (2.1) 

Thus small values of  t are indicative of a possible clonal mutation. 

 

2.2 Reference Distribution 

 

Since our test is based on the condition that two concordant allelic changes are 

present, our reference distribution under the null hypothesis of independence must also be 

based on this assumption,  i.e., we assume that there exists allelic changes on both tumors 

that have arisen independently, and that either both represent gains or both represent 

losses.  The reference distribution for t should then reflect the distribution of t when 
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(concordant) independent allelic gains or losses are generated on each tumor on the same 

chromosomal arm.  The construction of the reference distribution is a challenging task for 

the following reasons.  

 

The fact that the two sets of data being compared are required to have statistically 

significant observed allelic changes makes a direct permutation of the data invalid since 

the distribution of the markers is non-exchangeable (the gained or lost region has a 

different mean than the region of normal copy number).  A plausible assumption of 

exchangeability of the marker values can be induced by subtracting the true means from 

the observed data. That is, the reference distribution can be generated by permuting the 

residuals.   However, this requires knowledge of the location of the changes and the 

corresponding means.  In our approach we use the estimated locations and means instead. 

Specifically, let kθ denote the mean value for markers representing normal copy number 

for the thk  tumor, and let kμ denote the mean marker value in the region of allelic 

change. We estimate these using their sample means as follows, 

∑
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These are used to obtain residuals for each of the marker values:- 

kukuk xr θ̂−=  for kiu ˆ<  or kju ˆ>  

kukuk xr μ̂−=  for kk jui ˆˆ << . 
 

In order to obtain resampled data corresponding to two tumors with concordant allelic 

changes, the permuted residuals are added back to new mean functions that are 

regenerated for each permutation. 

 

Generation of these mean functions is complicated by the fact that allelic changes 

will not occur at random in tumors.   While chromosomal breakpoints may occur 

randomly in cells, the alteration is more likely to be retained if it contains a gene or genes 
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for which there is an advantage to having an abnormal number of copies, such as an 

oncogene or a tumor suppressor gene. This results in selection and clonal expansion of 

cells harboring specific genomic alterations.   To address this phenomenon we first 

generate a location for a hypothetical mutational hotspot, which we presume to be located 

where the observed regions of allelic loss or gain on the two tumors overlap. We 

randomly generate new regions of allelic change for the two tumors, restricted to the set 

of changes that overlap the hotspot. We use the aggregate data from the two tumors to 

estimate the mean values for the normal and allelic change markers to increase the 

stability of the process.  

 

Since the samples being compared have concordant allelic changes that have been 

detected as statistically significant individually, the reference distribution should also be 

based on samples with statistically significant changes. Hence, we use the same algorithm 

on the generated data for each tumor  as the one used for the original data (CBS in our 

case) to estimate the start and stop points for the allelic changes, and to test their 

statistical significance. If both are significant at the same α level as the original sample 

and the changes are concordant, then the data set is considered to be “admissible”, and 

the estimated endpoints are used to calculate the reference test statistic. This process is 

then repeated a large number of times to establish the reference distribution for the 

statistic t  in (2.1).  

 

The operating characteristics of this procedure depend on the signal to noise ratio 

as well as the properties of the procedure used for the estimation of the locations of the 

change-points and the means of the marker values.  The ability to detect a change is a 

function of the signal-to-noise ratio. A lower signal-to-noise ratio results in a larger 

proportion of false positives among the detected changes.  It also affects the test for 

clonality by increasing the frequency of inadmissible permutations.  Also, the CBS 

algorithm chooses the maximum value of the CBS test statistic from among all of the 

possible combinations of start and stop markers for the allelic change.  Since for any two 

pairs of start and stop markers the correlation between these statistics increases with the 

number of overlapping markers, the CBS algorithm tends to select smaller intervals in 
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preference to larger intervals when there is no real allelic change, i.e. when there is a 

false positive change.  This preference for shorter intervals is high when the signal to 

noise ratio is relatively low since the preponderance of statistically significant intervals 

are false positives.  It poses a further problem for choosing the location of the mutational 

hotspot since the intervals of allelic change on the two tumors are less likely to overlap.  

 

 The following algorithm for generating the reference distribution is constructed in 

recognition of these issues. An asterisk denotes terms representing the reference 

distribution:-   

(1) Generate the location of the mutational hotspot *h , where *h  is selected 

uniformly from the common interval, i.e. the interval between max )ˆ,ˆ( 21 ii and min 

).ˆ,ˆ( 21 jj [For simplicity we assume throughout that the hotspot occurs at a marker 

value, and define U ),( ji  to represent uniform sampling of the markers between i  

and ,j  inclusive.] If the intervals do not overlap then *h  should be chosen 

randomly from the interval between the estimated intervals, i.e. if the second 

interval is higher than the first, then choose *h  randomly between 1̂j  and ,2̂i  and 

vice versa. [The goal here is to accommodate two very short intervals that are 

close to each other but do not overlap.]  

(2) Generate the “true” endpoints of the allelic changes in the reference data set: 
*
1i and *

2i sampled from U(1, *h ) and *
1j and *

2j sampled from U( *h ,n).  

(3) Obtain },{ *
ukr a permuted set of the residuals },{ ukr  permuted separately for each 

tumor. 

(4) Create the permuted marker values }{ *
ukx  using 

** ˆ
ukuk rx += θ  if *

kiu < or *
kju >  

       *ˆ ukr+= μ  if ,**
kk jui ≤≤  

 where 
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(5) Use the CBS algorithm on the new dataset for each tumor to obtain the estimated 

endpoints of the regions of allelic change, denoted )ˆ,ˆ( *
1

*
1 ji  and ).ˆ,ˆ( *

2
*
2 ji  Include 

the generated data as admissible only if both allelic changes are statistically 

significant at the 5% level, and if they are concordant, i.e. if *
2

*
1 δδ =  where 

)ˆˆ( *
1

*
1

*
1 θμδ −= sign and ),ˆˆ( *

2
*
2

*
2 θμδ −= sign  and where *ˆ kμ and *ˆ

kθ  are the 

respective means of the markers in the altered and normal subsets of the data, 

respectively. 

(6) Calculate the reference value for the test statistic using 

.ˆˆˆˆ *
2

*
1

*
2

*
1

* jjiit −+−=  

 

(7) Repeat the process a large number of times to obtain the distribution of *t . 

 

The p-value for the resulting test is obtained by determining the number of admissible 

permutations tN  such that .* tt ≤ The p-value is then NNt / , where N  is the total 

number of admissible permutations. 

 

2.3 Validity and Power of the Test Statistic 

 

 We have conducted a series of simulations to examine the properties of the test. 

The first consideration is validity. Is the size of the test less than or equal to the nominal 

value under the null hypothesis? Recall from the previous section that our testing strategy 

was designed to offset three validity challenges. The first is that allelic changes do not 

occur at random, but instead span sites where changes confer a selective advantage. Our 

test was constructed under the assumption that there exists a mutational hotspot in the 

region common to the two allelic changes being compared, and the reference distribution 

is consequently restricted to data configurations in which the admissible intervals of 
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allelic change must span the hotspot. This aspect of the test cannot be evaluated 

confidently from a theoretical basis. It is simply an assumption. Logic suggests that this 

restriction should make the test more conservative, i.e. make the p-values larger, since we 

are eliminating many potential permutations in all of which at least one of the mutations 

does not span the hotspot. These permutations should, on average, have test statistics that 

are larger (i.e. less “close”) than the test statistics of admissible permutations. Later, in 

Section 2.4, we address this assumption indirectly in an empirical evaluation of the size 

of the test using data from tumors from different patients.  

 

 The remaining two validity challenges, the dependence on the CBS algorithm to 

identify the allelic changes given its preference for selecting small intervals, and the 

dependence of the test on an estimated signal to noise ratio, are evaluated in the following 

manner. Data for each marker were assumed to be normally distributed from distributions 

with a predefined signal strength. That is we specified the mean value for markers at 

normal copy number, denoted θ , and the mean in the region of allelic change, denoted 

,μ with common variance .2σ  These were chosen to specify the signal strength, 

represented by ,/σθμ −  and one of the means was set to 0 and the variance set to 1 

without loss of generality. For each simulation we first select a true mutational hotspot at 

marker .h  This was randomly generated from the n markers for each data set. We then 

generated a data set as follows. First the “true” endpoints of the allelic changes were 

randomly generated, 1i and 2i as U(1, h ), and 1j and 2j as U( nh, ). Observed marker 

values were generated as normal random variables. That is, ukx  was generated as 

N( ), 2σθ k for kiu <  or kju >  and as N( ), 2σμ k for .kk jui ≤≤  The CBS algorithm was 

used on these data to estimate the endpoints, denoted ,ˆ,ˆ,ˆ,ˆ
2211 jiji  and the test statistic t  

was calculated using  (2.1).  

 

Following the procedure outlined in Section 2.2, the p-value was calculated with 

1000 replicates from the reference distribution. The entire process was then repeated 

1000 times and the relative frequency with which the test was significant is reported as 

the test size. Thus the simulation standard error is about ± 0.02 in the estimated test size. 
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The embedded CBS algorithm uses a default of 10,000 permutations to compute its p-

value at its default significance level of 0.01. In our case we are using α=0.05, and so we 

reduced the number of CBS replicates to 2000 for the original statistic t  and to 400 for 

the permuted statistic *t to minimize the computational burden. Since the simulation 

relies on the ability of the CBS algorithm to uncover significant intervals, when signal 

strength or the number of markers is small it may be difficult to create enough significant, 

concordant draws from the reference distribution.  The procedure is allowed as many 

attempts as necessary to complete the 1000 replicates required, and likewise it is allowed 

as many attempts as necessary to generate a significant, concordant data set. The results 

are presented in Table 1 for signal strengths ranging from 0.5 to 3 standard deviations, 

and for numbers of markers ranging from 65 to 141. The results show that in general the 

test is valid.  

 

For the bacterial artificial chromosome (BAC) arrays we have been using the 

numbers of markers per chromosome arm ranged from 20 to 141. However, in our 

simulations, for arms with relatively few markers the CBS algorithm rarely detected any 

significant alterations, and so our test has very low power in this setting. These data are 

from the Spectral Genomics SpectralChip 2600, an array with 2621 markers. The 

numbers of markers in the simulations are representative of the counts from the 

chromosome arms on that array. The SpectralChip is typical in size for a modern BAC 

array. Oligonucleotide arrays consisting of thousands of markers per arm are also in use 

(Pinkel and Albertson, 2005).  

 

 We evaluated the power of the test to detect clonal allelic changes in a similar 

manner with the exception that the underlying “true” allelic change was assumed to be 

identical for both tumor 1 and tumor 2. That is we first randomly generated the hotspot at 

marker .h Then we randomly generated the endpoints of the allelic change below and 

above the hotspot, i  from U(1, h ), and j from U( nh, ), and set iii == 21  and 

.21 jjj ==  The simulations were then generated as outlined above. We also explored 

whether the location and the length of the allelic change have an impact on power, by 

repeatedly generating data for allelic changes of a specific length and position. Thus, for 
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example, we selected a change that began at marker 5 and ended at marker 10 by 

generating data from this configuration repeatedly and examining the relative frequency 

with which the test was significant. The results of these power calculations are in Table 2.  

 

The first row represents simulations in which lengths and locations of the true 

common signals varied randomly. The other rows represent power to detect a change 

with a specific length and location. Several conclusions may be drawn from the results. 

First, the granularity of the array is important, i.e. a chromosome arm with many markers 

is more likely to detect a clonal change than an arm with relatively few markers (for a 

given signal strength). Second, not surprisingly, the signal strength is important, with 

higher signal strength leading to greater statistical power. The results also suggest that 

short allelic changes may have somewhat less power than larger allelic changes. This can 

be explained as follows. For a given value of μ the non-centrality parameter for 

identifying an allelic change by the CBS algorithm is parabolic with respect to the width 

of the allelic change, with a maximum when the true allelic change is exactly half of the 

width of the chromosome arm. Consequently smaller true intervals lead to a greater 

relative frequency of CBS false positives which in turn introduce more noise into the 

comparison of the observed allelic changes in the two tumors when the true change is 

clonal. In general, arrays with 100 or more markers appear to have high power to detect a 

clonal change if the difference in means is 2 standard deviations or greater. 

 

 The power we can expect from these experiments clearly depends heavily on the 

signal strength. We have examined the signal strengths empirically in the series of 38 

lymphoma patients. For each chromosomal arm with a detected simple allelic change we 

calculated the standardized mean difference between the markers in the region of allelic 

change and the remaining markers, and these estimates are plotted in Figure 3, based on a 

sample size of 111 observed allelic changes. The results suggest that the signal strength is 

typically quite strong, averaging about 2 standard deviations.  
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2.4 Data Analyses 

 

The preceding simulated calculations of size and power are compromised by the fact that 

they are embedded with some key assumptions, notably the assumption that observed 

concordant allelic changes necessarily span a mutational hotspot, and the assumption that 

marker values have normally distributed errors. To examine the validity of the test from 

an empirical perspective that does not depend on these assumptions we have reanalyzed 

the dataset of 38 tumors from patients with diffuse large B-cell lymphoma (Chen et al. 

2006). For each chromosomal arm (excluding the X chromosome) we compared the 

profiles for every pair of patients, and performed the test for any observed concordant 

changes. Since the tumors came from different patients none of the observed concordant 

changes are clonal, by definition. Thus, the proportion of tests that are significant should 

approximate the nominal 5% level. In this exercise we identified a total of 745 pairs of 

changes that were individually detected as significant by the CBS algorithm on the same 

chromosome arm. These yielded 42 statistically significant comparisons using our 

algorithm, for an empirical test size of 0.056 (42/745).  

 

 We also have access to an additional set of matched ACGH results from two 

tumors in each of two patients. Both of these examples are of tumors that are 

presumptively clonal. The tumors from the first patient are both mediastinal metastases 

(the “mediastinal” patient). The tumors of the other patient are of a primary testis cancer, 

matched with a lymph node metastasis (the “testis” patient).  The complete arrays for the 

mediastinal patient are displayed in Figure 1. Visual examination of the arrays from the 

two tumors indicates that there are plausibly clonal concordant changes on arms 2, 5, 6, 

7, 24, 34 and 39. The test statistics for these 7 comparisons are 1, 0, 9, 2, 1, 3, and 0, 

respectively, based on numbers of markers 94, 70, 93, 46, 84, 43 and 35. These 

correspond to, respectively, p-values of 0.010, 0.010, 0.095, 0.035, 0.005, 0.135, and 

0.005. The collective levels of significance of these changes provide strong evidence of 

clonality in that 5 of the changes are nominally significant, and four are quite highly 

significant. Data from these arms are displayed with greater magnification in Figure 4, 

along with reference distributions for the test statistics. The testis patient presents less 
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visual evidence for clonality. The array for the first tumor detects only two significant 

allelic changes, on arms 4 and 16. For the second tumor, changes are detected on arms 4, 

20, 22, 34 and 38. Thus arm 4 is the only place where a possible clonal event may have 

occurred. This arm has 141 markers, the test statistic for the comparison is 3 and the 

corresponding p-value is 0.015.  

 

 

3. DISCUSSION 

 

 The results demonstrate that the proposed test can deliver quite high power for 

establishing the clonality of observed concordant allelic changes on the two tumors. 

However, to achieve high power, in excess of 90%, the data from the relevant 

chromosomal arm must be sufficiently granular (100 markers or greater) and the signal 

strength must be sufficiently high (around 2 standard deviations or greater). In the 

absence of these conditions the CBS algorithm is too imprecise at determining the 

beginning and the end of the regions of allelic gain or loss to establish clonality with 

sufficient confidence. However, as array technology develops, both the granularity and 

the signal strength are likely to increase, promising greater resolution accuracy for this 

method. 

 

 An intangible feature of the method in practice will be the manner in which 

investigators choose the allelic changes that deserve to be tested for clonality. 

Investigators are only likely to be inclined to perform the test for allelic changes that look 

close enough to be clonal. Consequently there is an ill-defined multiple testing aspect to 

the process of evaluating the totality of available data from the arrays. In general, arrays 

that exhibit lots of allelic changes are more likely to exhibit some changes that “look” 

clonal, simply by chance, and so the false positive rate must be higher in this case, though 

it is not obvious how to formulate this issue precisely.  

 

 In practice, the ultimate aim is to determine if the tumors are clonal, and this 

should involve assessing the evidence for and against clonality across the entire genome. 
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This might involve conducting tests for all of the simple or partial allelic changes that are 

plausibly clonal upon inspection, but the issue of how to combine this evidence into a 

unitary decision rule is challenging. For example, suppose that we test three locations 

where allelic changes look similar on the two tumors. Does the presence of three 

statistically significant tests with p-values only modestly lower than the nominal 5% level 

provide more convincing evidence for clonality than, say, a result in which one of the 

tests is very highly significant but the other two are non-significant? In general, if there 

are many somatic changes that are clearly independent should this diminish our 

confidence in the clonal hypothesis in the face of a single, highly significant match? This 

question rests on the issue of how common it is to find clonal tumors that exhibit lots of 

bystander (independent) allelic changes. We feel that these questions are difficult to 

address at present, without access to much more data on the patterns of mutations in 

clonal and independent pairs of tumors. The proposed test is offered as a building block 

for interrogating the full genomic evidence available from an individual patient, and as a 

framework for future research on the most appropriate statistical techniques for 

addressing this important problem. 

 

 

Acknowledgements 

We are grateful to Jim Korkola and Raju Chaganti for advice on the manuscript, and to 

Jim Korkola for permission to use his data. The research was supported by the National 

Cancer Institute, Award CA098438. 

 

http://biostats.bepress.com/mskccbiostat/paper13



 18

References 

 

Begg, C.B., Eng K, Hummer AJ. (2006). Statistical tests for clonality. Biometrics (in press). 
 
Brinkmann, D., Ryan, A., Ayhan, A., McCluggage, W.G., Feakins, R., Santibanez-Korf, M.F. 

et al. (2004). A molecular genetic and statistical approach for the diagnosis of dual-site 
cancers.  J Natl Cancer Inst  96, 1441-1446. 

 
Chen, W., Houldsworth, J., Olshen, A.B., Nanjangud, G., Chaganti, S., Venkatraman, E.S., 

Halaas, J., Teruya-Feldstein, J., Zelenetz, A.D., Chaganti, R.S. (2006). Array comparative 
genomic hybridization reveals genomic copy number changes associated with outcome in 
diffuse large B-cell lymphomas. Blood 107:2477-2485. 

 
Chunder, N., Roy, A., Roychoudhury, S., and Panda, C. K. (2004). Molecular study of 

clonality in multifocal and bilateral breast tumors. Pathol Res Pract 200:735-741. 
 
Dacic, S., Ionescu, D. N., Finkelstein, S., and Yousem, S. A. (2005). Patterns of allelic loss of 

synchronous adenocarcinomas of the lung. Am J Surg Pathol 29:897-902. 
 
Geurts, T. W., Nederlof, P. M., van den Brekel, M. W., van't Veer, L. J., de Jong, D., Hart, A. 

A., van Zandwijk, N., Klomp, H., Balm, A. J., and van Velthuysen, M. L. (2005). 
Pulmonary squamous cell carcinoma following head and neck squamous cell carcinoma: 
metastasis or second primary? Clin Cancer Res 11:6608-6614. 

 
Goldstein, N. S., Vicini, F. A., Hunter, S., Odish, E., Forbes, S., and Kestin, L. L. (2005a). 

Molecular clonality relationships in initial carcinomas, ipsilateral breast failures, and 
distant metastases in patients treated with breast-conserving therapy: evidence suggesting 
that some distant metastases are derived from ipsilateral breast failures and that 
metastases can metastasize. Am J Clin Pathol 124:49-57. 

 
Goldstein, N. S., Vicini, F. A., Hunter, S., Odish, E., Forbes, S., Kraus, D., and Kestin, L. L. 

(2005b). Molecular clonality determination of ipsilateral recurrence of invasive breast 
carcinomas after breast-conserving therapy: comparison with clinical and biologic 
factors. Am J Clin Pathol 123:679-689. 

 
Hiroshima, K., Toyozaki, T., Kohno, H., Ohwada, H., and Fujisawa, T. (1998). Synchronous 

and metachronous lung carcinomas: molecular evidence for multicentricity. Pathol Int, 
48: 869-876. 

 
Holst, V. A., Finkelstein, S., and Yousem, S. A. (1998). Bronchioloalveolar adenocarcinoma 

of lung: monoclonal origin for multifocal disease. Am J Surg Pathol 22:1343-1350. 
 
Huang, J., Behrens, C., Wistuba, I., Gazdar, A. F., and Jagirdar, J. (2001). Molecular analysis 

of synchronous and metachronous tumors of the lung: impact on management and 
prognosis. Ann Diagn Pathol 5:321-329. 

Hosted by The Berkeley Electronic Press



 19

 
Imyanitov, E. N., Suspitsin, E. N., Grigoriev, M. Y., Togo, A. V., Kuligina, E., Belogubova, 

E. V., Pozharisski, K. M., Turkevich, E. A., Rodriquez, C., Cornelisse, C. J., Hanson, K. 
P., and Theillet, C. (2002). Concordance of allelic imbalance profiles in synchronous and 
metachronous bilateral breast carcinomas. Int J Cancer 100:557-564. 

 
Janschek, E., Kandioler-Eckersberger, D., Ludwig, C., Kappel, S., Wolf, B., Taucher, S., 

Rudas, M., Gnant, M., and Jakesz, R. (2001). Contralateral breast cancer: molecular 
differentiation between metastasis and second primary cancer. Breast Cancer Res Treat 
67:1-8. 

 
Jiang, J.K., Chen, Y.J., Lin, C.H., Yu, I.T. and Lin, J.K. (2005). Genetic changes and clonality 

relationship between primary colorectal cancers and their pulmonary metastases--an 
analysis by comparative genomic hybridization. Genes Chromosomes Cancer 43:25-36. 

 
Kollias, J., Man, S., Marafie, M., Carpenter, K., Pinder, S., Ellis, I. O., Blamey, R. W., Cross, 

G., and Brook, J. D. (2000). Loss of heterozygosity in bilateral breast cancer. Breast 
Cancer Res Treat 64:241-251. 

 
Kuukasjarvi, T., Karhu, R., Tanner, M., Kahkonen, M., Schaffer, A., Nupponen, N., et al. 

(1997). Genetic heterogeneity and clonal evolution underlying development of 
asynchronous metastasis in human breast cancer. Cancer Res 57, 1597-1604. 

 
Lai, W.R., Johnson, M.D., Kucherlapati, R. and Park, P.J. (2005). Comparative analysis of 

algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics 
21, 3763-70. 

 
Lau, D. H., Yang, B., Hu, R., and Benfield, J. R. (1997). Clonal origin of multiple lung 

cancers: K-ras and p53 mutations determined by nonradioisotopic single-strand 
conformation polymorphism analysis. Diagn Mol Pathol 6:179-184. 

 
Leong, P. P., Rezai, B., Koch, W. M., Reed, A., Eisele, D., Lee, D. J., Sidransky, D., Jen, J., 

and Westra, W. H. (1998). Distinguishing second primary tumors from lung metastases in 
patients with head and neck squamous cell carcinoma. J Natl Cancer Inst 90:972-977. 

 
Matsuzoe, D., Hideshima, T., Ohshima, K., Kawahara, K., Shirakusa, T., and Kimura, A. 

(1999). Discrimination of double primary lung cancer from intrapulmonary metastasis by 
p53 gene mutation. Br J Cancer 79:1549-1552. 

 
Murase, T., Takino, H., Shimizu, S., Inagaki, H., Tateyama, H., Takahashi, E., Matsuda, H., 

and Eimoto, T. (2003). Clonality analysis of different histological components in 
combined small cell and non-small cell carcinoma of the lung. Hum Pathol 34:1178-
1184. 

 

http://biostats.bepress.com/mskccbiostat/paper13



 20

Olshen, A. B., Venkatraman, E. S., Lucito, R., and Wigler, M. (2004). Circular binary 
segmentation for the analysis of array-based DNA copy number data. Biostatistics 5:557-
572. 

 
Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W.,L., 

Chen, C., Zhai, Y., Dairkee, S. H., Ljung, B. M., Gray, J. W., and Albertson, D.G. 
(1998). High resolution analysis of DNA copy number variation using comparative 
genomic hybridization to microarrays. Nat Genet 20:207-211. 

 
Pinkel, D. and Albertson, D. G. (2005). Comparative genomic hybridization. Ann Rev 

Genomics Hum Genet 6:331-354. 
 
Regitnig, P., Ploner, F., Maderbacher, M., and Lax, S. F. (2004). Bilateral carcinomas of the 

breast with local recurrence: analysis of genetic relationship of the tumors. Mod Pathol 
17:597-602. 

 
Schlechter, B.L, Yang, Q., Larson, P.S., Golubeva, A., Blanchard, R.A, de las Morenas, A. 

and Rosenberg, C. L. (2004).  Quantitative DNA fingerprinting may distinguish new 
primary breast cancer from disease recurrence.  J Clin Onc 22, 1830-1838. 

 
Shimizu, S., Yatabe, Y., Koshikawa, T., Haruki, N., Hatooka, S., Shinoda, M., Suyama, M., 

Ogawa, M., Hamajima, N., Ueda, R., Takahashi, T., and Mitsudomi, T. (2000). High 
frequency of clonally related tumors in cases of multiple synchronous lung cancers as 
revealed by molecular diagnosis. Clin Cancer Res 6:3994-3999. 

 
Shin, S. W., Breathnach, O. S., Linnoila, R. I., Williams, J., Gillespie, J. W., Kelley, M. J., 

and Johnson, B. E. (2001). Genetic changes in contralateral bronchioloalveolar 
carcinomas of the lung. Oncology 60:81-87. 

 
Sieben, N. L.G. ,  Kolkman-Uljee, S.M., Flanagan, A.M., le Cessie, S., Cleton-Jansen,  A.M., 

Cornelisse, C.J., and Fleuren, G.J. (2003).  Molecular genetic evidence for monoclonal 
origin of bilateral ovarian serous borderline tumors. Am J Pathol 162:1095-1101. 

 
Sozzi, G., Miozzo, M., Pastorino, U., Pilotti, S., Donghi, R., Giarola, M., De Gregorio, L., 

Manenti, G., Radice, P., Minoletti, F. (1995). Genetic evidence for an independent origin 
of multiple preneoplastic and neoplastic lung lesions. Cancer Res 55:135-140. 

 
Stenmark-Askmalm, M., Gentile, M., Wingren, S., and Stahl, O. (2001). Protein accumulation 

and gene mutation of p53 in bilateral breast cancer. South-East Sweden Breast Cancer 
Group. Acta Oncol 40:56-62. 

 
Teixeira, M.R., Ribeiro, F.R., Torres, L., Pandis, N., Anderson, J.A., Lothe, R.A. and Heim, 

S. (2004). Assessment of clonal relationships in ipsilateral and bilateral multiple breast 
carcinomas by comparative genomic hybridization and hierarchical clustering analysis. 
Br J Cancer 91, 775-782. 

 

Hosted by The Berkeley Electronic Press



 21

Tse, G. M., Kung, F. Y., Chan, A. B., Law, B. K., Chang, A. R., and Lo, K. W. (2003). Clonal 
analysis of bilateral mammary carcinomas by clinical evaluation and partial allelotyping. 
Am J Clin Pathol 120:168-174. 

 
van Rens, M. T., Eijken, E. J., Elbers, J. R., Lammers, J. W., Tilanus, M. G., and Slootweg, P. 

J. (2002). p53 mutation analysis for definite diagnosis of multiple primary lung 
carcinoma. Cancer 94:188-196. 
 
 

http://biostats.bepress.com/mskccbiostat/paper13



 22

 
                   ↑            ↑  ↑ ↑                                                   ↑                 ↑   ↑ 
 
 
Figure 1.  Log ratio measurements from ACGH of two different metastases from the 
“mediastinal patient.”  The horizontal lines show CBS estimated segments, and the 
vertical lines separate chromosomal arms (1 to 46 representing chromosomes 1-22 and 
chromosome X). The arrows indicate chromosome arms where plausible clonal changes 
may have occurred. 
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Figure 2.   Data examples of alteration patterns.  The dotted line indicates normal copy 
number.  The frequencies of these patterns were determined empirically from a sample of 
38 independent patients with cancer. 
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Figure 3.  Histogram of estimated signal strengths derived empirically from 38 patients 
with lymphoma. 
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Figure 4.  Details of chromosomal arms and corresponding clonality test permutation 
reference distributions for the concordant changes in the “mediastinal” patient.  On the 
histogram, the vertical dotted line denotes the observed test statistic, and the proportion 
equal to and to the left of the line determines the p-value.   
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Table 1.  Simulated size of the clonality test measured as the proportion of significant 

tests (p <=0.05) in 1000 pairs using randomly selected concordant intervals spanning a 

common hotspot.  

 

# Markers 

 

Signal Strength (S.D.) 

 0.5 1.0 2.0 3.0 

65 0.02 0.05 0.05 0.06 

100 0.04 0.04 0.05 0.06 

141 0.05 0.05 0.06 0.05 
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Table 2.  Simulated power of the clonality test for various signal strengths and 
alternatives.  
 
 

# Markers 65 100 141 

Signal Strength 1 2 1 2 1 2 

  

Random 0.29 0.85 0.49 0.94 0.60 0.98 

[1,5] 0.31 0.78 0.40 0.87 0.38 0.90 

[5,10] 0.27 0.72 0.37 0.80 0.39 0.88 

[1,30] 0.38 0.87 0.50 0.95 0.62 0.98 

[5,35] 0.23 0.86 0.38 0.93 0.52 0.98 

[30,60] 0.30 0.83 0.47 0.97 0.59 0.98 
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