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Reinforcement Learning Strategies for Clincal
Trials in Non-small Cell Lung Cancer

Yufan Zhao, Michael R. Kosorok, Donglin Zeng, and Mark A. Socinski

Abstract

Typical regimens for advanced metastatic stage IIIB/IV non-small cell lung can-
cer (NSCLC) consist of multiple lines of treatment. We present an adaptive re-
inforcement learning approach to discover optimal individualized treatment reg-
imens from a specially designed clinical trial (a “clinical reinforcement trial”)
of an experimental treatment for patients with advanced NSCLC who have not
been treated previously with systemic therapy. In addition to the complexity of
the problem of selecting optimal compounds for first and second-line treatments
based on prognostic factors, another primary scientific goal is to determine the
optimal time to initiate second-line therapy, either immediately or delayed after
induction therapy, yielding the longest overall survival time. A reinforcement
learning method called Q-learning is utilized which involves learning an optimal
policy from patient data generated from the clinical reinforcement trial. Approx-
imating the Q-function with time-indexed parameters can be achieved by using a
modification of support vector regression which can utilize censored data. Within
this framework, a simulation study shows that the procedure can extract optimal
strategies for two lines of treatment directly from clinical data without relying on
the identification of any accurate mathematical models. In addition, we demon-
strate that the design reliably selects the best initial time for second-line therapy
while taking into account the heterogeneity of NSCLC across patients.
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1 Introduction

There has been significant recent research activity in developing therapies that
are tailored to each individual. Finding such therapies in treatment settings
involving multiple decision times is a major challenge. For example, in treating
advanced non-small cell lung cancer (NSCLC), patients typically experience two
or more lines of treatment, and many studies demonstrate that three lines of
treatment can improve survival for patients. Discovering tailored therapies for
these patients is a very complex issue since effects of covariates (such as estab-
lished prognostic factors or biomarkers) must be modelled within the multi-stage
structure. In this article, we present a new kind of NSCLC clinical trial, based on
reinforcement learning methods from computer science, that statistically finds
an optimal individualized treatment plan at each decision time which is a func-
tion of available patient prognostic information. This new kind of trial extends
and refines the “clinical reinforcement trial” concept developed in Zhao, et al.
(2009) to enable application to NSCLC treatment and to utilize right-censored
survival data.

For NSCLC patients who present with a good performance status and stage
IIIB/IV disease, platinum-based chemotherapy is the primary treatment which
offers a modest survival advantage over best supportive care (BSC) alone. First-
line treatment primarily consists of doublet combinations of platinum com-
pounds (cisplatin or carboplatin) with gemcitabine, pemetrexed, paclitaxel, or
vinorelbine (Scagliotti et al., 2008; Sandler et al., 2006; Pirker et al., 2008).
These drugs modestly improve the therapeutic index of therapy, but no combina-
tion appears to be clearly superior. More recently, the addition of bevacizumab,
a monoclonal antibody against vascular endothelial growth factor (VEGF), to
carboplatin and paclitaxel has been shown to produce a higher response rate
and longer progression-free survival and overall survival times (Sandler et al.,
2006). However, this phase III study was only designed to investigate patients
with histologic evidence of non-squamous cell lung cancer. Therefore, in first-
line treatment of NSCLC, a very important clinical question is what tailored
treatment to administer based on each individual’s prognostic factors (including
the patient’s histology type, toxicity profile, smoking history, and VEGF level,
etc.), among many approved first-line treatments.

All patients with advanced NSCLC who initially receive a platinum-based
first-line chemotherapy inevitably experience disease progression. Approximately
50–60% of patients on recent phase III first-line trials received second-line treat-
ment (Sandler et al., 2006). Similar to the first-line regimen, three FDA ap-
proved second-line agents (docetaxel, pemetrexed, and erlotinib) appear to have
similar response and overall survival efficacy but very different toxicity profiles
(Shepherd et al., 2000; Ciuleanu et al., 2008; Shepherd et al., 2005). The
choice of agent should also mainly depend on a number of factors, including
the patient’s comorbidities, toxicity from previous treatments, and the risk for
neutropenia. A better understanding of prognostic factors in the second-line
setting may allow clinicians to better select patients for second-line therapy,
and lead to better designed second-line trials.
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Figure 1: Treatment plan and therapy options for an advanced NSCLC trial.

The current standard treatment paradigm is to initiate second-line therapy
at the time of disease progression. Recently there have been two phase III trials
that have investigated other possible timings of initiating second-line therapy
(Fidias et al., 2007; Ciuleanu et al., 2008). Both of these trials have revealed a
statistically significant improvement in the progression-free survival, and a trend
towards improved survival for the earlier use of second-line therapy. However,
in terms of considering overall survival as the primary endpoint, the treatment
effect revealed by these two trials is not significant. Stinchcombe and Socinski
(2009) claimed that even under the best of circumstances not all patients will
benefit from early initiation of second-line therapy. Hence the proper selection
of patients is also critical to determining the proper time for initiation. Hence,
in addition to the difficulty of discovering individualized superior therapies in
second-line treatment, another primary challenge is to determine the optimal
time to initiate second-line therapy, either to receive treatment immediately
after completion of platinum-based therapy, or to delay to another time prior to
disease progression, whichever results in the largest overall survival probability.
A key goal is to provide patients with non-cross-resistant therapies capable of
obtaining better response rates and longer survival time.

Some patients who maintain a good performance status and tolerate ther-
apy without significant toxicities will receive third-line therapy (Stinchcombe
and Socinski, 2008). Since there is only one FDA approved agent (Erlotinib)
available for third-line treatment, we restrict our attention hereafter to finding
optimal therapies for first-line and second-line only.

Figure 1 illustrates the treatment plan and clinically relevant patient out-
comes. Therapy begins with first-line platinum-based doublets aimed at improv-
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ing survival and palliating disease-related symptoms without undue toxicity.
The patient is then delivered to no more than 8 cycles of treatment as recom-
mended by the American Society of Clinical Oncology. Socinski and Stinch-
combe (2007) suggest the standard initial duration of platinum-based therapy
should be 3 to 4 cycles since four of the five trials investigating the duration
of platinum therapy in the first-line setting have revealed equivalent survival
with the shorter duration of therapy. Due to the effects of the initial treat-
ment, patients generally experience disease progression within a median of 3–6
months, and the median survival time observed is 8 to 10 months (Schiller et al.,
2002; Sandler et al., 2006). Approximately 30–40% of patients survive 1 year,
and less than 15% survive 2 years (Bunn and Kelly, 1998). If the first line of
treatment is successfully completed without progression or death, then a second
line of therapy is administered sometime between the completion of first-line
treatment and the time of first evidence of disease pregression. Patients with a
good performance status in second-line trials have a median survival duration
of approximately 9 months (Stinchcombe and Socinski, 2008). Given the non-
curative nature of chemotherapy in advanced NSCLC, we will use the overall
survival time as the primary endpoint.

The primary scientific goal of the trial is to select optimal compounds for first
and second-line treatments as well as the optimal time to initiate second-line
therapy based on prognostic factors yielding the longest averaged survival time.
Our design is based on a reinforcement learning method, called Q-learning, for
maximizing the average survival time of patients as a function of prognostic
factors, treatment decisions, and optimal timing. Zhao, et al. (2009) intro-
duced the clinical reinforcement trial concept based on Q-learning for discov-
ering effective therapeutic regimens in potentially irreversible diseases such as
cancer. The concept is essentially an extension and melding of dynamic treat-
ment regimes and sequential multiple assignment randomized trials (Murphy,
2005a) to accommodate both the presence of an irreversible disease state and a
possible continuum of treatment options. The generic cancer application devel-
oped in Zhao, et al. takes into account a drug’s efficacy and toxicity simultane-
ously. The authors demonstrate that reinforcement learning methodology not
only captures the optimal individualized therapies successfully, but is also able
to improve longer-term outcomes by considering delayed effects of treatment.
Their approach utilizes a simplistic reward function structure with integer val-
ues to assess the tradeoff between efficacy and toxicity. In the targeted NSCLC
setting, however, this simplistic approach will not work due to the necessity
of using overall survival time as the net reward to reflect the desired primary
endpoint, and new methods are required.

Our proposed clinical reinforcement trial for NSCLC involves a fair ran-
domization of patients among the different therapies in first and second-line
treatments, as well as randomization of the time of initiating second-line ther-
apy. Reinforcement learning is used to analyze the resulting data and estimate
optimal individualized treatment regimens. In order to successfully handle the
complex fact of heterogeneity in treatment across individuals as well as right-
censored survival data, we modify the support vector regression (SVR) approach
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(Vapnik, Golowich, and Smola, 1997) within a Q-learning framework to fit po-
tentially nonlinear Q-functions for each of the two decision times (before first
line and before second line). In addition, a second trial with a phase III structure
is proposed to be conducted after this first trial to validate the improvement of
the optimal individualized therapy against the standard of care and/or other
valid competing therapies.

The remainder of this article is organized as follows. In Section 2, we pro-
vide a detailed description of the patient outcomes and Q-learning framework,
followed by an introduction to SVR for estimating Q-functions and the develop-
ment of a new form of SVR, ε-SVR-C, for right-censored outcomes. The NSCLC
trial conduct and related computational issues are presented in Section 3. In
Section 4, we present a simulation study of the design to discover individualized
optimal treatment strategies. We close with a discussion in Section 5.

2 Reinforcement Learning Framework

2.1 Patient Outcomes

Let t1 and t2 denote the decision times for the first and second treatment lines,
respectively. After initiation of first-line chemotherapy, the time to disease
progression is denoted by TP . t2 is also the time at the completion first-line
treatment, which is a fixed value usually less than TP and determined by the
number of cycles delivered in the first line of chemotherapy. We will assume for
simplicity that TP ≥ t2 with probability 1. Denote the targeted time after t2 of
initiating second-line therapy by TM . Thus, according to the description of the
treatment plan in Section 1, the actual time to initiate the second line is the
minimum of t2 + TM and TP , and the gap between the end of the first line and
the beginning of the second line is TM ∧ (TP − t2), where ∧ denotes minimum.
At the end of first-line therapy, t2, clinicians make a decision about the target
start time TM . We let TD denote the time of death from the start of therapy
(t1), i.e., the overall survival time.

Because of the possibility of right censoring, we define the patient’s censored
time by C and the indicator of censoring by δ = I(TD ≤ C). Right censoring
may be due to several reasons, including an adverse event so severe that ther-
apy cannot be continued or the patient choosing not to receive further therapy.
We will assume for now, however, that censoring is completely for administra-
tive reasons and is thus independent of both the death time and the patient
covariates. For convenience, we let T1 = TD ∧ t2, YD = I(TD ∧ C ≥ t2) and
ν = Pr(YD = 1), and denote T2 = (TD − t2)I(TD ≥ t2) = (TD − t2)I(T1 = t2)
and C2 = (C − t2)I(C ≥ t2). Note that TD = T1 + T2. We can now define the
total follow-up time T 0 = TD∧C = T1∧C+YD(T2∧C2). The settings for deter-
mining T1, C, T2 and T 0 are summarized in Figure 2, including the possibilities
of death or right censoring either before or after second-line therapy.

Denote patient covariate values at the ith decision time by Oi = (Oi1, . . . , Oiq)
for i = 1, 2. Such covariates can include prognostic variables or biomarkers
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t1

T1

YD = 0, δ = 1, T 0 = T1

t1

C

YD = 0, δ = 0, T 0 = C

t2

T2

t1

(t2 + TM ) ∧ TP

YD = 1, δ = 1, T 0 = t2 + T2

t2

C

t1

(t2 + TM ) ∧ TP

YD = 1, δ = 0, T 0 = C

Figure 2: The four cases that determine T 0. In each case, the time of last
follow-up is indicated by a right triangle. Note that TP , T1 and C originate at
t1, while TM and T2 originate at t2.

thought to be related to outcome. In first-line therapy, we assume that the
death time T1 depends on the covariates O1 and possible treatment D1 accord-
ing to a distribution

[T1 | O1, D1] ∼ f1(O1, D1; α1),

where decision D1 only consists of a finite set of agents d1. If the patient survives
long enough to be treated by second-line therapy, we assume that the disease
progression time TP is ≥ t2 and follows another distribution

[TP | O1, D1] ∼ f2(O1, D1; α2).

In addition, to account for the effects of initial timing of second-line therapy on
survival, T2 given TD ≥ t2 is then given by

[T2 | O2, D1, D2, TM , TP ] ∼ f3(O2, D1, D2, TM ; α3),

where D2 consists of a finite set of agents d2 and TM is a continuum of initi-
ation times for second-line therapy as described above. We assume also that
P (TD = t2) = 0. Note the because of the independence of censoring, condition-
ing T2 on YD = 1 is the same as conditioning on TD ≥ t2. Note that this study
is designed to identify the initiation time, TM , which is associated with the best
combination of treatments d1 and d2, while maintaining longest survival TD.
Due to heterogeneities among patients, biomarker-treatment interactions, and
the large number of possible shapes of T2 as functions of TM , the distributions
f1, f2, and f3 can be complicated and may vary between different groups of
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patients. Thus, incorporating Oi into models for fi (i = 1, 2, 3) is quite chal-
lenging, and such model-based approaches can easily become intractable (Thall
et al., 2007). Another important issue is accounting for delayed effects of first-
line therapy. Thall, et al., (2007) claimed that the conventional model-based
approaches are not capable of handling this kind of situation very well. Based
on clinical data, reinforcement learning is not only a model-free method which
carries out treatment selection sequentially with time-dependent outcomes to
determine optimal individualized therapy, but it can also improve longer-term
outcomes by taking into account delayed effects of treatments.

2.2 Q-Learning Framework

Q-learning (Watkins, 1989; Watkins and Dayan, 1992) is one of the most widely
used reinforcement learning methods. In multi-stage decision problem, if we
denote each decision point by t, state St, action At, and reward Rt are three
fundamental elements of Q-learning. Q-learning assigns values to action-state
pairs, and it is learning, based on St, how best to choose At to maximize an
expected discounted return of the form:

Rt = rt + γrt+1 + γ2rt+2 + · · ·+ γT rt+T =
T∑

k=0

γkrt+k,

where γ is the discount rate (0 ≤ γ ≤ 1).
The algorithm therefore has a so-called Q function which calculates the

quality of a state-action combination as follows:

Q : S ×A→ R.

The motivation of Q-learning is that once the Q functions have been estimated,
we only need to know the state to determine an action, without the knowledge of
a transition model that tells us what state we might go to next. Before learning
has started, Q returns a fixed value which is chosen by the designer. Then, at
each time point t, the learner is given a reward value which is calculated for each
combination of a state st ∈ St, and action at ∈ At. The core of the algorithm is
a simple value iteration update. It assumes the old value and makes a correction
based on the new information as follows (Sutton and Barto, 1998):

Qt(st, at)← Qt(st, at) + αt(st, at)×[
rt + γ max

at+1
Qt+1(st+1, at+1)−Qt(st, at)

]
, (1)

where rt is the current reward given at time t, αt(st, at) ∈ (0, 1] is the learning
rate (or learning step-size). αt(st, at) is a constant which determines to what
extent the newly acquired information will override the old information, that
is, how fast learning takes place. A factor of 0 will make the learner not learn
anything, while a factor of 1 will make the learner consider fully the most recent
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information. We can interpret γ as a control to balance a learners’ immediate
rewards and future rewards. As γ approaches 1, we take future rewards into
account more strongly. In the context of this paper, we let γ = 1, which means
we fully maximize rewards over the long run. For simplicity of computation,
we ignore the step-size (let αt(st, at) = 1) for the rest of the article. All results
hold with minor modifications when the step-size effects are considered. Then
model (1) can be simplified to a one-step simple recursive form

Qt(st, at)← rt + max
at+1

Qt+1(st+1, at+1). (2)

The Q-learning algorithm attempts to find a policy π that maps states to
actions the learner ought to take in those states. π is possibly deterministic,
non-stationary, and non-Markovian. We denote the optimal policy by π∗

t , which
satisfies

π∗
t = arg max

at

Qt(st, at).

Zhao et al. (2009) performed a simulation study of a simple Q-learning ap-
proach with 6 decision time points for discovering optimal dosing for treatment
of a simplistic generic cancer. While the results were encouraging, much work
is needed before these methods can be applied to specific, realistic cancer sce-
narios, such as the NSCLC setting of this paper. For example, in their study,
the choice of treatments at each decision time point is taken simply among a
continuum of dosing levels. However, in NSCLC treatment with two decision
time points, the action variables in the second stage become two-dimensional (d2

and TM ). The second issue is that overall survival time, the endpoint of interest
in NSCLC, cannot be utilized in the usual reward function structure in stan-
dard Q-learning, and new methodology and modeling are needed. Moreover,
the presence of censoring in the reward outcome means that a fundamentally
new approach for estimating the Q-function is needed.

In our clinical setting we respectively denote state and action random vari-
ables by Oi and Di for i = 1, 2. This is consistent with notations of prognostic
factors or biomarkers and treatment options used in Section 2.1. As mentioned
in Section 1, we consider survival time as the primary reward. Specifically, by
performing a treatment d1, where d1 ∈ D1, the patient can transit from first
line to second line treatment. Such treatment associated with prognostic factors
provides the patient a progression time TP and T1. Moreover, D2, which consists
of two dimensional action variables consisting of both a discrete action (agent)
d2 mixed with a continuous action (time) TM , provides the patient a survival
time T2 given TD ≥ t2. After adjusting for censoring, the reward function for
the first stage is just

T1 ∼ R1(o1, d1).

In the second stage, the reward function is defined by T2 conditional on YD = 1,
which is equivalent to T2 conditional on TD ≥ t2, where T2 satisfies

T2 ∼ R2(o2, d1, d2, TM ).
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Functions R1 and R2 are obtainable from f1 and f3, defined previously, and are
usually not observable. Note also that both T1 and T2 are censored rather than
directly observed. In Q-learning, because for every state there are a number
of possible treatments that could be taken, each treatment within each state
has a value according to how long the patient will survive due to completion of
that treatment. The scientific goal of our study is to find an optimal policy to
maximize patients’ overall survival time TD. This is accomplished by learning
which treatment (including starting time for second-line therapy) is optimal for
each state.

While learning a non-stationary non-Markovian optimal policy from a clin-
ical reinforcement trial data set

{O1, D1, T1 ∧ C, O2, D2, T2 ∧ C2},
we denote the estimation of the optimal Q-functions based on this training data
by Q̂t, where t = 1, 2, 3. The indexes 1 and 2 correspond to the decision times t1
and t2 while index 3 is included only for mathematical convenience. According
to the recursive form of Q-learning in (2), we must estimate Qt backwards
through time, that is, use the estimate Q3 from the last time point back to Q1

at the beginning of the trial. For convenience we set Q3 equal to 0. In order to
estimate each Qt, we denote Qt(Ot, Dt; θt) as a function of a set of parameters
boldsymbolθt, and we allow the estimator to have different parameter sets for
different time points t. Once this backwards estimation process is done, we
save Q̂1 and Q̂2, and we thereafter use them to respectively estimate optimal
treatment policies

π̂1 = arg max
d1

Q̂1(o1, d1; θ1)

and
π̂2 = arg max

d2,TM

Q̂2(o2, d2, TM ; θ2),

for new patients. Since the resulting estimated optimal policies are functions of
patient covariates, the resulting treatment regimens are individualized. These
individualized treatment regimens should also be evaluated in a follow-up con-
firmatory phase III trial comparing the optimal regimens with the standard of
care or other appropriate fixed (i.e., non-individualized) treatments.

2.3 Support Vector Regression

A strength of Q-learning is that it is able to compare the expected reward for the
available treatments without requiring a model of the relationship. To achieve
this, the main task is to estimate the Q functions for finding the corresponding
optimal policy. However, challenges may arise due to the complexity of the
structure of the true Q function, specifically, the non-smooth maximization
operator in the recursive equation (2).

Nonparametric statistical methods are appealing for estimating Q functions
due to their robustness and flexibility. For instance, using random forest (RF) or
extremely randomized trees (ERT) techniques is very effective for extracting a
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well-fitted Q functions (Ernst, Geurts, and Wehenkel, 2005; Geurts, Ernst, and
Wehenkel, 2006; Guez, Vincent, Avoli, and Pineau, 2008; Zhao et al., 2009).
Besides the RF and ERT methods, other methodologies for fitting Q include,
but are not limited to, neural networks, kernel-based regressions (Ormoneit and
Sen, 2002), and support vector machines (SVM) (Vapnik, 1995). Our experience
so far indicates that both SVR and ERT work quite well and their accuracy is
approximately equivalent, although ERT is more computationally intense.

In the present article we apply SVR as our main method to fit Q functions
and learn optimal policies using a training data set. SVR provides a compro-
mise between the parametric and purely nonparametric approaches. The ideas
underlying SVR are similar but slightly different from SVM within the margin-
based classification scheme. To illustrate, consider the case where the rewards
in the training data set are not censored. At each stage, given (xi, yi)n

i=1, where
attributes xi ∈ R

m and label index yi ∈ R, the goal in SVR is to find a function
f : R

m → R that closely matches the target yi for the corresponding xi. Note
that in our simulation study in Section 4, xi may be replaced by information
of states along with actions and yi may be replaced by survival time, respec-
tively. Instead of the hinge loss function used in SVM, one of the popular loss
functions involved in SVR is known as the ε-insensitive loss function (Vapnik,
1995), which is defined as

L(f(xi), yi) = (|f(xi)− yi| − ε)+, (3)

where ε > 0 and the subscript + denotes taking the positive part. That is,
as long as the absolute difference between the actual and the predicted values
is less than ε, the empirical loss is zero, otherwise there is a cost which grows
linearly. SVR is more general and flexible than least-squares regression, since
it allows a predicted function that has at most ε deviation from the actually
obtained targets yi for all the training data. The lack of differentiability in
(3) implies a difficulty for efficient optimization, but SVR solves an alternative
optimization problem as follows:

min
w,b,ξ,ξ′

1
2
‖w‖2 + CE

n∑
i=1

(ξi + ξ′i),

subject to (wT Φ(xi) + b)− yi ≤ ε + ξi,

yi − (wT Φ(xi) + b) ≤ ε + ξ′i,

ξi, ξ
′
i ≥ 0, i = 1, . . . , n. (4)

wT Φ(xi)+b is defined as a separating hyperplane, where Φ is a nonlinear trans-
formation which maps data into a feature space. ξi and ξ′i are slack variables
and CE is the cost of error. By minimizing the regularization term 1

2‖w‖2
as well as the training error CE

∑n
i=1(ξi + ξ′i), SVR can avoid both overfit-

ting and underfitting of the training data. A class of functions called kernels
K : R

m×R
m → R such that K(xi,xj) = Φ(xi)T Φ(xj) (for example, the Gaus-

sian kernel is K(xi,xj) = exp (−ζ‖xi − xj‖2)) are used in SVR to guarantee
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that any data set becomes arbitrarily separable as the data dimension grows.
Since the SVR function is derived within this reproducing kernel Hilbert space
(RKHS) context, the explicit knowledge of both Φ and w are not needed if we
have information regarding K. In this case, problem (4) is equivalent to solving
an optimization dual problem equipped with Lagrange multipliers λi:

min
λ,λ′

1
2
(λ− λ′)T K(xi,xj)(λ− λ′)−

n∑
i=1

(yi − ε)λ′
i +

n∑
i=1

(yi + ε)λi,

subject to
n∑

i=1

(λi − λ′
i) = 0,

0 ≤ λi, λ
′
i ≤ CE , i = 1, . . . , n. (5)

Both parameters ζ and CE in SVR are obtained by utilizing cross validation
to achieve good performance. Once the above formulation is solved to get the
optimal λi and λ′

i, the approximating function at x is given by:

f(x) =
n∑

i=1

(λ′
i − λi)K(xi,x) + b. (6)

Unfortunately, this approach as is cannot be implemented in the presence of
censoring.

2.4 Support Vector Regression for Censored Subjects

Note that we have in the prior section assumed that all patients are followed
until they die. In conducting an NSCLC trial, a common problem is the right
censoring caused by patients who do not complete the study and drop out of the
study without further measurements. Possible reasons for patients dropping out
of the study include, adverse reactions, lack of improvement, unpleasant study
procedures, and other factors related or unrelated to the trial procedure and
treatments. As mentioned previously, we assume in this paper that censoring is
independent of death.

In general, we denote interval censored data by (xi, li, ui)n
i=1. If the pa-

tient experiences the death event and TD is observed rather than being interval
censored then we include TD and denote such an observation by (xi, yi). In
other words, when we observe TD exactly (δ = 1), we let li = ui = yi. Note
that by letting ui = +∞ we can easily construct a right censored observation
(xi, li, +∞).

One naive way to handle censored data within Q-learning by using SVR is to
consider only those samples for which the survival times TD are known exactly.
Such an approach which totally ignores censoring will both reduce and bias the
sample for statistical analysis and inference. Thus the more patients that are
censored, or the earlier they are censored, the more unreliable the results will be.
An SVR procedure that targets interval censored subjects was introduced by
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Shivaswamy, Chu, and Jansche (2007). The key component of their procedure
is a loss function, defined as L(f(xi), li, ui) = max(li − f(xi), f(xi) − ui)+.
However, this loss function dose not have ε-insensitive properties, that is, it
does not allow ε or other deviations from the predicted f(xi), especially when
li = ui = yi. In this article, we propose a modified SVR algorithm with ε-
insensitive loss function (called ε-SVR-C) to make use of both survival times
and censoring times in the data set and to reduce the potential bias which may
be caused by performing a classical SVR with censored data.

Given the interval censored data set (xi, li, ui)n
i=1, our modified loss function

is defined as

L(f(xi), li, ui) = max(li − ε− f(xi), f(xi)− ui − ε)+. (7)

The main difference between (3) and (7) is that yi is separated into two parts
which are replaced by li and ui, respectively. We remark that this loss function
does not penalize values of f(xi) if it is between li − ε and ui + ε. On the other
hand, the cost grows linearly if this output is more than ui +ε or less than li−ε.
Figure 3 shows the loss function of the modified SVR. Note that when ui = +∞,
this loss function becomes one sided, which means there is no empirical error
if f(xi) ≥ li − ε. In addition, when the data is not observed as censored, our
modified SVR algorithm reduces to the classical SVR.

Defining index sets L = {i : li > −∞} and U = {i : ui < +∞}, the
corresponding modified SVR optimization formulation is:

min
w,b,ξ,ξ′

1
2
‖w‖2 + CE

(∑
i∈L

ξi +
∑
i∈U

ξ′i

)
,

subject to (wT Φ(xi) + b)− ui ≤ ε + ξi, i ∈ U,

li − (wT Φ(xi) + b) ≤ ε + ξ′i, i ∈ L,

ξi ≥ 0, i ∈ L; ξ′i ≥ 0, i ∈ U.

Similarly to classical SVR, the dual can be presented as follows by introducing
the Lagrange multiplier λi:

min
λ,λ′

1
2
(λ− λ′)T K(xi,xj)(λ− λ′)−

∑
i∈L

(li − ε)λ′
i +
∑
i∈U

(ui + ε)λi,

subject to
∑
i∈L

λ′
i −
∑
i∈U

λi = 0,

0 ≤ λi, λ
′
i ≤ CE , i = 1, . . . , n.

Once the above formulation is solved to get the optimal λi and λ′
i, the approx-

imate function at x can be obtained and has the same form as equation (6).
Based on results for non-censored Q-learning with classical SVR, it is expected
that the ε-SVR-C behaves similarly, with the estimated policies π̂ being more
robust to censored data and being more optimal than results where the censored
patients are simply ignored. The effectiveness of ε-SVR-C will be demonstrated
in a small simulation study reported later in this paper.
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li − ε ui + ε f(xi)

L(f(xi), li, ui)

(a)

li − ε f(xi)

L(f(xi), li, +∞)

(b)

Figure 3: Modified SVR loss functions for interval censored data (a) and right
censored data (b).
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3 Trial Conduct and Computational Strategy

Different populations of patients with NSCLC appear to have different clini-
cal and molecular characteristics, so clinical trials that investigate the activity
of different agents, and incorporate patient selection based on clinical factors,
are required. We will now describe a virtual clinical reinforcement trial which
provides a realistic approximation to a potentially real NSCLC trial that evalu-
ates two-line treatment strategies for patients with NSCLC who have not been
treated previously with systemic therapy. As mentioned in Section 1, while
many new single agents with potential clinical efficacy currently are being pro-
duced at an increasing rate, the number of doublet combinations in the first
line that can be evaluated clinically is limited. Considering the number of pos-
sible agents that may be of interest in the second line, the limitations are even
greater.

Without loss of generality, suppose for simplicity that strategies are based
on four FDA approved therapies (either single agents or doublets), which we de-
note by Ai, i = 1, . . . , 4. In our study we assume that the second line treatment
must be different from the first. When designing the trial, two of the four agents
A1 and A2 are selected for first-line treatment, while A3 and A4 are selected
for second line. A total of N patients are recruited into the trial and fairly ran-
domized at enrollment between A1 and A2, and each patient is followed through
to completion of first-line treatment, given such patient is not dead or lost to
follow-up from the study. We fix this duration t2 − t1 as 2.8 months, although
other lengths are possible, depending on the number of cycles of treatment. At
the end of first-line treatment, patients are randomized again between agents
A3 and A4. Moreover, another important decision necessary to make at this
point is when to initiate the second-line treatment. Thus, the initiation for
second-line treatment could be randomized to as early as t2 or as late as TP

(recall that TP denotes the time of patient’s disease progression). This will be
accomplished by randomizing to a target initiation time TM over the interval
[0, 2] (in months) and then initiating second line therapy at TM ∧ (TP − t2).
At the end of the trial, the patient data is collected and Q-learning is applied,
in combination with SVR applied at each time point, to estimate the optimal
treatment rule as a function of patient variables and biomarkers, at t1 and t2.

The trial described above was motivated by the desire to compare several
agents as well as timing in a randomized fashion, the belief that different agents
combined with different timing given consecutively may have different effects
for different populations of patients, and the desire to determine a sound basis
for selecting individualized optimal strategies for evaluation in a future clinical
trial. Putting this all together, the entire algorithm for Q-function estimation
and optimal treatment discovery can be summarized as follows:

1. Inputs: If t = 1, a set of training data consists of attributes xi (states o1,
actions d1) and index yi (censored rewards {T1 ∧C, δ}), i.e. {(o1, d1, T1 ∧
C, δ)i, i = 1, . . . , n}; if t = 2 and YD = 1, a set of training data {(o2, d2, TM , T2∧
C2)j , j = 1, . . . , n′}, where n′ ≤ n since patients may die or be censored
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before second-line therapy.

2. Initialization: Let Q̂3 be a function equal to zero.

3. Q2 is fitted with ε-SVR-C through the following equation:

Q2(o2, d2, TM ) = T2 + error,

where T2 is assessed through the censored observation {T2 ∧ C2, δ}. This
is possible to do since we are restricting ourselves in this step to patients
for whom YD = 1.

4. Q1 is fitted with ε-SVR-C through the following equation:

Q1(o1, d1) = T1 + I(T1 = t2) max
d2,TM

Q̂2(o2, d2, TM ) + error

= T1 + I(T1 = t2)T̂2 + error,

where T1 + I(T1 = t2)T̂2 is assessed through the censored observation
(X̃, δ̃) = (T1 ∧ C + YDT̂2, δ + (1 − δ)YD). The reason this works can
be summarized in two steps: First, we can show after some algebra that
X̃ = T̂D ∧ C̃ and δ̃ = I(T̂D ≤ C̃), where T̂D = T1 + I(T1 = t2)T̂2

and C̃ = CI(C < t2) + ∞I(C ≥ t2), and thus we have independent
right censoring of the quantity T̂D. Second, since Q1 needs to model
the expectation of TD given the covariates (O1, D1), it is appropriate if
we replace TD with the quantity T1 + I(T1 = t2)E (T2 |O1, D1, TD ≥ t2 ).
Since T̂2 is an estimate of the latter conditional expectation, our approach
is valid.

5. For the SVR computations in steps 3 and 4, if a Gaussian kernel is applied,
we use a straightforward coarse grid search with CE = 2−5, 2−3, . . . , 215

and ζ = 2−15, 2−13, . . . , 23, evaluated at each candidate pair (CE , ζ), and
then select the one that yields the highest cross-validation rate.

6. Given Q̂1 and Q̂2, the individualized optimal polices π̂1 and π̂2 for appli-
cation to future patients are computed.

4 Simulation Study

To demonstrate that the tailored therapy for NSCLC found by using the pro-
posed clinical reinforcement trial is superior, we employ an extensive simulation
study to assess the proposed approach on virtual clinical reinforcement trials of
patients, and then evaluate using phase III trial-like comparisons between the
estimated optimal regimen and the various possible fixed treatments.
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4.1 Data Generating Models

Based on historical research, it is well known that the rate of disease progression
or death for patients with advanced NSCLC increases over time. Consequently,
in order to generate simulated data, we simply consider that T1, TP − t2, and
T2 conditional on TD ≥ t2 follow different exponential distributions. Many
alternative models are also possible.

Let exp(x) denote an exponential distribution with mean ex. Also let Wt

and Mt be patient prognostic factors observable at t = 1, 2 (corresponding to
times t1 and t2) which will be defined shortly. For a patient given first-line
treatment d1, we assume that T1 = T̃1 ∧ t2, where

[T̃1 | D1] ∼ exp(αD1 + βD1W1 + κD1M1 + τD1W1M1). (8)

If T̃1 ≥ t2, we generate TM from a uniform [0, 2] distribution. We now absorb
TP into TM for modeling T2 given TD ≥ t2 through an intent-to-treat structure
(basically, we can ignore TP since it depends only on D1, M1 and W1 and not
on TM ). In addition, for a patient given second-line treatment d2 and initiation
time TM , we assume the death time

[T2 | D1, D2] ∼ exp(αD12 + βD12W2+
κD12M2 + h(TM ; ϕ)), (9)

where h(TM ; ϕ) is a function depending on the parameter ϕ which reflects the
effect of timing TM on death. The total time to death is then TD = T1 + I(T1 =
t2)T2. We then need to generate the right censoring time C uniformly from the
interval [t1, t1 + u]. To find u, we estimate the unconditional survival function
Ŝ(t) for the failure time TD, where “unconditional” refers to taking expectation
over the covariates Di, Wi, Mi(i = 1, 2), and TM of the conditional survival
function TD. Then, u is the solution to

1
u

∫ t1+u

t1

Ŝ(x)dx = p,

where p is the desired probability of censoring.
Note that in our simulation study we straightforwardly use exponential pdfs

(8) and (9) to replace f1 and f3 and we drop f2, where (f1, f2, f3) were described
in Section 2.1. For the sake of simplicity, in these density functions only two
state variables, quality of life (QOL) Wt and tumor size Mt, are considered as
patient prognostic factors or biomarkers to be related to outcome. We consider
these two factors because they are patient based, realistically easy to measure,
can predict therapeutic benefit after treatment of chemotherapy, and, more
importantly, they are significant prognostic factors for survival (Socinski et al.,
2007). In addition, state variables for the next decision are generated by the
simple dynamic models W2 = W1 + TMẆ1 and M2 = M1 + TMṀ1, where Ẇ1

and Ṁ1 are constants.
The parameter vector for patients who only experience first-line treatment

is
θ1 = (αD1 , βD1 , κD1 , τD1),
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Table 1: The scenarios studied in the simulation. Sample size = 100/group.

Group State Variables Status Timing (h) Optimal Regimen

1
W1 ∼ N(0.25, σ2)

W1 ↓M1 ↑ A1A32M1 ∼ N(0.75, σ2)

2
W1 ∼ N(0.75, σ2)

W1 ↑M1 ↑ A1A41M1 ∼ N(0.75, σ2)

3
W1 ∼ N(0.25, σ2)

W1 ↓M1 ↓ A2A33M1 ∼ N(0.25, σ2)

4
W1 ∼ N(0.75, σ2)

W1 ↑M1 ↓ A2A42M1 ∼ N(0.25, σ2)

otherwise, it is

θ2 = (αP
D1

, βP
D1

, κP
D1

, τP
D1

, αD12 , βD12 , κD12 , ϕ).

Parameters vectors θ1 and θ2 as well as the shape of the time-related function
h(TM ; ϕ) vary among different patients. Note that two patients who receive
different decisions with the same first-line treatment, say (A1, A3) and (A1, A4),
both contribute data for estimating Q1.

4.2 Clinical Scenarios

To construct a set of scenarios reflecting the interaction between two lines of
treatment, we temporarily assume that a large portion of patients survive long
enough to be treated by second-line therapy, that is, we adjust the parameters so
that ν = 0.8 averaged across all patients. Other than the constraint on ν, each
clinical scenario under which we will evaluate the design in the simulation study
is built by a unique set of fixed values of (αP

D1
, βP

D1
, κP

D1
, τP

D1
, αD12 , βD12 , κD12).

The remaining fixed parameter values needed for the simulations are those that
determine how T2 varies as a function of TM . To implement this, we specified
four corresponding model-based cases of each function h(TM ; ϕ) in terms of
their numerical values at each TM . All of these underscore the importance
of specifying the optimal regimen to target a subpopulation of patients with
distinct characteristics.

Hence, to facilitate interpretation of reinforcement learning strategies for
capturing individualized therapies, four scenarios are specified and summarized
in Table 1. In group 1 and 4, initial timing of second-line therapy for survival
time (T2) are functions that form an inverse-U (quadratic) shape with TM ,
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while initial timing in group 2 and 3 for T2 are functions that linearly decrease
and increase with TM , respectively. Each group thus consists of a combination
(Ai, Aj) as well as TM from Table 1 (where i = 1, 2 and j = 3, 4), with the fixed
values of αP

D1
, βP

D1
, κP

D1
, τP

D1
, αD12 , βD12 , κD12 , and ϕ as described above.

Note that whatever combination of two-line treatment (Ai, Aj) is evaluated,
all patients within one group share the same trend of T2 versus TM . However,
we assume there is only one strategy that will yield the longest survival in each
group. For convenience, we denote “1, 2, 3” as the location of optimal initiation
of second-line therapy, say “immediate, intermediate, delayed”, respectively.
For example, as claimed in the last column in Table 1, A1A32 indicates that the
two-line treatments (A1, A3) along with an intermediate initiation time point
is the optimal regimen for group 1. The inverse-U-shaped function T2 for TM

corresponds to the case where patients have relatively low QOL at enrollment
but relatively large tumor size, hence, this optimal intermediate initiation of
second-line therapy is recommended to delay treatment a short time for patients
who may have severe symptoms and low tolerance of chemotherapy, but not to
fully delay due to the possibility of death. In scenario 2, due to the good QOL
and large tumor size at enrollment, it is optimal for the second-line therapy to
begin immediately after first-line therapy, hence, A1A41 is the optimal regimen
for these patients. Similarly, in scenario 3, treatment A2A33 is considered the
superior treatment since we believe fully that delaying the initiation of second-
line therapy at the time of disease progression will improve survival and palliate
symptoms. Although scenario 4 has optimal regimen A2A42, due to the flat
shape of T2 versus TM , there is no significant improvement between delaying
and not delaying the initiation of second-line therapy. In this manner, many
plausible effects of treatment are captured, at least to some degree, including
both reversible and irreversible toxicities resulting from chemotherapy.

4.3 Simulation Methods and Results

First, according to various (W1, M1) as described in Table 1, a non-censored
sample of N = 100 virtual patients for each of the four disease profile groups
(with total sample size n = 400) is generated. Q̂1 and Q̂2 are computed via
the algorithm given in Section 3. The predicted optimal strategies are then
computed, and an independent testing sample of size 100 per disease pro-
file group (hence also totalling 400) is also generated. For evaluation pur-
poses, we then assign all virtual test patients to all possible combinations of
(Ai, Aj)× {immediate, intermediate, delayed} as well as the estimated optimal
strategy, resulting in 13 possible treatments. Patients’ outcomes (overall sur-
vival) conducted by our estimated optimal regimens and different 12 fixed regi-
mens are all evaluated. This is similar in spirit to a virtual phase III trial with
5200 = 13×400 patients, except that the estimated effects will be more precise.
Moreover, we repeated the simulations 10 times for the training sample trial
(with total sample size n = 400). Then, 10 estimated optimal strategies learned
from these 10 training trials were applied to the same testing patients described
above. All of the results for each of the 13 treatments are averaged over the
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Table 2: Comparisons between true optimal regimens and estimated optimal
regimens for overall survival (month). Each training dataset is of size 100/group
with 10 simulation runs. The testing dataset is of size 100/group.

Optimal Optimal True Selected Predicted survival
Group regimen timing survival timing Min Mean Max

1 A1A32 3.80 16.00 3.92 15.83 15.93 16.00
2 A1A41 2.80 15.33 2.94 14.96 15.13 15.28
3 A2A33 4.80 18.37 4.62 17.75 17.99 18.27
4 A2A42 3.80 20.75 4.11 20.60 20.86 20.97

Average 17.61 17.28 17.48 17.63

400 test patients. As shown in Figure 4, among regular regimens, assigning all
testing patients to A2A32 will yield the averaged longest survival among the 12
fixed treatments at 11.29 months. It thus appears that, in terms of adaptively
selecting best strategies for each group, the optimal regimen obtained by Q-
learning with SVR is superior due to it’s average (over 10 simulations) survival
of 17.48 months. The survival curves for the groups (based on the Kaplan-
Meier estimates) are shown in Figure 5, which demonstrates the effectiveness
of the proposed approach for prolonging survival. Because of this encouraging
result, it is worthwhile to deeply investigate whether our approximations are
close to the exact solution. To carefully examine this comparison, we assign
test patients from each disease profile group to the corresponding true optimal
regimen described in Table 1 to obtain the “True survival” column of Table
2. The minimum, maximum, and mean values of averaged predicted survival
for each group are computed based on these 10 trials, respectively. The results
are summarized in Table 2. The averaged predicted survival over all groups is
shown as 17.48 (which is consistent with the number shown below the “optimal”
bar in Figure 4), this number along with minimum 17.28 and maximum 17.63
are all pretty close to true optimal survival 17.61. In addition to claim that
the frequencies of selecting optimal regimens (Ai, Aj) as true regimen is 100%,
the averaged selected optimal timings are shown in the fifth column of Table 2.
Note that they are close to true optimal timings for each group. In terms of
estimation, under each of the scenarios 1-3 our methods perform very similarly
and slightly underestimates the true optimal survival. In contrast, our method
slightly overestimates the true optimal survival in scenario 4.

Second, although our Q-learning method with N = 100 per group using SVR
leads to an apparently small bias for estimating individualized optimal regimens,
an examination of performance influenced by the sample size is worthwhile. We
repeated the simulations 10 times for each specified sample size while varying
N from 2 to 600 per group. The results are illustrated in Figure 6, which
shows that the method’s reliability is very sensitive to N when N ≤ 80, with
the averaged survival for the estimated optimal strategy increasing from 14.192
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Figure 4: Performance of optimal individualized regimen versus other 12 com-
binations.

when N = 2 to 17.479 when N = 80. The boxplots also show that both the
variance and estimation bias of predicted survival are getting smaller when the
sample size becomes larger. When N ≥ 100, our methods appear to do a very
reliable job of selecting the best strategy. Hence, in the setting we study here,
the sample sizes required to reach an excellent approximation are similar to and
not larger than the sizes required for typical phase III trials.

Third, in order to compare performance of ε-SVR-C for censored subjects
to ignoring the censored cases and using SVR, from 400 training samples over
10 simulations run, we randomly censor as described in Section 4.1 to achieve a
targeted proportion of censoring p, estimate the optimal treatment policy using
ε-SVR-C, throw out the censored observations and use SVR to estimate the
optimal policy, and then apply 400 testing patients to the estimated regimens
to estimate the average survival. This is done for 25%, 50%, and 75% censor-
ing proportions p, respectively. The boxplots are presented in Figure 7. For
instance, in panel (a) we generate 10 training trials with 25% censoring. The
left boxplot in Figure 7(a) indicates the performace for the optimal policy esti-
mated under our proposed method without any censoring. The middle boxplot
indicates the performance based on ε-SVR-C applied to the 25% censored data,
while, in the right boxplot, we simply delete the 25% of patients which are
right-censored and apply SVR to the remaining data to estimate the optimal
policy. This basic process is repeated across the three different censoring levels.
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Figure 7: Boxplots of the predicted survival for the optimal policy estimated
from ε-SVR-C by using training data with 25% (a), 50% (b), and 75% (c)
fraction of right censored subjects. In each panel, from left to right, the three
boxplots indicate performance from no censoring and using SVR, from right-
censoring and using ε-SVR-C, and from throwing out censoring and using SVR,
respectively.

This means that the data presented in the left columns of all three panels are
random replications of the same data scenario. As can be observed in Figure 7,
as the fraction of right-censoring increases, there is an increasing decline in per-
formance resulting from throwing out censored observations. In contrast, our
proposed approach (the middle boxplot of each panel) can robustly estimate the
optimal policy under censoring, with only a minor increase in bias as censor-
ing increases. Clearly, in terms of averaged predicted survival in all cases, the
ε-SVR-C algorithm outperforms the method which totally ignores the cencored
data, particularly when the censoring proportion is large.

5 Discussion

We have proposed a clinical reinforcement trial design for discovering individual-
ized therapy for multiple lines of treatment in a group of patients with advanced
NSCLC. The incorporation of Q-learning with the proposed ε-SVR-C appears
to successfully identify optimal treatment strategies tailored to appropriate sub-
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populations of patients. While our method has been utilized for the two decision
points at hand, the general concepts and algorithms of this approach could be
applied, with suitable modification, to design future trials having similar goals
but for possibly different diseases. Although overall survival time is considered
among many clinicians to be the appropriate primary endpoint in late stage
NSCLC, a potentially important alternative outcome to consider in future can-
cer clinical reinforcement trial research is quality-of-life-adjusted survival (Gel-
ber, et al., 1995). This may require some modification of the proposed ε-SVR-C
methodology.

In this article, we studied the prediction accuracy of our method with varying
sample sizes. The simulation studies show that with sample size N ≥ 100
our method can yield a small estimation bias. However, an important and
challenging question is: how do we determine an appropriate sample size for
a clinical reinforcement trial to reliably obtain a treatment policy that is very
close to the true optimal policy? This sample size calculation is related to
the statistical learning error problem. Recently, there has been considerable
interest in studying the generalization error for Q-learning. Murphy (2005b)
derived finite sample upper bounds in a closely related setting which depends
on the number of observations in the training set, the number of decision points,
the performance of the approximation on the training set, and the complexity
of the approximation space. We believe further development of this theory is
needed to better understand how the performance of Q-learning with SVR is
related to the sample size of the training data in clinical reinforcement trials.
We hope that this article will serve to stimulate interest in these issues.
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