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Mixtures of Varying Coefficient Models for
Longitudinal Data with Discrete or
Continuous Non-ignorable Dropout

Joseph W. Hogan, Xihong Lin, and Benjamin A. Herman

Abstract

The analysis of longitudinal repeated measures data is frequently complicated by
missing data due to informative dropout. We describe a mixture model for joint
distribution for longitudinal repeated measures, where the dropout distribution
may be continuous and the dependence between response and dropout is semi-
parametric. Specifically, we assume that responses follow a varying coefficient
random effects model conditional on dropout time, where the regression coeffi-
cients depend on dropout time through unspecified nonparametric functions that
are estimated using step functions when dropout time is discrete (e.g., for panel
data) and using smoothing splines when dropout time is continuous. Inference un-
der the proposed semiparametric model is hence more robust than the parametric
conditional linear model. The unconditional distribution of the repeated measures
is a mixture over the dropout distribution. We show that estimation in the semi-
parametric varying coefficient mixture model can pro- ceed by fitting a parametric
mixed-effects model and can be carried out on standard software platforms such
as SAS. The model is used to analyze data from a recent AIDS clinical trial and
its performance is evaluated using simulations.
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1 Introduction
1.1 Informative dropout

Dropout and other types of missing data are common in long-term longitudinal studies; in
many cases, dropout induces a missingness process that is nonignorable in the sense that
missingness depends probabilistically on unobserved outcomes, even after conditioning on
observable information. Most approaches to handling informative dropout in longitudinal
data can be viewed as extensions of standard approaches such as multilevel modeling (Laird
and Ware, 1982; Diggle, 1988; Breslow and Clayton, 1993) and marginal modeling (Liang and
Zeger, 1986). Likelihood-based approaches include selection models (Wu and Carroll, 1988;
Diggle and Kenward, 1994; Follman and Wu, 1995; Ten Have et al., 1998) and mixture models
(Little, 1993, 1994; Hogan and Laird, 1997a; Wu and Bailey, 1989). Recent comprehensive
surveys of parametric and likelihood-based approaches to handling dropout in longitudinal
data can be found in Little (1995), Hogan and Laird (1997b), and Kenward and Molenberghs
(1999). Moment-based methods also have been generalized to handle informative dropout
under the selection modeling framework. See Robins, Rotnitzky and Zhao (1995), Rotnitzky,
Robins and Scharfstein (1998), and Scharfstein, Robins and Rotnitzky (1999).

In this paper, we develop a general mixture modeling approach for continuous longitudinal
repeated measures data where measurement times may be irregular across subjects and
where dropout might be at continuous times and potentially non-ignorable. The conditional
distribution of repeated measures given dropout follows a varying coefficient model (Zhang
et al., 1998) where regression coefficients such as intercepts and slopes depend on dropout
through unspecified nonparametric functions. The shapes of the functions are estimated
using step functions when dropout time is discrete (e.g., for panel data), and using natural
cubic smoothing splines (Green and Silverman, 1994) when dropout is continuous. We show
that estimation in the proposed varying coefficient mixture model can proceed by fitting an
augmented parametric mixed effect model. The complete data distribution is a mixture of
the varying coefficient models over the dropout distribution, and the dropout distribution
can be left completely unspecified.

This class of models can be viewed as a nonparametric extension of pattern mixture
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models (Little, 1993, 1994) and conditional linear models (Wu and Bailey, 1989; Hogan and
Laird, 1997a) described above. The former author mainly considered panel data, while the
latter authors allowed for the dropout time to be continuous but assumed the regression co-
efficients to be parametric functions of the dropout time. Estimation can therefore be biased
if the parametric functions are misspecified. The proposed varying coefficient mixture model
relaxes the parametric assumption by providing a unified framework to allow for flexible
dependence of the covariate effects on dropout patterns by assuming regression coefficients
to be nonparametric functions of dropout times. Hence estimation of the covariate effects
is more robust to misspecification of the dependence between longitudinal responses and

dropout.

1.2 Motivating example

Protocol 128 of the ACTG was a randomized double-blind equivalency trial of high-dose
(180mg per square meter body surface area, six times daily) versus low-dose (90mg) zidovu-
dine (ZDV) for HIV-infected children (Brady et al., 1996). The study enrolled 424 children,
randomized them to receive one of the two doses, and followed the children on a number of
endpoints for up to five years. In this paper, we are concerned with comparing longitudinal
trajectory of CD4 cell counts. Children were scheduled for measurement of CD4 count every
12 weeks, but actual measurement times varied considerably. In addition, only about half
of the participants completed three years of follow-up (113/216 [52%] on low dose, 93/208
[45%] on high dose).

A simple but reasonable approach to analyzing these data is to estimate treatment-group-
specific CD4 trajectories using a linear random effects model (Laird and Ware, 1982). This
model provides valid inference under ignorable dropout (Laird, 1988; Diggle and Kenward,
1994; Little, 1995). Basic exploratory analysis suggests that for the observed data, mean
square root of CD4 is well described by a linear time trend in both treatment arms (Figure 1).
Using the random effects model, estimated change from baseline to week 200 is —12.7 (s.e.
0.8) in the low dose arm, —18.2 (s.e. 1.4) in the high dose arm, for a difference of 5.5 (s.e.
1.6), favoring low dose.

To explore the potential for bias due to outcome-related dropout, we plotted estimated
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individual least-squares slopes versus followup time (Figure 2). A clear pattern is evident
in both treatment arms, namely that lower slopes are associated with early dropout, which
casts some doubt on the ignorable dropout assumption and hence on the validity of estimates
from the linear random effects model, suggesting the need to utilize more elaborate models
for addressing potential effects of informative dropout.

The remainder of our paper is organized as follows. The model is described in Section 2,
and estimation procedures are detailed in Section 3; this includes estimation for discrete
and continuous dropout times, and for settings with censored dropout times. In Section 4,
we apply the proposed model to the clinical trial described in above. Section 5 presents
a simulation study to evaluate the bias of the proposed method under departures from

underlying assumptions. Summary and discussion follow in Section 6.

2 Mixtures of varying coefficient models for handling
informative dropout

Suppose that the data consist of m subjects with the zth subject having n; observations over
time. For the 2th subject, let Y; be an n; x 1 observed outcome vector, X; be an n; x p
covariate matrix associated with fixed effects, Z; be an n; x ¢ covariate matrix associated with
random effects, and U; be the dropout time. The complete data distribution for the response
vector is the mixture obtained by integrating the joint distribution f(y,u) over u. Mixture
model approaches, therefore, require specification of f(y | v) and f(u). When dropout
times are discrete, it is usual to leave f(u) unspecified and estimate it nonparametrically;
for continuous u, it is possible but not always desirable to use a parametric model such
as lognormal (DeGruttola and Tu, 1994; Schluchter, 1992). Our approach is to leave this
marginal distribution unspecified.

To capture the dependence between Y and U, we assume that repeated measurements

Y, for those who drop out at u; follow the varying coefficient random effects model
(Yi | U =u;) = X:B(u;) + Z:b; + €, (1)

where B(u) = {Bi(u),..., By(u)}T is a px 1 vector of unknown regression coefficient functions

of the dropout time u, b; is a ¢ x 1 vector of random effects following N{0, D(0,u;)}, €, is
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an n; x 1 vector of residuals following N{0, R;(0,u;)}, and 8 is a ¢ x 1 vector of variance
components. Note that we allow the covariance matrices D and R to depend on the dropout
time u;. To better understand model (1), we write X; = (X1,...,X,;,), where X;; is an
n; x 1 vector of the values of the jth covariate measured over time for the ith subject.
Equation (1) can be written as
P
Y | U=uw)= Z; XiiBi(wi) + Z:b; + €, (2)
i=
where 3;(u) represents the jth covariate effect for those who drop out at time w.

In settings such as a panel design, where subjects are observed at prespecified finite time
points (panels) and the underlying dropout times are discrete, we assume the §;(u) to be
step functions (Little and Wang, 1996; Hogan and Laird, 1997a). If instead subjects are
observed at different irregular time points and the underlying dropout times are continuous,
we assume the 3;(u) to be unspecified smooth functions. It follows that model (1) allows the
covariate effects vary with dropout times nonparametrically and estimation of the covariate
effects can be made more robust.

The varying coefficient specification (1) includes the pattern mixture model (Little, 1993,
1994), random effects pattern mixture model (Little, 1995; Hogan and Laird, 1997a), and
conditional linear model (Wu and Bailey, 1989; Schluchter, 1992) as special cases. For
example, if U has a discrete distribution with finite support, then the 3;(u) are step functions
and (1) is a pattern-mixture model. For continuous dropout times, consider the case where
X, =(1,T;) and T; = (t;1,...,tin;)", where t;; is the kth followup time for the 7th subject.
If B1(u) and B2(u) are polynomial functions of u, model (1) reduces to a conditional linear
model. If the §;(u) are constant in u, then the mixture distribution f(y) has only one
component and (1) reduces to a standard random effects model (Laird and Ware, 1982;
Diggle, 1984).

Comparisons to selection models (e.g. Wu and Carroll, 1988; Diggle and Kenward, 1994)
can be made by deriving the associated probability of dropout at time u as a function of
y. Let u® = (u?,...,u?_ )T denote the set of ordered, unique dropout times, and define an
arbitrary time u? > u?_, for the completers. The selection function can be written in closed

form as a logistic regression using baseline-category logits, where completers (v = u?) define

4
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the baseline category. Let hy(y;) = pr(U = u? | y;)/pr(U = «? | y,), which characterizes the
odds of dropping out at time u? relative to completing the study, given repeated measures

y,. Taking logs,

log hs(y;) = log(w,/7s) + log f(y; | U = ul) —log f(y; | U = u}), (3)

where 7, = Pr(U; = u?), and

F(y: 1 Ui =) = [Vi(0,u) " exp [~ {y; — XBw)}Y Vi(0,u)™ {y; — X:B(w)} /2] .

with V(8,u) = Z;D;(0,u)Z] + R;(8,u). In general, the selection model (3) is quadratic
in ¥;. A more familiar version obtains when variance is constant across dropout times, i.e.

when V;(0,u) = V,;(8). Then (3) simplifies to

log by () = w {7, 7, B(u0), B2), Vi) } + {B(u0) — B} XTVi(0) 'y, (o)

where w(-) comprises terms that do not depend on y,. Under this formulation, the log
relative probability of dropout at u? is linear in y,, with coefficients that depend on the
difference B(u?) — B(u?), increasing in magnitude as 3(u) depends more strongly on u. For

binary U, (4) is consistent with the selection model restrictions used by Little (1994) and

Little and Wang (1996) to identify parameters in a two-component pattern mixture model.

3 Estimation Procedures

In this section, we discuss estimation procedures when dropout times U; are observed for
all subjects. Under this circumstance, the likelihood of (Y;, U;) for the ith subject can be
partitioned as

Li(Y;,U;B,0,7) = Ly(Y; | Uy B,0) Liy(Us; ).

It follows that (3, 8) can be estimated by maximizing the conditional likelihood

M=, Li(Y; | U;B,0), and 7 can be estimated by maximizing the marginal likelihood
[T%, Li(U;; ). We consider estimation procedures first for the situation where subjects
are observed at a common set of time points, and then where the set of observation times

may be misaligned across subjects.
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3.1 Estimation procedures for fixed and common observation times

For a fixed design, such as a panel design, subjects are observed at n (often small) prespec-
ified time points (¢1,...,%,) and the number of possible dropout times is small. Thus, the
nonparametric functions 3;(u) are assumed to be step functions.

Let r be the number of observed distinct values of u, with r < n. As indicated in

Section 2, let u® = (u?,...,u%)T be an r x 1 vector of ordered distinct dropout times, where

s Y

we assume completers take u? = ¢,4; for some value ¢,4;. Hence §;(u) is fully determined
by B; = (Bj1,- .. , Bir)T, where B;; represents the jth covariate effect for those dropping out
at u). Denote the incidence matrix by N; = (Nyy,..., N; )T where N;p = 1 if u; = uf and

0 otherwise. Some calculations show that model (2) can then be written as a linear mixed

model

P

=1
Equivalently, we have

p —
Y:ZX]ﬂj—l—Zb—l—e, (5)

i=1

where X; = X; @ N, X; = (X1,,..., XL )", N = (N7,...,N)", and Y, Z,b, and €

170"
are defined similarly to IN. Here A ® B denotes a direct product of matrices A and B.
It follows that estimation of 8 = ([3{, e ,ﬂg)T proceeds by solving the linear mixed

model normal equation

(X' v'X)B=X vy,
where X = (Xl, el y(p), V =diag(V;)and V,; = cov(Y;) = ZZ'DZ;TF—I—RZ'. The covariance
matrix of the estimator of 3 is (YTV_IX)_I. Estimation of 8 can be obtained using the

REML estimating equation

1 ov 1 ~ ov ~
—tr [P— |+ (Y = XB3)'V'—V (Y - X3) =
i (PG ) + 50 - Xy v vy - Xp) o,
where P =V~ — V_IX(YTV_IY)_IXTV_I. The (7, k)th component of the information
matrix of the estimator of 8 is (1/2)tr{P(0V /00,)P(0V [00;)}. 1If D and R depend on

u, the identifiability of some components of 8 based on the observed data might require

some constraints on @ or a sensitivity analysis (Little, 1993; Daniels and Hogan, 2000). For
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example, consider the case with two time points (n = 2); if dropout is informative, there is
no information in the observed data to fit a random intercept and slope model for those who
drop out at time 2, and sensitivity analyses are needed.

The necessary and sufficient condition for the 3; to be identifiable from model (5) can

be stated as follows:

Let Sk = {tk1,. -, tkm, } denote the indexes of those my subjects who drop out

at u?, and Xy = (X7 7X3.;mk) If rank(Xy) = p for all k=1,...,r, then the

tg17?

B, ( =1,...,p) are identifiable.

This condition states that when dropout times are discrete and finite, regression coefficients
must be separately estimable for each dropout pattern. If some components of 3, are not
identifiable for some dropout patterns, then the observed data do not have information about
these components and either parameter constraints or sensitivity analyses are needed. For
example, consider again the case with two time points (n = 2), if dropout is informative,
there is no information in the observed data to estimate the mean of the outcome at time
2 for those who drop out at time 2, and sensitivity analysis is hence needed. See Little and
Wang (1996) and Daniels and Hogan (2000) for detailed discussion.

Note that the jth regression coefficient vector 8; measures the jth covariate effect
conditional on dropout times. Primary interest is in the marginal jth covariate effect
Bj = Ey {ﬁj(u)} = wTﬂj, where m = (71,...,7,)" and 7; = P(U = u}) is the proba-

bility that a subject drops out at u?. It follows that one can estimate Bj by ﬁ'TB where

7
«; = m;/m, m; is the number of subjects who drop out at u%, and B is the maximum

likelihood estimator from fitting model (5).

3.2 Estimation for random or misaligned measurement times

For situations when the measurement times are random or misaligned across subjects, re-
peated measures of each subject are observed at different time points and the underlying
dropout times are often continuous. We therefore assume that the regression coefficient
functions [3;(u) are twice-differentiable smooth functions and estimate them using cubic

smoothing splines. A key feature of cubic smoothing spline estimation is that we can esti-
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mate all model components — including the nonparametric regression coefficient functions
B;(u), variance components 8 and smoothing parameters — within an augmented parametric
linear mixed model framework.

Following the notation in Section 3.1, let r be the number of ordered distinct val-
ues of the U;, u® = (u?,...,u%)T be the ordered distinct values of the U;, and B;
{B;(u9),...,B;(u®)}T be the values of 3;(u) evaluated at u’. Given the variance compo-
nents @, the conditional loglikelihood of 3; given the w; is

T
m P
K(Y|u76177ﬂp) = Z—§IH|V| { ZXUB] Uy } VZ_I{YZ ZXZ]ﬂ] U }
i=1
1

T
1 P ~ P
= —omv|- (Y-}jxjﬂj) v (Y-}jxjﬂ.
J=1 7=1

where Xj, V., V,and Y were defined in Section 3.1.

S
SN———

Following O’Sullivan, Yandell and Raynor (1986), one can show that the natural cu-

bic smoothing spline estimators of the 3;(u) maximize the following penalized conditional

loglikelihood
2 A
(VI8 B) =530 [ = (Y By, 8~ S ABTKB,. (6

where the \; are smoothing parameters controlling the balance between goodness-of-fit and
the smoothness of the estimated B;(u), A; and Aj specify the range of u, and K is the
nonnegative definite natural cubic smoothing spline smoothing matrix constructed using ug

and defined in equation (2.3) of Green and Silverman (1994).

For fixed smoothing parameters A = ()\;,..., ;)7 and the variance components 8, dif-
ferentiation of (6) with respect to (8,,...,3,) gives their estimating equations as
~T 5 T — N < T 1~ T -1
X, V' X+ K X, VX, .- X, V77X, B, X, VY
X, VX, X,V'X, - X,V'X,+)\K | LB X, vy

One can solve equation (7) using a backfitting algorithm as follows

~ ~T_ .~ =T _ —
B, = (X, VIX;+ K)'X V(Y - > X.3,)
k#j
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fory=1,...,p.
Following Zhang et al. (1998), we show that the above cubic smoothing spline estimators
of the B; can be easily obtained by fitting an augmented linear mixed model. Specifically,

B; can be written via a one-to-one transformation as
ﬂj = U’Y] + Ba’jv

where U = (1,4°), B = L(LTL)™", Lis an r x (r —2) full rank matrix satisfying K = LL”
and LTU =0, 7, is a 2 x 1 unknown vector and a; is a (r —2) x 1 unknown vector. It can

be shown that ﬂfK,B = a;raj. The penalized loglikelihood (6) becomes

1 P
E(Y|U7ﬂ17 s 7ﬂp) - 52)‘10’?0’1'
7=1

It follows that the nonparametric natural cubic spline estimators of the 3; can be obtained

by fitting the parametric linear mixed model

P P
Y =) (X;U)y; +>.(X;B)a; + Zb + e, (8)

7=1 7=1
where v = (77, . .. ,'yZ)T is a vector of regression coefficients, a = (af, ..., ag)T and b are

independent random effects with @ ~ N(0,A(7)),b ~ N(0,diag{D(8)}), A(T) = diag(r;I),
r=1/); and 7 = (7,...,7,)7, and €; ~ N{0, R;(0,u;)}.

Estimation of v and a can proceed using the BLUP estimator by solving the normal
equation

(9)

H'V'H  H'V''G ~|  [H'V'Y
G'V'H G'vV'G+A! a| | G'V'y |’

where H = (XlU,...,XpU) and G = (YlB,...,XpB). Denoting by 4 and a the
solution of (9), the natural cubic smoothing spline estimator of 3, is Bj = U#,+ Ba;. One
can show that the B]‘ from (9) are identical to those obtained from solving (7). The natural
cubic spline estimators B]‘ are unique when H is of full rank.

We have so far assumed that the smoothing parameters A and the variance components
0 are known when estimating the 8,. They are usually unknown in practice and need to be

estimated from the data. Examination of the modified linear mixed model (8) suggests that
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7 behaves like variance components; therefore, following Zhang, et al. (1998), we estimate
the smoothing parameters 7 and the variance components 8 simultaneously using restricted
maximum likelihood (REML) by treating 7 as extra variance components in addition to

in (8). Some calculations show that the REML estimating equations for 8 and 7 are

1 [=0V 1 P ov &
—tr [P |+ (Y =Y XB8) VI v (Y -YX,3) = 0
1 — =T 1 u Ty, —1% Ty 'y -1 %
—gtr<PXjBB Xj>—|—§(Y—ZX]ﬂj) V7 X,BB XjV (Y—ZXjﬂj) = 0,
Z j:l j:l

where P = V™! — V' (H,G)C'(H,G)TV™', and C is the coefficient matrix on the left
hand side of (9). Parameters from the varying coefficient mixture model (1) can therefore
be obtained by fitting the parametric linear mixed model (8) by SAS Proc Mixed. The

smoothing matrix B needs to be computed in advance.

3.3 Inference for marginal regression coefficients

The marginal jth covariate effect Bj is Bj = Fy{B;j(u)} = [ Bj(u)dF(u), where F(u) is the
c.d.f. of u. Using the estimated cubic smoothing spline Bj(u) and the empirical c.d.f. ﬁ(u),
one can estimate Bj by f@(u)dﬁ(u) = ﬁTBj, where 1 = 3°7", N;/m. The delta method
has been used for standard error estimation for mixture models where the support of U is
very small relative to the number of subjects (Hogan and Laird, 1997a; Fitzmaurice and
Laird, 2000). In our application with continuous dropout times, we found that the delta
method performed poorly; the bootstrap was used instead, treating the subject as the basic

resampling unit. Details are provided in the application.

4 Application to AIDS clinical trial

In this section we analyze the ACTG data using several different mixture model formulations
representing different assumptions about the missing data mechanism and provide detailed

interpretation of the model parameters.

10

Hosted by The Berkeley Electronic Press



4.1 Variable transformations and candidate models

As indicated in Section 1.2, observed CD4 data were transformed to the square root scale
to reduce positive skewness. We fit three models (for computational tractability, the mod-
els were fit separately by dose). The first is a standard random effects model (REM) with
subject-specific intercepts and linear time trends. The REM, briefly summarized in Sec-
tion 1.2, assumes that the complete data in each treatment arm follow the linear mixed

model
Yu = 51+ Botl + b + bait]) + €y (10)

where Y is square root of CD4 count at time ¢;;, [ = 1,...,n;, b; = (b1;, by;) ~ N(0, D) and
e ~ N(0,0%) (i.e. R;(8) = c*I,,), with independence between ¢; and b;. The time axis is
rescaled using % = (t; — U)/range(t;;) so that the new time scale has range 1 and is centered
at the sample mean of dropout times (the range is computed for the pooled sample from
both dose arms). This is a standard random effects model, but can be viewed as a special
case of (1) where 3;(u) is constant in u for j = 1, 2.

In addition to the REM, we fit a conditional linear model (CLM) in which individual
intercepts and slopes are linear functions of dropout time, and a varying coefficient model
(VCM), where intercepts and slopes are unspecified smooth functions of dropout time. The
CLM is precisely model (8) under the assumption that 7 = 0 (equivalently, a; = 0 for
all j), and therefore it is just a specialized version of the VCM. Separately by treatment,
the CLM elaborates (10) such that £i(u) = v + y2u* and fz(u) = 3 + yau*, where u* =
(u — U)/range(t;). In our parameterization with the rescaled time axis, v; is the mean of
VCD4 at u = U, 73 is the ‘main effect’ of dropout, which is the slope of B1(u), v5 is mean
change in v/CD4 from baseline for those with U; = U, and =4 is the effect of interaction
between dropout and change from baseline, representing the slope of f2(u) on u. These
parameters are estimated in straightforward fashion by fitting with SAS PROC MIXED a
standard linear mixed model Y;; HT’y +Zt ibi + €ij, where Hy; = (1, U5, 15, 15U5)T, and
Z;; = (1,752*]) 2

Rescaling the time axis has some practical advantages in terms of model fitting and

interpretation: (i) it makes the estimates more stable by increasing the variance of individual

11
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slopes away from zero; (ii) for the conditional linear model, the intercept and slope main
effect are already averaged over dropout time (Fitzmaurice, Laird and Shneyer, 2001); (iii)
for the REM and CLM, the slope parameter corresponds to average total change in square
root CD4 from baseline to the longest follow up time for the study; (iv) for the CLM, the
parameters v, and 74 contrast mean intercept and slope, respectively, between those who
drop out immediately (directly after U = 0) and those who complete the study protocol
(U = max; ;).

The VCM uses the same design matrix for v as the CLM. Estimation of the a; is made
by specifying the r — 2 columns of X,B and X,B as independent random effects with

respective variances 77 and 72.

4.2 Summary of fitted models

4.2.1 Parameter estimates

To get a crude understanding of whether MAR may be a valid assumption, we begin by
summarizing regression coefficients for parameterizations of the conditional distribution f(y |
u) given by the REM and CLM; these appear in Table 1. For both models, the parameter
~5 quantifies average change from baseline to the maximum follow up time. Recall that in
the CLM, fo(u) = y1 + 72(v* —uw*) and (1(u) = v3 + 7a(u* — u*), so that if we assume MAR
is violated according to linear dependence between intercept and dropout and/or slope and
dropout, the parameters 7, and 74 will quantify the degree to which MAR fails to hold.
The parameter estimates from Model 1 suggest that intercepts vary considerably by dropout
time (32 = 14.6 and 13.0 [s.e. 3.3 and 3.5] for low dose and high dose, respectively); the
same pattern is indicated for slopes, where 34 = 26.1 and 33.7 (s.e. 4.8 and 6.5) for low
and high dose. These parameters are interpreted as the average difference in intercept (72)
and slope (74) between those who dropped out immediately after enrolling and those who
were followed for the maximum time (220 weeks). Hence the CLM indicates that dropouts
have lower intercepts and slopes than completers, leading to selection bias for end-of-study
comparisons due to missing data on less healthy participants. Because dropout time is
centered at its mean in the CLM, 73 is the expected change in square root CD4 from week 0

to 220 if a subject were followed for the whole study period (note however that the standard
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error is from the conditional distribution of Y given U). A comparison of the estimates of
~ under REM and CLM suggests that the effect of accounting for dropout via CLM 1is to
correct the average change in v/CD4 downward.

In the VCM we allow both 3;(u) and 3(u) to be completely unspecified for both treat-
ment arms, and estimate them using cubic smoothing splines. Plots of the estimated func-
tionals from the VCM, together with empirical Bayes estimates of individual intercepts and
slopes, appear in Figure 3. In both treatment arms, baseline mean and CD4 slope are highly
associated with dropout time: those who remain in the study for longer periods have higher
values of both. Except for the baseline mean on the low dose arm, the associations appear

to be highly nonlinear.

4.2.2 Comparison of treatment effect inferences across models

Because the complete data likelihood factors over (3, @) and 7, and because our three models
differ only in the specification of the conditional factor f(y | u;3,8), model selection can
in principle be based on criteria for the conditional (y | ) model. However, formal model
selection procedures comparing parametric and nonparametric mixed effects models are not
currently well developed and are beyond the scope of this paper; furthermore, there are
potential difficulties associated with comparing likelihoods for models that are not properly
nested in a traditional way, e.g., due to boundary-value problems.

Table 2 lists estimates and associated standard errors for the marginal regression coef-
ficients Bj = [Bi(u) dF(u), for 3 = 1,2, estimated according to the procedure described
in Section 3.3 (note that the marginal coefficients — and not the conditional coefficients
reported in Table 1 — are of direct scientific interest). Standard errors were calculated us-
ing bootstrap resampling based on 100 replicated datasets sampled with replacement. Not
surprisingly, standard errors associated with the VCM are increased relative to the CLM,
reflecting uncertainty about the functional form of 3;(u). For the low dose arm, the increase
is relatively modest. Comparing slopes in the low-dose arm, for example, s.e.(Bg) = 1.0 for
the CLM and 1.3 for the VCM. No appreciable difference in standard errors is seen in the
estimated intercepts.

Table 2 also indicates the degree to which adjusting for selection bias affects the final
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inferences about treatment. Under the MAR assumption (REM), estimated mean difference
in total change in v/CD4 is —5.5, with Z-statistic = —3.4; adjustment under the CLM gives
the same estimated effect, with Z-statistic = —2.8. Both lead to the conclusion that low
dose is superior to high dose because the decline in CD4 is less steep. Under the VCM, the
correction for possible selection biases on low dose changes the slope estimate from —12.7
(REM) to —17.1; the correction is less severe on high dose (-18.2 for REM, compared to
—20.1 for VCM); the effect is to narrow the gap in treatment effect to —3.0, with 7 = —1.1,
representing a change of 1.56 standard errors relative to the REM, and 1.25 standard errors
relative to the CLM.

The VCM also provides an important substantive insight, namely that participants who
drop out of low dose (the experimental dose in this trial) tend to have steeper decline in
their CD4 counts, compared to those on high dose. The trial was designed to see whether
the lower dose, known to be associated with fewer side effects in adults, would have efficacy
equal to the high dose. The form of the f3(u) functions suggests that among the early
dropouts, rate of change in CD4 for those on low dose is substantially less than for those on
high dose. In an MAR analysis, early dropouts contribute less information to the estimate
of population slope because they have fewer observed data points, leading to the potential

selection bias seen in the REM.

5 Simulation study

Our model gives the analyst considerable flexibility in specifying dependence between out-
come and dropout in the context of a mixture model, and avoids biases that are possible
if the functional form of this dependence is assumed to be known. The primary innovation
of the VCM over CLM is that 8(u) can be left unspecified, but this generalization relies
on the key assumption that B(u) is a (vector of) smooth, twice differentiable functions of
u. We designed a brief simulation study to investigate the performance of our model under
violations of this assumption.

Each simulation uses datasets with n = 50 subjects having up to 15 unique dropout times,

with 8(u) taking three different forms. We compare estimates of mean change from baseline
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from a standard random effects model, the conditional linear model with components of
B(u) assumed linear in u, and from the varying coefficient model with B(u) left unspecified.

Specifically, we assume
vy = Bi(ui) + Bo(wi)ty + byi + baitir + €4,

where (by;, by;)T ~ N(0,D), e; ~ N(0,0%). There are 15 time points {#;}, equally spaced
between 0 and 1. This simulation uses dy; = 4,dz = 0.1, d13 = —0.1 (correlation &~ —0.15),
and o2 = 1, which implies that between-subject variation exceeds within-subject variation
by a factor of about 4.

Dropout is generated from a beta mixture of binomial distributions as follows: p ~
Beta(1.5,1.5) (mean 0.5); U* ~ Bin(15,p), and dropout time U = U*/15 € (0,1). Finally,

we assume [1(u) = 0 and vary the functional form of 33(u); candidate functions are:

(1) - exp(au),

(i) exp(au)l(u < t*) + exp(at*)I(u > 1¥)

(exponential with plateau effect for dropouts beyond ¢*),

(iil) eq [ (u < %) + agl(u > 1¥)

(two-piece step function).

Case (i) actually meets the assumptions for the VCM, and is included for validating our
simulation and estimation routines; case (ii) violates the smoothness assumption and case
(iii) violates both smoothness and continuity assumptions.

For (i), at @ = —4, completers (U = 1) have mean change from baseline (1) =
exp(—4) & 0.02 and early dropouts (/' = 0) have mean change —1, a difference of about
3 SD (because dy; = 0.1). Under (ii), we keep @ = —4 and invoke the plateau effect at
t* = 2/3, leading to a structure wherein those who complete 2/3 of the study or more have
average change from baseline equal to exp(—4 x 2/3) ~ 0.07. For (iii), we keep t* = 2/3 and
set ap =0, ap = 1.

Results are reported in Table 3. As expected, the VCM gives virtually unbiased estima-

tion of the true slope for case (i), where B3(u) is both continuous and smooth, while both
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the REM and CLM show substantial upward bias. This comparison is not as trivial as it
would appear, however, because exploratory plots of OLS slopes versus dropout time (e.g.
Figure 2) do not always reveal an obvious functional form for 3(u), particularly in the early
part of the time axis. One advantage to the VCM is its effectiveness in finding a signal from
noisy data.

The VCM shows only very little bias for estimating the true slope for the continuous but
not everywhere-differentiable function from case (ii), but exhibits more bias than the CLM
for the discontinuous function in case (iii). In all cases, however, the VCM outperforms the

random effects model.

6 Discussion

We have proposed a mixture-modeling approach to analyzing longitudinal data with outcome-
dependent dropout. Our model assumes that covariate effects depend on dropout time
through unspecified functions {3;(u)}, where u is dropout time. When dropout times are
discrete, the 3;(u) are step functions, and when dropout is continuous, 3;(u) are assumed to
be unspecified smooth functions of . This formulation generalizes pattern-mixture models
(Little, 1993, 1994) and random-effects mixture models (Hogan and Laird, 1997a, Wu and
Bailey, 1988, 1989, Follman and Albert, 2000) for continuous response data. Using an ex-
ample from an AIDS clinical trial, we show that the model has the potential to adjust for
selection biases induced by poor responders dropping out early.

The primary innovation in our approach is that the functional dependence between co-
variate effects can be left unspecified. Our simulation study shows that when the parametric
form of the dependence of the regression coefficients on the dropout time is misspecified,
conditional linear models yield biased estimates, while varying-coefficient mixture models
still yield unbiased estimates and are more robust. In many applications, this is a decided
advantage over the CLM model because the form of 3(u) will rarely be known or intuitive.
Moreover, it is our experience that using polynomials leads to overfitting and/or extrapo-
lations well outside the range of data, particularly when the polynomial has degree greater

than 2. When w is continuous, our simulation also shows that inferences are unlikely to be
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sensitive to lack of smoothness in B(u), but could be affected by discontinuities. In both
cases, however, bias is substantially less than under an MAR analysis.

Another advantage to mixture modeling in general is that extrapolations of the missing
data are transparent, and lend themselves well both to substantive critique and to empirical
sensitivity analysis (e.g. Rubin, 1977; Little and Wang, 1996; Daniels and Hogan, 2000). In
our application, for example, we assume dropouts at time u have the same slope for ¢t > u as
for t < w; on the surface this is a strong assumption but it is relatively easily modified and is
a sensible starting point for sensitivity analysis. For example, one could perform a sensitivity
analysis by varying the slope after the dropout time. It should be noted that the observed
data do not contain any information about noninformative dropout mechanism. One needs
either to make an assumption about what happens after the time of dropout or perform
a sensitivity analysis. Because mixture models are specified in terms of the conditional
distribution of Y given U, the extrapolation E(Y mis | Yobs, U = u) is obvious (and in
the mixture-of-normals model is linear in Y,s); by contrast, the same extrapolation for
selection models is not obvious in most cases (but see Rotnitzky et al., 2001 for a discussion
of this issue for semiparametric selection models). Further work will consider censoring in

the dropout distribution, sensitivity analyses, and generalization to discrete distributions.
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Table 1: Parameter estimates from conditional part of joint model, assuming linear random
effects structure (REM) and conditional linear model (CLM).

* See Section 4 for definitions.

A7ZT Dose
Model Parameter® Low (90mg) High (180mg)
REM " 28.6 (0.8) 30.1 (0.9)
s 127 (0.8)  -18.2 (1.4)
CILM " 28.9 (0.8) 30.3 (0.8)
" 14.6 (3.3) 13.0 (3.5)
s 159 (0.9) 214 (1.4)
e 26.1 (4.8) 33.7 (6.5)

Table 2: Estimated intercept and slope characterizing marginal mean of CD4 trajectory
under three different specifications for conditional part of joint model, with standard errors
estimated via bootstrap.

Model Parameter Low Dose High Dose Difference (s.e.) 7
REM B 28.6 (0.8)  30.1 (0.9)

B2 -12.7 (0.8) -18.2 (1.4) -5.5 (1.6) -3.4
CLM B 28.9 (0.8)  30.3 (0.9)

B2 -15.9 (1.0) -21.4 (1.8) -5.5 (2.0) -2.8
VCM B 29.0 (0.7)  29.9 (0.8)

B2 -17.1 (1.3) -20.1 (2.5) -3.0 (2.8) -1.1
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Table 3: Results from simulation to characterize bias. REM = linear random effects model;
CLM = conditional linear model with f33(u) linear; VCM = varying coefficient model with
Ba(u) unspecified. Each estimate represents a sample average of estimated slopes over 100
replicated datasets, each having 100 subjects with up to 15 repeated measures. Standard
errors for simulation-based estimated mean appear in parentheses.

Estimated Slope

Underlying model* True Slope () REM  CLM  VCM
(i) Continuous, smooth —0.159** -0.073  -0.119 -0.160
(0.018) (0.035) (0.028)
(ii) Continuous, not smooth —0.170** -0.062 -0.100 -0.166
(0.015) (0.027) (0.033)
(iii) Discontinuous —0.587** -0.211  -0.622 -0.715

(0.018) (0.031) (0.038)

* See Section 5 for model descriptions
** Computed to nearest 0.001 via Monte-Carlo simulation
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Figure 1: Observed (square root) CD4 counts versus time and stratified by dose, with lowess
regression line fit to pooled sample and five individual profiles highlighted.
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Figure 2: Individual-specific OLS slopes for square-root CD4 versus as a function of follow-up
time, stratified by dose.
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Figure 3: Estimated functions 1(u) and 33(u) for low- and high-dose ZDV arms, together
with empirical Bayes estimates of individual intercepts and slopes (on square root CD4
scale). Slopes correspond to change from baseline to week 200. Standardized follow up
times correspond to deviation from the average from the combined sample, and one unit
represents 200 weeks.
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