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SNPpy - Database Management for SNP Data
from GWAS Studies

Faheem Mitha, Herodotos Herodotou, Nedyalko Borisov, Chen Jiang, Josh
Yoder, and Kouros Owzar

Abstract

Background: We describe SNPpy, a hybrid script database system using the Python
SQLAlchemy library coupled with the PostgreSQL database to manage genotype
data from Genome-Wide Association Studies (GWAS). This system makes it pos-
sible to merge study data with HapMap data, and merge across studies for meta-
analyses, including data filtering based on the values of phenotype and SNP data.

Results: The current version of SNPpy offers utility functions to import geno-
type and annotation data from two commercial platforms. We use these to import
data from two GWAS studies and the HapMap Project. We then export these in-
dividual datasets to standard data format files that can be imported into statistical
software for downstream analyses.

Conclusions: By leveraging the power of relational databases, SNPpy offers in-
tegrated management and manipulation of genotype and phenotype data from
GWAS studies. The analysis of these studies requires merging across GWAS
datasets as well as patient and marker selection. To this end, SNPpy enables the
user to filter the data and output the results as standardized GWAS file formats.
It does low level and flexible data validation, including validation of patient data.
SNPpy is a practical and extensible solution for investigators who seek to deploy
central management of their GWAS data.
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Abstract

Background: We describe SNPpy, a hybrid script database system using the Python SQLAlchemy

library coupled with the PostgreSQL database to manage genotype data from Genome-Wide Asso-

ciation Studies (GWAS). This system makes it possible to merge study data with HapMap data, and

merge across studies for meta-analyses, including data filtering based on the values of phenotype and

Single-Nucleotide Polymorphism (SNP) data. SNPpy and its dependencies are open source software.

Results: The current version of SNPpy offers utility functions to import genotype and annotation data

from two commercial platforms. We use these to import data from two GWAS studies and the HapMap

Project. We then export these individual datasets to standard data format files that can be imported into

statistical software for downstream analyses.

Conclusions: By leveraging the power of relational databases, SNPpy offers integrated management

and manipulation of genotype and phenotype data from GWAS studies. The analysis of these studies

requires merging across GWAS datasets as well as patient and marker selection. To this end, SNPpy

enables the user to filter the data and output the results as standardized GWAS file formats. It does low

Hosted by The Berkeley Electronic Press



2

level and flexible data validation, including validation of patient data. SNPpy is a practical and extensible

solution for investigators who seek to deploy central management of their GWAS data.

Introduction

Statistical analysis of SNP data from Genome-wide Association Studies (GWAS) typically involves the

management and integration of patient information, including phenotypic data, with the genomic SNP

data across multiple studies. Issues that have to be addressed include (i) data validation of the patient

data and the SNP data, (ii) performance issues with operating on large datasets, and (iii) accurately

updating the portions of the data that are rapidly changing, usually the patient data.

Relational databases are a well-known solution to parts of this problem, particularly data validation.

However, they have not seen much use in this context, possibly because of performance issues caused

by the typically large size of GWAS datasets, coupled with the complex data manipulations the database

would need to handle. We show that these obstacles are surmountable, and that a usable and useful

system can be built based on a relational database.

A common approach to data management is direct code manipulation of raw data files. For exam-

ple, directly extracting SNP or patient data from a file, performing any necessary transformations, and

writing the results to another file. While this ad-hoc approach is simpler and therefore superficially more

attractive, an architected database approach is a scalable and more robust solution. For the remainder

of this section, we discuss the advantages of our database solution.

Databases offer considerable and customizable machinery for low level data validation, as described

below. This machinery can be used to detect corrupt data. It is particularly important in the case of

patient data, which is exceptionally mutable and corruption-prone.

• Column values can be constrained to a fixed set of values defined in auxiliary tables. Our current

database schema uses the allele, chromo, race, sex, and snpval tables for providing data con-

straints on our main tables by restricting certain columns to the contents of the aforementioned

tables (as discussed in the Design Subsection).

• Less restrictively, column values can be confined to a specific type. For instance, a specific column

can be configured to only accept integers or character strings of a fixed or minimum or maximum
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length. Our schema contains many examples of type constraints on integer and character values.

For example, the chromosome and location columns are constrained to be integers.

• A more general category of constraint is check constraints, which allows the user to specify that

the value in a certain column must satisfy a Boolean (truth-value) expression.

• Other useful constraints are unique constraints, which ensure that the data contained in a column

or a group of columns is unique with respect to all the rows in the table. Uniqueness is used in

a number of places. For example, all main identifiers, like fid in the anno table, and name in the

chromo table, are constrained to be unique.

These constraints are essential in identifying corrupt data. For example, if a record specifies that a

patient's sex is `B' (the only valid sex values are `F' for female and `M' for male), the database will return

an error on loading. Similarly, if a string value is specified for a SNP location (only integer values are

allowed) the database will return an error. Also, genotype data is converted to and constrained to be

stored as integers from the set {-1, 0, 1, 2}, which makes corruption of this data unlikely.

It is extremely valuable to be working with validated data on the outset. In contrast, tools not using

a database typically `hardwire' their more limited validation checks. For example, PLINK [1] and Gen-

ABEL [2] verify that for each SNP the same number of patients have been called and that the SNPs are

bi-allelic. As such tools do not use more fine-grained validation, they must rely on testing `downstream' of

the initial data import, at which point the data may have already undergone post-processing, and hence

errors may be harder to detect.

Consider the task of converting GWAS data, consisting of phenotype and genotype data, into stan-

dard format files like PED/MAP or TPED/TFAM, or merging data across different GWAS datasets. An

approach based on manipulating these files requires the software to accommodate different source data

formats like those used by Affymetrix and Illumina. Such functionality would thus depend on both the

source data format and the output data format, so the number of functions required is of the order of

P ×F , where P and F are the number of source formats and the number of output formats respectively.

In contrast, our system breaks this task down into two distinct parts. The first part involves loading data

from various files into the database; a task which is commonly referred to as Extract-Transform-Load

(ETL). The second part involves exporting data from the relational database via Structured Query Lan-

guage (SQL) queries to standard format data files for use in further analyses. This process is illustrated in
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Figure 1. For simplicity, assume one database layout/schema with possible minor variations caused by

differences in source formats. Then we can write a single ETL function for the import of each commercial

or ad-hoc source format. The database export functions need not depend on the source format, since

the database layout is sufficiently independent from the source format. Therefore the data export for

each output format can be implemented as a single SQL query. Thus the number of functions required

here is of the order of P+D, and this simplifies the task.

Databases also allow for repeatable and optimized data transformation tasks to be executed using a

standardized and universally accepted language, namely SQL. SQL query execution is the benchmark

metric of the Relational Database Management System (RDBMS) industry and as such has been finely

optimized in all enterprise class databases. Hence, we use SQL for the task of manipulating and ex-

porting data from the database. The results of the database query can be analyzed externally using

statistical software such as PLINK [1], GenABEL [2] or GLU [3], or internally using PostgreSQL plugin

pl/R [4].

Design and Implementation

Development Environment

Our testing and development environment is a machine with four quad-core AMD Opteron processors

(16 cores total) and 64 GB of Random Access Memory (RAM). Our system consists of two major com-

ponents: a database to store and manipulate the data, and a high-level interface to communicate with

it.

PostgreSQL was a clear choice for the database, as it is the leading open source industrial strength

database, and is competitive in quality and performance with the major proprietary databases.

Parsing data files requires a high level, preferably interpreted language with good text processing

capabilities. Python is a leading open source interpreted language with excellent support for text manip-

ulation and object oriented design. For the communication mechanism between Python and PostgreSQL

we use the Python library SQLAlchemy. SQLAlchemy offers more functionality than a database adapter

like psycopg2. Among other features, SQLAlchemy includes an Object Relational Mapper (ORM), which

enables the use of object oriented programming with a relational database.
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Porting to Alternative Software Environments

It should not be difficult to port the current system to use another suitably advanced RDBMS. The propri-

etary Oracle database is comparable in features to PostgreSQL and is a possible candidate. However,

since Oracle is a proprietary system, the resulting system will be dependent on a proprietary product.

SQLAlchemy (which we use for database communication) supports the Oracle database, and the system

for the most part uses standard SQL queries. Current versions of Oracle support all the advanced SQL

features used, including Common Table Expressions (CTEs) and window functions. Hence, this port

should be possible with relatively minor changes. An example of a PostgreSQL specific extension is the

COPY command, which is used for bulk loading and exporting of data. This would have to be replaced

by a suitable Oracle equivalent, possibly SQL*Loader. There are also some minor uses of PostgreSQL's

SQL Procedural Language (PL/pgSQL) which would need to be rewritten.

The other main part of the system is Python scripts which use the SQLAlchemy database interface.

Replacing Python with another language would of necessity require replacing SQLAlchemy, which is

written in Python. This would be more difficult than replacing the database, since the system depends

heavily on SQLAlchemy's capabilities, including both high level (ORM) style functionality as well as low

level functionality. Significant rewriting would probably be necessary.

Design

The heart of SNPpy is the database schema illustrated in Figure 2. In addition to the schema, we have

developed two classes of Python scripts: (i) input scripts for parsing and loading the database tables,

and (ii) output scripts for processing and exporting the data into different downstream formats, using

SQL queries. The input scripts are written using object-oriented Python, with classes corresponding to

the different platforms. Currently, the system can produce PED/MAP and TPED/TFAM data formats for

individual datasets as well as the merger of multiple datasets. The latter is useful, for example, for doing

quality control with HapMap data. A diagrammatic representation of the overall workflow is shown in

Figure 1.

We have two slightly different database layouts, namelyGeno Single and a variant calledGeno Shard.

The database schema in the Geno Single case consists of nine tables. The pheno table contains

the phenotypic data, where the table's primary key (the unique identifier) is the patient id, as chosen by
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the clinical study. The anno table contains SNP annotation data, including the chromosome, base-pair

position and reference alleles for each SNP. The unique id for this table is the label assigned to the SNPs

by the platform manufacturer. The geno table contains the genotype calls for the experiments and has a

composite primary key consisting of idlink and anno ids. So each entry in this table is uniquely identified

by both an idlink and anno id. The idlink table contains both experimental id and patientid columns.

The former identifies samples, and the latter is a foreign key pointing to the pheno table and identifies

patients. So this table connects the phenotypic and genotypic information located in the pheno and geno

table respectively. In general, a single patient id may correspond to multiple experimental ids. The data

in the pheno, anno and geno tables naturally correspond to the imported phenotype, annotation, and

genotype/calls files. We have a number of auxiliary tables, namely allele, chromo, race, sex, and snpval,

whose sole purpose is to provide data constraints on our main tables.

The Geno Shard layout is similar to the layout above, with the exception that the genotype data is

partitioned into multiple tables, such that rows having the same experimental id are placed in the same

table. This creates one genotype table per sample. The intention is to optimize both data loading and

exporting to the PED file format.

We currently support two genotyping platforms, Affymetrix and Illumina. We use both the database

layouts described above for each platform. We use one database for each platform. Within each

database, each schema corresponds to a dataset (PostgreSQL's namespace within a database). Fig-

ure 3 provides a graphical representation of the data architecture.

Performance and Optimization

First, we consider database loading. For the Geno Single layout, given n patients and K SNPs, the

resulting database tables anno and geno will be of sizes K and n×K respectively. For the Geno Shard

layout, instead of one geno table, we have n genotype tables of size K each.

The genotype data accounts for the largest part of the dataset by far. For database tables of this

size, naive loading of the database tables, as well as query execution will be unacceptably slow. We use

several techniques to optimize these procedures.

Database loading can proceed by loading one row into a table at a time, or by bulk insert of rows.

We use the former method for the smaller tables (e.g., pheno) with the help of SQLAlchemy's ORM. This

method is less efficient but more flexible, and not database specific. We need such flexibility to process
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the more complex and changeable patient phenotypic data. We use the latter method for the larger

tables, e.g. anno and geno (in the Geno Single case). This method is more efficient, but less flexible,

and database specific. Specifically, PostgreSQL offers the low-level COPY command which reads a

file into a database table. This file is typically in Comma-separated Values (CSV) format, with the table

data laid out in the form of one line per table row. The code that writes this file is in C++ to improve

speed, as this process is CPU intensive. We remove the database constraints and indices from the

tables before running COPY, in order to prevent PostgreSQL from checking the constraints and updating

the indices while the COPY is proceeding. The constraints are checked and indices are restored after

COPY completes loading the data into the database.

We now make some specific remarks about the Geno Shard layout. This layout was devised to

optimize PED file export, and corresponds to one genotype table per sample. The problem of loading

these genotype tables is embarrassingly parallel, so we use the Python multiprocessing library to create

a pool of processes to load these tables in parallel. As shown in the Experimental Evaluation Subsection,

both dataset load times and PED export times are greatly improved by the combination of theGeno Shard

layout and parallelization. Additionally, the Geno Shard routines use less memory than the Geno Single

versions.

Next, we consider exporting from the database. We employ standard techniques for optimizing SQL

queries, specifically advanced SQL features such as Common Table Expressions (CTE) and window

functions.

First we address the Geno Single case. We use a pool of threads to parallelize the creation of the

PED and TPED files in the Geno Single case. This requires the Python thread library. Each thread

executes multiple SQL queries. Each query creates a different temporary file containing a part of the

PED or TPED file contents. Once all the parts have been written, the file is assembled from them.

Now we consider the Geno Shard case. Each table in the Geno Shard layout contains exactly the

genotype data of a single sample. Also, the genotype data in a line of a PED file is exactly that of a single

sample. Therefore, to write any line of the file, it is necessary and sufficient to retrieve all the data from a

single table. Retrieving all the data from a single table is fast. Therefore, writing PED files in this case is

fast, and scales well with increasing data size, since the computational requirements of retrieving data

from n tables scale linearly with n. Like Geno Shard loading, this is an embarrassingly parallel problem.

As with Geno Single export, we use a pool of threads to parallelize the creation of the PED file. Here
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each SQL query retrieves all the data from a single table, and writes a line of the PED file to a temporary

file.

Results and Discussion

Functionality

SNPpy currently supports two genotyping platforms (Affymetrix and Illumina) and two database layouts

(Geno Single and Geno Shard) for each of these platforms. It can load datasets into the database in

these layouts, using the load dataset.py script. It can export data as MAP, PED, TPED and TFAM

data files for the Geno Single layout, and as MAP and PED files for the Geno Shard layout. For many

researchers, the ability to export the data into these standard data formats for use by statistical software

such as PLINK, is sufficient. The user can specify a filter condition as a SQL expression in terms of

the columns of one of the anno, idlink and pheno tables. Up to three simultaneous filtering conditions

are possible, corresponding to the three tables. These conditions restrict the data export to the selected

subset. For instance, the user might export data corresponding to selected chromosomes of Caucasian

male patients. Furthermore, it is possible to export data files corresponding to merged datasets. All

exporting functionality is performed by the make output.py script. Additionally, SNPpy can update the

pheno table with an updated pheno data file by using the script update pheno.py. The above functionality

can easily be extended to other platforms and other data formats as outlined below.

There are minor differences between the Affy6 and Illumina platform database layouts. These are

restricted to the anno table. Similarly, a new platform might require additional changes to the existing

layouts. The layouts are all described in dbschema.py using SQLAlchemy, so additional tables would

need to be described there.

The platform specific sections of the loading code are in anno.py and geno.py. anno.py contains the

classes Anno Affy6 and Anno Illumina, which specify the platform specific code to generate the anno

table. Similarly, geno.py contains classes which have platform specific code for generating the geno

table. These two files contain all the platform-specific loading code. To add loading support for another

platform, similar classes would need to be written.

The export functions are in output.py. For a given database layout there is one function to export
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the data to a given format. In most cases, this is a single SQL statement. The variations in SNPpy

database layouts are mostly due to the two database layouts Geno Single and Geno Shard. As already

mentioned, layout differences between the Affy6 and Illumina platforms are minor. So, currently there

are two functions for every supported export format, one each for Geno Single and Geno Shard. The

upshot is that a new export format can be added by writing suitable functions in output.py.

SNPpy uses a single configuration file to control the annotation, import and export of multiple studies.

We expect this feature to significantly simplify project management for researchers dealing with multiple

studies.

Additionally, SNPpy provides a script, simdat.py, to generate simulated phenotype and genotype

data, and a test script, test simdata.py, which currently tests SNPpy code functionality for both Affymetrix

and Illumina platforms using simulated phenotype and genotype data. The simulated data is useful for

testing SNPpy performance for large data sets, and tuning the PostgreSQL configuration for better per-

formance. The test script is useful for quickly checking whether SNPpy runs in a given environment.

For usage details, see the file docs/MANUAL in the source repository.

Experimental Evaluation

For testing purposes, we applied SNPpy to two GWAS studies, one consisting of 925 patients and typed

on the Affymetrix SNP 6 chip, the other consisting of 300 patients and typed on the Illumina Human 610-

Quad chip. In what follows we refer to these as Study Data 1 and 2 respectively. Additionally, we tested

SNPpy on simulated Affymetrix SNP 6 and Illumina Human 610-Quad datasets of varying sizes.

In our testing, we chose simulated datasets of sizes comparable to the size of the 1958 British Birth

Cohort dataset referenced on the Wellcome Trust Case Control Consortium website [5]. The number of

SNPs processed was K = 620, 901 for the Illumina and 932,979 for the Affymetrix platform. A standard

quality control check for GWAS data consists of comparing genetic ancestry based on the study SNP data

to self-reported ancestry and to genetic ancestry estimated from the HapMap samples for that platform.

To this end, the study and HapMap data need to be merged. For each platform, we obtained a set of

HapMap samples from the project webpage [6], which we merged with the respective study data. For

Study Data 1 (Affymetrix SNP 6), we preprocessed 901 CEU, CHBJPT and YRI CEL files into a single

genotype calls file (denoted as HapMap 6). CEU denotes Utah residents with Northern and Western

European ancestry from the Centre d'Etude du Polymorphisme Humain (CEPH) collection. CHB denotes
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Han Chinese in Beijing, China. JPT denotes Japanese in Tokyo, Japan. YRI denotes Yoruba in Ibadan,

Nigeria. For Study Data 2 (Illumina Human 610-Quad), we obtained separate preprocessed HapMap

call files for CEU, CHBJPT and YRI of sizes n = 73, 75 and 76 respectively.

Import and export (into PED format) timings for simulated Illumina datasets are shown in Figures 4

and 5. All timings correspond to warm cache (the query was run before timings were taken, so the data

is already in memory). Timing results for merging simulated Illumina datasets with the corresponding

HapMap datasets are shown in Figure 6.

Comparisons with Other Software

Two software packages that utilize a database backend for managing SNP and phenotype data are

GWAS Analyzer [7] and SNPLims [8].

The SNPLims authors provide PED export timing for an Illumina HumanHapMap300 (317K SNPs)

dataset with 100 samples. They report a processing time of 10 minutes. The results may not be directly

comparable, as the SNPLims authors used different hardware (Intel Xeon 2.4Ghz processor with 1G of

RAM) and software (PostgreSQL 8.1). As the SNPLims code is not available, we were unable to conduct

a more comprehensive comparison.

We downloaded GWAS Analyzer from http://www.nwrce.org/gwas-analyzer. The authors of GWAS

Analyzer do not report performance metrics in the large scale setting. They conjecture (Section 4.2

in [7]) that their system should scale to larger studies by using more processing power, memory and

storage space. We measured import/export timings on GWAS Analyzer using the same server that was

used for reporting performance metrics of SNPpy, and with a data set of the same size and type as

used by SNPLims, namely an Illumina HumanHapMap300 (317K SNPs) dataset with 100 samples. We

also measured timings using the SNPpy Geno Single layout, and the Geno Shard layout with 4 parallel

database processes (j = 4). The time taken for loading the dataset was 18 minutes for GWAS Analyzer,

compared to 4.2 minutes using Geno Single, and 2.6 minutes using Geno Shard. The corresponding

MAP and PED export times were 93 minutes using GWAS Analyzer, compared to 5 minutes using Geno

Single, and 0.75 minutes using Geno Shard. See Table 1 for the comparison timing summary. The

processing times of both SNPpy and GWAS Analyzer were measured with the UNIX time command,

and as before they were warm cache timings.

GWAS Analyzer and SNPLims currently provide web interfaces to their respective systems, and sup-
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port other genotypic and annotation information such as the call rate, Illumina GeneCall score, and

mutation type. While the extensible design of SNPpy enables adding similar functionality, its current

focus is on efficiency, as evinced by the timing comparisons above, and flexibility. Its database loading

uses a variety of techniques, including the customized database layout of Geno Shard, multithreading,

and multiprocessing. SNPpy exports data using a single SQL query per job in most cases. In contrast,

the export facility in GWAS Analyzer is a Perl script, which uses many SQL queries and also manipulates

the data using Perl, incurring a performance penalty. Additionally, SNPpy has more features than GWAS

Analyzer for both import and export. Some of the additional features provided by SNPpy include:

• Use of a centralized configuration system.

• Separation of datasets into different namespaces (PostgreSQL schemas).

• Storage of the genotype calls as 0, 1, 2, -1 instead of letter pairs.

• Support for both Affymetrix and Illumina platforms (can easily be extended to other platforms).

• Support for loading a subset of the data corresponding to a subset of the SNPs.

• Support for exporting to transposed filesets (TPED/TFAM).

• Support for data set filtering.

• Support for data set mergers.

• Native translation of stranding format. Currently, SNPpy supports TOP and FORWARD encoding

for Illumina. Other encodings could be added.

Availability and Future Directions

Future Development

Currently, SNPpy can import data from upstream source data files. A feature to import data from standard

data format files like MAP and PED could also be added.
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The current version of SNPpy assumes a single outcome phenotype of type smallint. For a GWAS

conducted as a correlate to a clinical trial, the relevant phenotype data are, compared to a typical case-

control study, invariably more complex, consisting of large numbers of qualitative and quantitative de-

mographic and clinical variables. SNPpy can be extended to include these complex data sets. This can

be accomplished by importing the relevant data as a database table, which can then be queried against

when conducting export queries. The resulting data can be stored in a text file to be used by statistical

software for downstream analysis. Specifically, both PLINK and GenABEL import additional phenotypes

through text files paired with the PED/MAP (or TPED/TFAM) files.

A natural next step after importing genomic data into PostgreSQL is to employ procedural languages

for PostgreSQL such as pl/R [4] to carry out the analyses directly on the database and export the statis-

tical results rather than the data. The major advantage of this approach as opposed to usual R usage is

that R loads all data into memory, while a database does not. Therefore, the database approach would

be faster, use less memory, and support data sizes that do not fit in memory.

While storing genotype calls from next generation whole-genome scans into a database system may

not be practical due to the enormous size of the resulting data, SNPpy could be readily used to store the

subset of SNPs from these scans that are to be used for statistical analyses. For instance, these could be

SNPs that have a priori been determined to be ``functional'' according to information from bioinformatics

databases.

SNP imputation [9] methods are commonly employed to conduct inference on the basis of SNPs not

typed on the GWAS platform. Three commonly used SNP imputation algorithms are IMPUTE [10, 11],

BEAGLE [12,13] and MaCH [14,15]. As the process of imputation across the entire genome is compu-

tationally prohibitive, the task is commonly split up across the chromosomes or other sub-regions of the

genome. Accordingly, the study data has to be split into a set of individual files, each restricted to the set

of SNPs in the corresponding chromosome. Our proposed database framework can be readily extended

to facilitate the requisite preprocessing to produce these files. Given that SNPpy is a Python program,

it can be further extended to directly call the imputation program after the files have been generated.

Moreover, as the process of conducting imputation analyses across mutually exclusive regions presents

an embarrassingly parallel problem, one can readily use multiprocessing, as SNPpy already does for

import and export.
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Availability and requirements

• Project name: SNPpy

• Project home page: http://bitbucket.org/faheem/snppy. Please submit bugs to the Bitbucket is-

sue tracker at that page. The mailing list is located at http://groups.google.com/group/snppy. A

secondary project home page is http://code.google.com/p/snppy-code/. Please use this in case of

problems with Bitbucket. However, Bitbucket should still be considered the main home page.

• Source Code Archive: See File S1.

• Operating system(s): Linux i386 and AMD64. Tested on the following distributions: Debian 5.0

(lenny) and 6.0 (squeeze), Fedora Core 13 (Goddard) and 14 (Laughlin), Ubuntu 10.04.1 LTS

(Lucid Lynx), OpenSUSE 11.3.

• Programming languages: Python (2.6 or later), SQL, C++.

• Other requirements: SCons, PostgreSQL (8.4 or later), SQLAlchemy (0.5.x or 0.6.x), Python Con-

figObj library (4.5.2 or later), psycopg2 (2.0.7 or later), Boost C++ libraries.

• License: GNU General Public License (GPL), version 2 or later.

Conclusions

We have described a hybrid script database system to comprehensively manage genotype and phe-

notype data from multiple genome-wide association studies. The current version provides facilities for

importing SNP data from two major commercial platforms, and exporting filtered data in two standard

formats. Comparisons of processing times with those of two other published systems that use database

backends to manage GWAS data show SNPpy has considerably faster processing times. The system

can be readily extended to import data from other platforms by adding custom loading functions for the

genotype call and annotation data. The database layout can be optimized for specific types of exports.

We have developed such a database layout, i.e. Geno Shard, for PED exports. In summary, SNPpy

provides a practical and flexible framework for researchers seeking to be able to manage and query their

GWAS data in a systematic and flexible fashion.
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Figure 1. This figure shows the data workflow. First the genotypic and phenotypic data are loaded into
the database. The data is then exported from the database as standard format files, including a
possible filtering and/or merging step. Finally, the output files are further analyzed using third party
tools.

15. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data

to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34: 816--834.

Figures

Figure 1: Workflow Chart
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Figure 2: Database Schema

Figure 3: Database Layout

Figure 4: Dataset load timings

Figure 5: PED file write timings

Figure 6: PED file merged write timings

Tables

Table 1. Software timing comparisons

SNPLims GWASA SNPpy
Geno Single Geno Shard (j = 4)

loading time - 18 4.2 2.6
writing time 10 93 5 0.75

Sample software timing comparisons for SNPpy, SNPLims and GWAS Analyzer (GWASA) for importing
and exporting (in MAP and PED format) a Illumina HumanHapMap300 (317K SNPs) dataset with 100
samples. The times are measured in minutes using the UNIX time command.
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..
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.
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..
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.
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fid varchar(35)
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.
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..
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.
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race id varchar(60) FK
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.
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..
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geno snpval id fkey

.
idlink patientid fkey

.

anno chromosome fkey

.
anno allelea id fkey
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Figure 2. Geno Single database schema for the Affymetrix platform. In this diagram, the rectangles
correspond to database tables, and the rows in each rectangle correspond to database table columns.
The four columns in a row correspond to, from left to right, database name (column 1), data type
(column 2), primary key indicator (column 3), and foreign key indicator (column 4). The arrows
correspond to foreign keys. Observe the number of arrows leaving a table is equal to the number of
columns that are foreign keys in that table.
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Figure 3. Datasets for different platforms are stored in separate databases, here represented by
cylinders. Every dataset is stored in a separate database schema (namespace within a database). The
same dataset can be stored in multiple schemas, differing in what options have been selected when
loading the dataset. To illustrate this, the figure shows the schemas in red and the datasets in black.
Each of the datasets HapMap 6 and CEU HapMap 610 is stored in two schemas. For further details
see the manual.

Supporting Information

File S1: Source code

SNPpy source code in an archive file format. See docs/MANUAL for usage information. This archive

corresponds to a revision of the Mercurial repository. That revision can be identified by the character

string which follows the snppy string in the archive name. That string is the revisions's hash identifier

(short version).
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Figure 4. Timings for loading simulated datasets for the Illumina platform into the database, for the
Geno Single layout, and the Geno Shard layout with degree of parallelism j = 1, 2 and 4. For all these
datasets, the number of SNPs is 620,901.
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Figure 5. Timings for writing PED files from simulated datasets for the Illumina platform, for the Geno
Single layout with degrees of parallelism j = 1, 2, 4 and Geno Shard layout with degree of parallelism
j = 1, 2 and 4. For all these datasets, the number of SNPs is 620,901. All timings correspond to warm
cache.
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Figure 6. Timing results for writing the PED file corresponding to the merger of the 2000 patient
Illumina simulated dataset with the corresponding HapMap datasets compared to timings for writing the
PED file for each of the 2,000 patient simulated dataset and the Hapmap dataset. All these timings are
for the Geno Shard layout. For all these datasets, the number of SNPs is 620,901. All timings
correspond to warm cache.

http://biostats.bepress.com/dukebiostat/art14


