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Abstract

An inverse regression methodology for assessing predictor performance in the
censored data setup is developed along with inference procedures and a com-
putational algorithm. The technique developed here allows for conditioning on
the unobserved failure time along with a weighting mechanism that accounts for
the censoring. The implementation is nonparametric and computationally fast.
This provides an efficient methodological tool that can be used especially in cases
where usual modeling assumptions are not applicable to the data under consider-
ation. It can also be a good diagnostic tool that can be used in a model selection
process. We have provided theoretical justification of consistency and asymptotic
normality of the methodology. Simulation studies and two data analyses are pro-
vided to illustrate the practical utility of the procedure. Keywords: right censored
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1 Introduction

An objective of analyzing survival data via regression is to develop a predictive

model given covariates. Often this is done under semiparametric considerations when

the covariate effects are summarized in a linear manner as in the Cox (1972) model.

An important step in formulating the model involves variable selection. Most of the

variable selection techniques used for analyzing censored data are extensions of the
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regression methodology for uncensored data. Stepwise deletion and best subset selec-

tion are the most popular ones in this context. Selection of the influential predictors

is critical and becomes complicated if the data has many high dimensional covariates,

as is often the case in clinical trials and more recently in microarray studies. In ad-

dition to selection, assessment of predictor performance is also crucial. It is therefore

very beneficial to efficiently select a subset of significant variables which is sufficient

for inference on the response and then to model those variables effectively.

A variety of variable and model selection procedures have been proposed to ad-

dress these issues in the censored setup. Tibshirani (1997) suggested the Lasso for

variable selection in the Cox model. This approach minimizes the log partial likeli-

hood subject to the sum of the absolute values of the parameters being bounded by a

constant. The nature of the constraint shrinks coefficients and produces some coeffi-

cients that are exactly zero. Tibshirani gives the example of the veteran’s lung cancer

data set, but the assumption of proportional hazards is unreasonable for nominal co-

variates such as cell type and Karnofsky score. Hence, the Lasso is not applicable

when the proportional hazards assumption is not valid. Fan and Li (2002) proposed

variable selection via penalized likelihood for Cox’s proportional hazards and frailty

models. Selection of significant variables and estimation of regression coefficients is

done simultaneously in this method. As in the case of the Lasso, this procedure is

applicable only for variable selection in Cox models. Keles et al. (2004) developed

a model selection method to select among predictors of right censored outcomes in

the context of prediction and density/hazard estimation problems. This procedure is

applicable for estimating data-based parameters such as the conditional mean, con-

ditional density, etc.

In many applications the assumptions made for model based inference may not be

valid, and consequently the results can be biased. As a result, nonparametric methods

are becoming increasingly popular. Recently, there have been several nonparametric

alternatives for uncensored data that address the issue of variable selection without
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assuming an underlying model. Li (1991) introduced sliced inverse regression (SIR)

and Cook (2004) developed a procedure for testing predictor contributions via SIR.

In addition to these approaches, there have also been Bayesian based techniques in

variable and model selection.

Li et al. (1999) extended SIR for censored data. They proposed methods of finding

low dimensional projections of the data for visually examining the censoring pattern.

A double slicing procedure that requires dimension reduction for both T , the failure

time, and the censoring time C using principal component analysis was introduced.

The example used to illustrate the procedure is the primary biliary cirrhosis of the liver

(PBC) data collected at the Mayo clinic between 1974 and 1986. In the example, the

authors use only 6 of the original 17 predictors for their analysis and the justification

for the proposed method is via a comparison with the parametric analysis done by

Fleming and Harrington (1991). Li’s paper provides a background on implementing

SIR for censored data and opens up avenues for further research in the area.

Cook (2004) formulated a methodology for testing predictor contributions using

SIR. He introduced tests of hypothesis of no effect for selected predictors in regres-

sion for uncensored data, without assuming a model for the conditional distribution

of the response given the predictors. The sufficient dimension reduction approach

(hereafter SDR) via inverse regression was subsequently introduced by Cook and Ni

(2005). They improve on the methodology developed by Cook (2004) using a more ef-

ficient approach. In their paper, a family of dimension reduction methods, the inverse

regression family, is developed by minimizing a quadratic objective function. An op-

timal member of this family, the inverse regression estimator (IRE) is proposed, along

with inference methods and a computational algorithm. An example on lean body

mass regression is provided as also simulation studies which show the effectiveness of

the method. A simulation comparison between SIR and IRE and theory supports the

claim that SIR is a suboptimal member of the inverse regression family.

The purpose of this paper is the development of SDR for censored data without
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requiring semiparametric restrictions on the form of the censoring distribution. Let T

be the failure time and let Z denote the p× 1 vector of covariates. We are interested

in inferring about log(T )|Z. The conditional distribution of T |Z does not need to

be modeled explicitly in order to identify a low dimensional representation of the

covariate effect. We incorporate the inverse probability of censoring in our procedure

which ensures that censoring is accounted for and also ensures computational ease.

SDR is based on a population meta-parameter, the central subspace (CS) (Cook

(1996)). We represent it by ST |Z and define it as the intersection of all subspaces

S ⊆ Rp having the property T ⊥ Z|PSZ where ⊥ indicates independence and PS is

the orthogonal projection onto S in the usual inner product. Therefore, the statement

translates as T is independent of Z given PSZ. The CS is a uniquely defined subspace

of Rp when it exists (Cook (1998)). If the central subspace exists, the statement

log(T ) ⊥ Z|η′Z (1)

can be thought of as a dimension reduction model, where η is a p× dim(ST |Z) basis

for the CS. The CS allows reduction of the predictor from Z to η′Z without loss of

information. η′Z is therefore referred to as a “sufficient” predictor.

Our contribution to SDR for censored data is twofold. Firstly, we introduce in-

verse regression (IR hereafter) for censored data using inverse regression estimators

with a quadratic objective function. Secondly, we utilize the inverse probability of

censored weighting so that inference is based on the variable of interest T after adjust-

ing for the censoring variable C. See Rotnitzky and Robbins (2003) for a reference

on inverse probability of weighting. This ensures a simpler implementation than the

one described in Li et al. (1999) in SIR for censored data since it bypasses the need

to take the two variables’ structure into account. For this approach, no underly-

ing model assumptions are required for T or C except for some weak nonparametric

smoothness assumptions on the density of C to be described shortly. This provides

flexibility in assessing the variable contribution based purely on the data driven tech-
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nique developed herein. The procedure is easy to implement and computationally

fast. We use bootstrap methods to obtain the structural dimension of the regression.

Therefore, we address the issue of variable selection in a nonparametric context, thus

augmenting the literature beyond Fan and Li’s and Tibshirani’s papers.

The data setup and assumptions that are required for obtaining the model given in

equation (1) are presented in Section 2. The assumptions are mainly needed to ensure

proper inference on the meta-parameter. The proposed estimation procedure and the

sample estimators are discussed in Section 3. A weighted Kaplan-Meier estimator is

derived to address the issue of nonparametrically estimating the distribution function

of C. This facilitates computing the inverse probability of censored weighting. A min-

imum discrepancy approach is utilized for inverse regression, and bootstrap methods

are developed for dimension selection and predictor testing. Theoretical properties of

proposed methods are discussed in Section 4. The proofs of the theorems and lem-

mas in Section 4 are provided in the appendix. Simulation studies and data analyses

demonstrate the applicability of the method in Section 5. The simulation studies

look at dimension reduction for data drawn from the Cox model and the accelerated

failure time model. The method is illustrated on the diffuse large B-cell lymphoma

(DLBCL) data. We also provide an illustration on the PBC data to compare with Li

et al. (1999). Finally, we discuss future research and open questions in Section 6.

2 The data setup and structure

2.1 Data assumptions

The observed data (Xi, δi, Zi, i = 1, . . . , n), consist of n i.i.d. realizations of (X, δ, Z),

where X = min(T, C) and δ = I(T ≤ C), T being the failure time and C the right

censoring time. Z is the p× 1 vector of covariates and is assumed to be restricted to

a known, compact subset Z ⊂ Rp. Let Y = log(X) for notational convenience.

Let FZ and GZ denote the conditional distribution functions of T and C given Z

respectively. We denote the respective conditional survival functions by SZ and LZ .

5
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We make the following additional assumptions:

(A1) P [C = 0] = 0, P [C ≥ τ |Z] = P [C = τ |Z] > 0, almost surely, and censoring is

independent of T given Z.

(A2) C is either discrete or continuous w.r.t a Lebesgue measure.

(A3) The vector of covariates Z is assumed to be time independent.

(A4) LZ(t) > 0 for all −∞ < t ≤ τ and LZ(t) = 0 for t > τ .

(A5) Assume that {TI(T ≤ τ), T I(T = τ)} ⊥ Z|η′Z. More specifically, we require,

hz(t) = gη′z(t), ∀t ∈ (0, τ ]

h+
z = g+

η′z,
(2)

where hz(t) is the density of (T |Z = z) and h+
z = P (T > τ |Z = z) where g

and g+ are some functions. We also assume h is Lipschitz continuous uniformly

over Z, i.e., sup
z∈Z

|hz(t1)− hz(t2)| ≤ K0|t1 − t2|, for some K0 < ∞.

2.2 Additional assumptions for dimension reduction

The most important assumption for dimension reduction is that the central sub-

space exists. For our setting, the dimension of the CS may be smaller than the

dimension of the CS if log(T ) were fully known. Inverse regression relies on an as-

sumption about the marginal distribution of Z. The linearity condition requires that

E(Z|η′Z = u) is linear in u, where the columns of η form a basis for Slog(T )|Z (Cook

1998, Proposition 4.2). This condition connects the central subspace (CS) with in-

verse regression of Z on log(T ). When it holds, E[Z| log(T )] ∈ Slog(T )|Z and hence

Span(Cov(E(Z| log(T )))) ⊆ Slog(T )|Z . This condition has been discussed in several

places and is required for SIR as well. However, the performance of any of the dimen-

sion reduction methods is not sensitive to this condition. In view of the fact that most
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low-dimensional projections of high-dimensional data often appear like normal distri-

butions (Diaconis and Freedman (1984)), Hall and Li (1993) argue for the generality

of this condition in high-dimensional situations. On the other hand, reweighting and

subsampling methods can also be applied to obtain this condition. This condition

allows us to infer about a proper subset of the CS.

In order to guarantee the existence of the CS, we need to make assumptions on

the predictors. We can make the assumption of elliptically contoured predictors for

which the linearity condition holds. However, since this condition is more restrictive,

we can relax the assumption and instead assume that the marginal distribution of the

Z’s has convex support. In this case, the CS is unique when it exists (Cook (1998)).

Therefore, we need to make just the following two assumptions:

(B1) The marginal distribution of the vector of covariates Z has convex support.

(B2) E(Z|η′Z = u) is linear in u.

2.3 Assumptions needed for asymptotic properties of the ba-
sis estimator

In order for sufficient dimension reduction to be applicable for censored data, we out-

line more conditions required as part of the assumptions needed for the methodology

to be effective.

We are dealing with a data structure of the form (X, δ) to make inference on

log(T )|Z. To adjust for the censoring variable C, we use inverse probability of cen-

soring weighting. This inverse weighting approach is incorporated in the nonpara-

metric estimation of the weighted Kaplan-Meier estimator for the censored time, the

Kaplan-Meier estimator for the failure time, and also in the estimation of the sample

estimators. To ensure that this inverse weighting preserves the inherent nature of the

methodology, we need the following conditions:

We define a collection of sets and related assumptions that will be necessary for

the theoretical explanation of the construction of the weighted Kaplan-Meier esti-
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mator of the censoring time. For each sample size n, partition Z into disjoint sets

{An
1 , . . . , A

n
kn
} = An such that

⋃kn

j=1 An
j = Z. These partitions are such that they

become finer and finer as m →∞, n →∞ and m/n → 0, where m = nP (Z ∈ An
j ) is

the expected number of observations in each such partition. Let An
z = {An

j : z ∈ An
j }.

Assume that there exists a Vapnik-Červonenkis (VC) class A such that
⋃

n≥1 An ⊂ A.

Define also cn = max1≤j≤kn supz1,z2∈An
j
‖z1−z2‖. We make the following assumptions:

(C1) For some γ ∈ (0, 1] and some K1 < ∞, the probability function P (T > C,C ≤
t|Z = z) = f(z, t) satisfies supt∈(0,τ ] |f(z1, t)− f(z2, t)| ≤ K1‖z1 − z2‖γ.

(C2) For the same γ as in (C1) and some K2 < ∞, the probability function P (T >

t, C ≥ t|Z = z) = g(z, t) satisfies supt∈(0,τ ] |g(z1, t)− g(z2, t)| ≤ K2‖z1 − z2‖γ.

(C3) The vector of covariates Z needs to be partitioned using {An, n ≥ 1} such that,

as n →∞, we have m →∞, m/n → 0, and cn = O(m/n)δ, for some δ ∈ (0, 1].

(C4) We also assume that the conditional survival function for the censoring time is

Lipschitz continuous uniformly over Z, i.e., sup
z∈Z

|Lz(u1)−Lz(u2)| ≤ K3|u1−u2|,
for some K3 < ∞.

(C1)–(C4) are needed to ensure asymptotic consistency of the weighted Kaplan-

Meier estimator of the conditional censoring distribution and for establishing the

convergence rate.

3 Methodology

3.1 Inverse regression

In this section, we discuss inverse regression and the minimum discrepancy approach.

We begin by outlining the idea of inverse regression for censored data. The primary

variables of interest are the failure time, T , and the vector of covariates, Z. We want

to infer about log(T )|Z using inverse regression. First, we begin by defining some of

the main terms of interest. Since inverse regression is based on constructing sample
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versions of E(Z| log(T )), we proceed by partitioning the log of the failure time T into

equal non-overlapping intervals uj = (tj, tj+1], j = 1, . . . , h, where th = τ < ∞. This

partition is one of many possible partitions and as n increases, the partition is allowed

but not required to become finer. Σ is the covariance matrix of the predictor vector

Z.

Define the working meta parameter,

Sξ =
∑h

j=1 Span(ξuj
),

where,

ξuj
= Σ−1(E[Z| log(T ) ∈ uj]− E[Z])

Let d = dim(Sξ) and let β ∈ Rp×d be a basis of Sξ. We also define a vector γ∗t

such that ξt = βγ∗t for each t. An estimate of β provides an estimate of the basis of

Sξ under linearity, but inference about Sξ itself does not require linearity. Define

ξ = (ξu1 , . . . , ξuh
) = βγ∗,

where γ∗ = (γ∗1 , . . . , γ
∗
uh

). Let f = (fu1 , . . . , fuh
)′, where fut = P (log(T ) ∈ ut). The

intrinsic location constraint gives ξf = βγ∗f = 0.

Following Cook and Ni (2005), we obtain the basis estimate first and then link

it with a testing procedure to select d, the structural dimension of the regression.

The structural dimension of the regression is defined as the smallest number of dis-

tinct linear combinations of the predictors required to characterize the conditional

distribution of the response given the predictors.

In this paragraph, we give a brief idea of the minimum discrepancy approach that

we will be using. It is natural to estimate Sξ with a d-dimensional subspace that is

closest to the columns of the sample estimator of ξ. There are many ways to define

“closeness”. Letting vec(·) denote the operator that constructs a vector from a matrix

by stacking its columns, we consider quadratic discrepancy functions of the form

Fd(B, K) = (vec(ξ̂Rn)− vec(BK))′Vn (vec(ξ̂Rn)− vec(BK)), (3)

9

Hosted by The Berkeley Electronic Press



where Vn ∈ Rpl×pl is a positive definite matrix. The columns of B ∈ Rp×d represent

a basis for Span(ξRn); and K ∈ Rd×l, which is used only in fitting, represents the

coordinates of ξRn relative to B. The matrix Rn ∈ Rh×l decides how we organize the

columns of ξ̂. The subspace of Rp spanned by a value of B that minimizes Fd provides

an estimate of a subset of Sξ, depending on (Rn, Vn). One such pair corresponds to a

dimension reduction method. These methods are called the IR family. Given (Rn, Vn),

solutions of this minimization are not unique due to overparametrization, however

this nonindentifiability is not an issue, because any complete basis suffices to specify

Sξ. It is possible to impose constraints to make the parametrization unique, but the

overparametrized setting is more intuitive and generally easier to treat analytically.

Now we move on to obtaining the sample estimators for dimension reduction.

3.2 Estimators required for inverse regression

In this section, we obtain the estimators required to carry out inverse regression based

on the observed data . We need to obtain a basis for Sξ as well as a way to determine

the dimension d of the basis. In order to do this, we first need to describe the sample

estimates that will be required before we proceed to the actual basis estimation.

An important thing to note here is that since T is not observed we make use of

the inverse probability of censored weighting to incorporate the information from the

censored observations. We use the notation Y = log(X) to denote the transformed

variable.

Since the failure time is not observed, we partition Y as enumerated earlier. Let

uy denote the interval (tj, tj+1] which contains y and let Zyj denote the jth observation

on Z in interval uy, j = 1, . . . , ny, y = 1, . . . , h, and
∑

y ny = n. The mesh size should

be fine enough to capture the dependency structure (as a function of β′Z), but it

need not converge to zero. We therefore assume hereafter that the mesh size is fine

enough to capture the needed structure. Let Z̄.. be the overall average of Z, and Z̄y.

denote the average of the ny points with Y ∈ uy. We estimate E[Z| log(T ) ∈ uy] by
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Z̄y. such that the missing information from censoring is incorporated. The theoretical

justification is given in detail in Section 4.

In order to estimate the conditional expectation such that it is accurate and un-

biased, we weight the sum in each interval by the inverse of the estimated probability

P̂ (C > T |Z). This probability is estimated using a weighted Kaplan-Meier estimator

that stratifies on the covariates Z. The primary idea of stratification is to allow for

conditioning on the covariate space while ensuring overall convergence in probability

of the estimator. Hence, the idea is to construct a Kaplan-Meier estimator for each

interval or bin, using all the observations, but giving more weight to those conditioned

on in the particular bin of corresponding covariates.

Therefore, the estimator of E[Z| log(T ) ∈ uy] can be expressed as,

Z̄y. = Pn

[
δZI(Y ∈ uy)

P̂ (C > T |Z)P̂ [(Y ∈ uy)]

]
when uy ≤ τ, (4)

Z̄y. = Pn

[
δZI(Y > τ)

P̂ (C > T |Z)P̂ [(Y > τ)]

]
when y > τ. (5)

The weighted processes of number at risk Y ∗
Z and number of events N∗

Z for censor-

ing can be represented as, Pn(T > t, C ≥ t|Z ∈ An
z ) and Pn(C ≤ t, T > C|Z ∈ An

z )

respectively, where z ∈ An
z represents the conditioning or stratification based on the

covariates. The weighted Nelson-Aalen estimator for the cumulative hazard of the

censoring time is defined as:

Λ̂∗n(t) =

∫ t

0

dN̄∗/Ȳ ∗. (6)

Consequently, the weighted Kaplan-Meier estimator can be written as:

L̂Z(t) =
∏

(1− dΛ̂∗n(t)). (7)

Let f̂uj
= ŜZ(tj+1)− ŜZ(tj), where

Λ̂Z(t) =

∫ t

0

∑ dNi(s)

L̂Z(s−)∑ Yi(s)

L̂Z(s−)

(8)
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is the estimate of the cumulative hazard for the failure time and ŜZ is the resulting

survival function estimate of the failure time. Let Σ̂ be the usual sample covariance

matrix for Z. Then, the sample version of ξut is ξ̂uy = Σ̂−1(Z̄y. − Z̄..), which ensures

that ξ̂uy ∈ Rp×h.

After the required probability estimators have been obtained, we obtain the Kaplan-

Meier estimator. Since we have multiple probability values depending upon the

weighting in the bins, we want the probability in the denominator to be assigned

corresponding to the bin of covariates it is conditioned upon. Hence, each value of

the numerator will have a matched denominator value depending upon the condition-

ing. The estimator is consistent under certain conditions that will be discussed in the

next section.

We compute the survival function for T by inversely weighting the Kaplan-Meier

with the corresponding probability P̂ (T > C|Z) in the algorithm. After these prob-

abilities have been computed, Z̄y. can be obtained easily.

We would like to mention here that Dabrowska (1989) has shown uniform consis-

tency of a kernel conditional Kaplan-Meier estimate. This estimate is similar to ours,

but is structured as a proper kernel estimate and requires more stringent conditions

than the ones we specify for proof and implementation.

3.3 Basis estimation

We now discuss basis estimation. We consider inverse regression using a quadratic

discrepancy function as outlined earlier. The basis for Sξ is estimated with a d-

dimensional subspace that is closest to the columns of ξ̂.

The choice of an optimal discrepancy function depends on the choices of Rn and

Vn. We choose Rn to be nonsingular which, when incorporated into the discrepancy

function, simplifies to:

vec(ξ̂Rn)− vec(BK) = R′
n ⊗ Ip (vec(ξ̂)− vec(BKR−1

n )).

12
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Because we will be eventually minimizing Fd(B, K), K is redefined as KR−1
n without

loss of generality.

Let Dv denote a diagonal matrix with the elements of the vector v on the diag-

onal and construct a nonstochastic matrix A ∈ Rh×(h−1) such that A′A = Ih−1 and

A′1h = 0. Then Df̂ (A, 1h) ∈ Rh×h is nonsingular and can be used as the choice for

Rn. However, ξ̂Df̂1h=0 due to the intrinsic location constraint and, consequently

ξ̂Df̂ (A, 1h) = (ξ̂Df̂A, 0). Since the last column is always zero, we will lose no general-

ity by using the reduced data matrix ζ̂ ≡ ξ̂Df̂A in the construction of the discrepancy

functions,

Fd(B, K) = (vec(ζ̂)− vec(BK))′Vn(vec(ζ̂)− vec(BK)),

where B ∈ Rp×d, K ∈ Rd×(h−1), and Vn has yet to be specified. The optimal choice of

Vn in this version of the discrepancy function depends upon the asymptotic distribu-

tion of vec(ζ̂). We verify later that ζ̂ converges in probability to ζ ≡ βγ∗DfA = βν,

where ν = γ∗DfA.

We now suggest an estimate for Vn that seems reasonable since the asymptotic

variance of the basis estimate is difficult to compute. Define h random variables Jy

such that Jy equals the probability of falling in uy if an observation is in uy and 0

otherwise, y = 1, . . . , h. Then, E(Jy) = fy. Also define the random vector ε∗ =

(ε∗1, . . . , ε
∗
h)
′, where its elements, ε∗y, are the population residuals from the ordinary

least squares fit of Jy on Z̃, where Z̃ is the standardized version of Z. We will use

(Cov(vec(Σ̂−1/2Z̃ε∗)))−1 as our sample estimate of Vn.

Now we consider minimization of the discrepancy function given Vn. This can be

done by using the alternating least squares algorithm (Cook and Ni (2005)) to obtain

basis estimates.

3.4 Dimension selection using the bootstrap

In order to test hypotheses of the form d = d0 versus d > d0, we utilize the limiting

distribution of nF̂d, where F̂d is the minimum value of Fd(B, K). If nF̂m exceeds
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a selected quantile of the asymptotic distribution of nF̂d under the null, then the

hypothesis is rejected.

It is difficult to derive this limiting distribution in our case. However, the lim-

iting distribution of nF̂d under the null hypothesis can be approximated using the

bootstrap. Let Y ∗, δ∗, Z∗ denote a resampling of Y, δ, Z drawn randomly. Recall

that Fd(B, K) = (vec(ζ̂)− vec(BK))′Vn(vec(ζ̂)− vec(BK)). The bootstrap estimate

vec(ζ∗) − vec(BK), denoted as U∗, is computed based on the resample. Bootstrap

estimates are centered by subtracting their mean Ū∗ to reflect the null hypothesis. We

then obtain the critical value from the bootstrap value of nF̂ ∗
d under the null, which

can be calculated as n(U∗ − Ū∗)′Vn(U∗ − Ū∗). The proof of this centered bootstrap

approach follows along the lines of the proofs of Theorem 7 and 8 in Kosorok and

Song (2007), after incorporating the results for kernel type estimates as described in

Hall (1991). The details of the proof are omitted.

A series of such tests can be used to estimate d as follows. First, starting with d0 =

1, test the hypothesis d = d0. If the hypothesis is rejected, then increment d0 by one

and test again, stopping when the first non-significant result is obtained. Note that we

start testing with d0 = 1. Consequently, failing to reject d0 = 1 does not necessarily

imply that the one predictor contributes to the regression, because the predictor may

be independent of the failure time. However, testing of full independence is beyond

the scope of this paper, although this issue is an important one for future research.

3.5 Predictor testing using the bootstrap

The main hypothesis tests of interest would be those for which dimension is not

specified yet the predictor contribution is tested robustly. More precisely, we wish to

deal with tests of conditional independence,

T̃ ⊥ PHZ|QHZ,

whereH is an r-dimensional user-specified subspace of the predictor space. We require

r ≤ p-dim(ST̃ |Z). This can be accomplished by partitioning Z ′ = (Z ′
r, Z

′
−r), where
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we wish to test the hypothesis that r selected predictors do not contribute to the

regression. In this case, H=Span(H), with basis H=(I ′r, 0).

For the case of censored data, we are interested in developing the following

Marginal Predictor tests:

Marginal Predictor Hypotheses: PHST̃ |Z = Op versus PHST̃ |Z 6= Op.

The marginal predictor hypothesis is equivalent to the hypothesis HT ζ = 0, where

H is a p× r basis for H. The test statistic,

T (H) = nvec(H′ζ̂)′{(Ih−1 ⊗H′)Γ̂ζ̂(Ih−1 ⊗H)}−1vec(H′ζ̂),

can be used for this procedure. To determine if a predictor is significant, we can

choose H to be ek, where ek is the p × 1 vector with 1 in the kth entry and 0

elsewhere. Then the test statistic is

Tk = nek
T ξ̂{(Ih−1 ⊗ ek

′)Γ̂ζ̂(Ih−1 ⊗ ek)}−1ξ̂′ek.

Cook and Ni (2005) have used backward selection based on the chi-squared tests

in order to select the variables for testing. To elaborate, marginal predictor tests were

first carried out and p-values for each test obtained. In the second step, backward

elimination is used with the variable having the most insignificant p-value in the

marginal test being eliminated first and so on. However, in our case, it is hard to

derive the null distributions for the above statistics. Fortunately, as we did previously,

we can apply the bootstrap to center the test statistics to reflect the null hypothesis

and to obtain critical values. In the marginal test setting, we compute ξ∗ from

resampling and then subtract the ξ∗s’ mean. The T ∗
k s are then calculated using these

centered quantities. Critical value are obtained from the bootstrap quantiles of T ∗
k .

4 Asymptotic properties

In this section, we will mainly discuss the theoretical background that is required

for the methodology. To obtain a consistent estimate of the basis of the central
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subspace, we have to ensure that all of the sample estimators are consistent for their

population counterparts. In our derivations, we have shown consistency of all of the

estimators. We also use some earlier results from Cook and Ni (2005) and Shapiro

(1986) to prove that the basis estimate is a consistent estimator for the basis of the

underlying central subspace.

4.1 Consistency of the estimators

We show that the consistency of the weighted Kaplan-Meier estimator holds under

certain assumptions that need to be made in addition to the assumptions we have

already outlined in Section 2. They are as follows:

• The weighting scheme for a given value of z is such that, the weight w(n) = 1

for these value of Y whose covariates reside in bin An
z and Y is conditioned on

the corresponding “bin” of covariates An
z and w(n) is order of o(m/n) for the

remaining Y values.

• The number of observations in each bin, m, is selected such that m → ∞ as

n →∞ while m/n → 0. This ensures that the estimator of Lz(T ) is consistent.

Theorem 1: The weighted Kaplan-Meier estimator for the censoring distribution

is consistent for GZ(t) under the assumptions outlined above and achieves an optimal

convergence rate Op(n
−δγ/[2(1+δγ)]) when m = ÕP (n(1+2δγ)/(2+2δγ), where ÕP (1) is a

quantity bounded above and below in probability in the limit.

Lemma 1: The inversely weighted estimator of the survival function of T is consis-

tent for SZ with the same rate of convergence as the weighted Kaplan-Meier estimator.

The sample covariance matrix Σ̂ of the vector of covariates Z is
√

n consistent for

its population counterpart Σ. The overall average of the Z’s is also
√

n consistent for

the true value by the law of large numbers.

We have proved consistency of both the weighted estimators for the survival distri-

butions of the censoring time and the failure time. Since the weighted Kaplan-Meier
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estimator of the conditional censoring time is incorporated in the calculation of Z̄y.,

we need to prove that this estimator is also consistent.

Lemma 2: The sample estimator Z̄y. is consistent for E(Z|Y ∈ uy) with rate

Op(n
−δγ/[2(1+δγ)]).

Since all the sample estimators are consistent now we need to prove the consis-

tency of the basis estimate. In the implementation of the alternating least squares

algorithm, the inverse probability of the censored weighting scheme was utilized to

adjust for the loss in information due to censoring.

Since A is a constant matrix, we consider only (vec(ξ̂Df̂ )−vec(βνDf )). In order to

prove consistency, we need to incorporate the results in Shapiro (1986) on asymptotics

of overparametrized discrepancy functions and two other supplemental results that

need to be derived based on his main results. We also utilize results from Cook and Ni

(2005) to conclusively prove consistency of the basis estimate. The proof is detailed

in the appendix.

Theorem 2: The first term of the discrepancy function vec(ξ̂Df̂ ) is asymptoti-

cally normal with rate Op(n
−δγ/[2(1+δγ)]) and with mean=βγDf and some variance

covariance matrix Γζ̂ .

Theorem 3: The estimate of the basis using the discrepancy function is consistent.

The proofs of all lemmas and theorems can be found in the appendix.

4.2 Validity of the bootstrap

We develop a measure to assess the accuracy of the estimation in data analysis via

the bootstrap. Hall (1991) shows that the bootstrap approximation is valid for ker-

nel density estimators. In our setting, the source of variation mainly comes from

the kernel-type Kaplan-Meier estimate. Though this kernel type estimator does not

achieve root-n consistency, the bootstrap can be shown to consistently approximate

the limiting distribution of the discrepancy function, using arguments such as those

given in Hall (1991). In particular, the bootstrap method is asymptotically valid for
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obtaining critical values in structural dimension determination and predictor selec-

tion, once we center the bootstrap estimates to reflect the null hypothesis.

5 Simulation studies and data analysis

Simulation studies were carried out to assess the performance of the estimator.

For this section, we first report simulation studies to illustrate how our approach

works in estimation and testing. Then we apply our method on the diffuse large

B-cell lymphoma data and the PBC data.

5.1 Basis Estimation Given d

We aim to compare performances between SIR using the double slicing estimator

and our estimator of Sξ when d is known. Both accelerated failure (AFT) and Cox

regression models for failure times are utilized.

Model 1. First, we take p = 6 and generate z = (z1, · · · , z6) from the normal

distribution with mean 0 and variances 2, 1, 4, 1, 5 and 4. The true survival time Y 0

is generated from

Y 0 = exp(2z1 + z4)ε1, (9)

where ε1 follows an exponential distributions with mean 1.

Two censoring distributions are generated for the purpose of evaluation under

different censoring mechanisms. One censoring time C1 is generated from

C1 ∼ exp(2z1 + z2 + z4) ∧ 4, (10)

which is a constant conditional on regressors. Therefore, this censoring scheme sat-

isfies the model assumptions in both the SIR with double slicing approach and ours.

The other C2 is generated from

C2 ∼ exp(2z1 + z2 + |z4|) ∧ 4. (11)

In this scenario, the SIR assumptions are not satisfied, in the sense that C2 is not

independent of Y 0 conditional on z if we impose a linear structure on the dependence
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of C2 on predictors. However, our conditions are not violated. Censoring percentages

are 55% and 45% respectively.

We vary the sample size from 50 to 100, 200, 400 and 800 to study the effect

of sample size on estimation. For each simulation run, we compute the angle be-

tween Sξ and its estimate. The angle between two vectors a and c is computed as

180 cos−1(|aTc|/‖a‖‖c‖)/π. In Model 1, the basis of the true central subspace is

(2, 0, 0, 1, 0)′. The leading direction obtained from the SIR method is taken as the

SIR estimate, and b̂1 is our estimate using the method described in Section 3 by fixing

the dimension of B to be 1.

Figures 1(a) and 1(b) show mean angles from 100 simulation runs in each case

for the two censoring distributions. As anticipated, we obtain biased estimates when

the sample size is small, and the average angle converges to 0 as sample size grows.

However, the simulation results show an unexpected pattern for the SIR estimates.

Surprisingly, increasing sample size has an adverse impact on estimation. This might

be related to the censoring time and its complex dependence with the failure time.

Figure 1:
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Figure 1. Mean Angles between Sξ and both the SIR estimate (dashed line) and proposed procedures (solid line) under

100 simulation runs of Model 1 for different sample sizes. Panels correspond to the censoring C1 ∼ exp(2z1+z2+z4)∧4

(left) and the censoring C2 ∼ exp(2z1 + z2 + |z4|) ∧ 4 (right).

19

Hosted by The Berkeley Electronic Press



We also study the performance of two estimators as the regressor dimension p

gets larger. We increase p from 6 to 10, 15 and 20, and keep the same sample size,

n = 500. The added predictors follow a normal distribution with variances ranging

from 1 to 5. The simulation results show that under censoring C1, the average angles

for SIR using the double slicing method stay above 30 degrees. Our estimators also

deteriorate gradually as p increases, but we can see that the method is stable for an

increasing number of parameters. When the censoring follows C2, both estimators

are close. Increasing the number of covariates does not seem to have a significant

effect on the angle estimation.

Figure 2:
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Figure 2. Mean Angles between Sξ and both the SIR estimate and proposed procedures under 100 simulation runs of

Model 1 for different numbers of parameters. Panels correspond to the censoring C1 ∼ exp(2z1 + z2 + z4) ∧ 4 (left)

and the censoring C2 ∼ exp(2z1 + z2 + |z4|) ∧ 4 (right).

Model 2. We take p = 6 and generate z = (z1, · · · , z6) from the normal distribution

with mean 0 and variances 2, 1, 4, 1, 5 and 4. The true survival time Y 0 is generated

from

Y 0 = (− log(ε2)/ exp(2z1 + z4)),

where ε2 follows the uniform distribution on [0,1]. Using the same censoring distri-

butions as in Model 1, we then compare the two estimators for different sample sizes.
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As shown in Figure 3, our estimators do not perform as well as the SIR estimators for

the Cox regression model, although our estimators improve with increasing sample

size.

Figure 3:
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Figure 3. Mean Angles between Sξ and both the SIR estimate and proposed procedures under 100 simulation runs

of Model 2 for different sample sizes. Panels correspond to the censoring C1 ∼ exp(2z1 + z2 + z4) ∧ 4 (left) and the

censoring C2 ∼ exp(2z1 + z2 + |z4|) ∧ 4 (right).

Model 3. Similar to Model 1, the failure time follows (9) and the censoring time

follows (10). For the covariates z1, z2 and z3, we draw one of them from a Rademacher

distribution and the remaining two from a normal distribution. A Rademacher ran-

dom variable X satisfies P (X = −1) = P (X = 1) = 0.5 and is equivalent to a

Bernoulli random variable with success probability 0.5 but standardized to have mean

0 and variance 1, corresponding to the first two moments of a standard normal dis-

tribution. We apply this to three different scenarios: failure time dependent on the

binary variable, censoring time dependent on the binary variable or neither failure nor

censoring time dependent on the binary variable. The purpose of these simulations

is to evaluate the influence of a binary variable on the estimation of the basis. The

simulation results suggest that our estimators have a better performance compared

to SIR estimators from moderate to large sample sizes, although the SIR estimators
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can have better small-sample behavior, see Figure 4.

Figure 4:
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Figure 4. Mean Angles between Sξ and both the SIR estimate and proposed procedures under 100 simulation

runs when one covariate is binary for different sample sizes: z1 is Rademacher distributed (left); z2 is Rademacher

distributed (middle); z3 is Rademacher distributed (right).

We then compare the two estimators’ performance for different numbers of param-

eters. The sample size n is kept at 500, and the number of parameters is increased

from 6 to 10, 15, and 20. According to the simulations, our estimators have less bias

compared to SIR estimators in all scenarios: see Figure 5.

Figure 5:
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Figure 5. Mean Angles between Sξ and both the SIR estimate and proposed procedures under 100 simulation runs

when one covariate is binary for different number of parameters. Panels correspond to z1 is Rademacher distributed

(left), z2 is Rademacher distributed (middle) and z3 is Rademacher distributed (right).
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5.2 Estimation of d

Using the methodology described in Section 3.4, we consider the following example

for n = 350: let z1, · · · , z6 be generated from the standard normal distribution.

Y 0 = exp(z3(2z1 + z4))ε1; C ∼ exp(z2) ∧ 4,

In this case, the basis for the central subspace is (2,0,0,1,0,0) and (0,0,1,0,0,0) with

the true dimension d = 2.

Here is how to execute our procedure in this setting:

• Beginning with d = 1, the test statistic nF̂1 is 17.44. Using 1000 bootstraps

of the centered nF̂1, we obtain that the 95% quantile is 15.82. Therefore, the

hypothesis that d = 1 is rejected.

• Increasing to d = 2, we obtain nF̂2=11.99. Using 1000 bootstraps of the cen-

tered nF̂2, we obtain that the 95% quantile is 98.74. The result is not significant

and we do not reject the hypothesis that d = 2.

Simulating this process this 100 times, the hypothesis d = 1 is rejected 66 times.

When d = 1 is rejected, we proceed to test the hypothesis d = 2. It is then rejected

two times. In other words, the procedure identifies the true dimension 64 out of 100

times. This demonstrates that our method works, although its power may not be

ideal. Increasing power of this procedure is an important target for future research.

5.3 Predictor Test

Consider the example with n = 350, and z1, · · · , z6 generated from the standard

normal distribution. The failure time is generated according to (9) and the censoring

time follows (11). We test the significance of the predictors as described in Section

3.5. Using the test statistics given before, we have Ti = 302.19, 4.07, 6.42, 24.00, 4.25

and 0.85, i = 1, · · · , 6. The 95% quantiles obtained from bootstrap are 12.47, 11.57,

9.51, 9.14, 10.88 and 10.80. We find that z1 and z4 are identified as significant. We
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repeat the procedure for 100 simulated data sets. The method picks out exactly z1

and z4 73 times. Over 100 simulation runs, z1 stands out 100 times and z4 stands out

99 times, and other covariates z2, z3, z5 and z6 are picked out 16, 4, 6, 2 times. Thus

our procedures appears to work well.

5.4 Data analysis

For the analyses done in this paper, we handle categorical variables by introducing

dummy variables as in regular regression. First we illustrate the method on the diffuse

large B-cell lymphoma data and then consider the PBC data for comparison with Li

et al. (1999). The computation time involved in both cases was less than a minute.

5.4.1 Diffuse large B-cell lymphoma

The diffuse large B-cell lymphoma (DLBCL) data was first analyzed by Rosenwald

et al. (2002). This data set consists of 240 patients with DLBCL including 138 pa-

tient deaths during the follow-up. For our analysis purposes, we have excluded those

observations for which the time to death was zero. That leaves us with 235 obser-

vations. The other variables in the data set include the three gene expression sub

groups of DLBCL, gene expression signatures (i.e., germinal center B-cell signature,

major-histocompatibility-complex (MHC) class II signature, lymph node signature

and the proliferation signature), value for the BMP6 gene (a member of the trans-

forming growth factor β superfamily of genes), the outcome predictor score, and the

international-prognostic-index component (IPI) subgroup. We have excluded the IPI

subgroup variable since there were a lot of missing values for this variable. Since the

gene expression sub group is categorical, we used two dummy variables instead of the

variable itself. Thus, there were eight covariates.

The marginal predictor test suggests that the gene expression subgroups are im-

portant predictors. This is consistent with the view of Rosenwald et al. (2002) that the

overall survival after chemotherapy differed significantly among the three subgroups.
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According to the dimension test of d = d0, we obtain that the central subspace dimen-

sion is two, since the F value under the null d = 1 is greater than bootstrap critical

value but smaller when testing d = 2. The estimates, however, suggest that aside

from the gene expression subgroups, some gene-expression signatures, especially the

outcome predictor score, which is a linear combination of the different signatures and

the value of the BMP6 gene as taken from the analysis by Rosenwald et al. (2002), also

contribute to the linear combinations. This validates the premise of Rosenwald et al.

that the outcome predictor score is a good indicator of the outcome of chemotherapy.

See Table 1 for the estimates and bootstrap standard errors.

Table 1: Estimates of the basis for d = 2 for the DLBCL data. Bootstrap standard
errors are given in parentheses.

Basis estimate 1 Basis estimate 2 Covariate
0.322(0.491) -0.004(0.400) ABC
0.346(0.458) -0.214(0.512) GCB
-0.183(0.251) -0.078(0.268) B-cell sig.
-0.095(0.240) -0.683(0.278) Lymph sig.
0.301(0.345) -0.005(0.314) Prolif. sig.
-0.396(0.276) -0.694(0.309) BMP6
-0.110(0.276) -0.429(0.324) MHC sig.
-0.688(0.303) -0.311(0.338) Out.pred.score

5.4.2 Primary biliary cirrhosis of the liver

The following briefly describes data collected for the Mayo Clinic trial in primary

biliary cirrhosis (PBC) of the liver conducted between January 1974 and May 1984

comparing the drug D-penicillamine (DPCA) with a placebo. The first 312 cases

participated in the randomized trial of D-penicillamine versus placebo, and contain

largely complete data. The variables in the data set include case number, the num-

ber of days between registration and the earlier of death or study analysis time in

1986, censoring indicator, treatment code (1= DPCA, 2=placebo), age in years, sex
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(0=male, 1=female), presence of ascites (0=no, 1=yes), presence of hepatomegaly

(0=no, 1=yes), presence of spiders (0=no, 1=yes), presence of edema, serum bilirubin,

serum cholesterol, albumin, urine copper, alkaline phosphatase, SGOT, triglycerides,

platelet count, prothrombine time, and histologic state of disease. We first make log

transformations of the covariates serum bilirubin, albumin, serum cholesterol, pro-

thrombine time following original publications (Fleming and Harrington (1991)). For

the sake of simplicity, we will be considering the histologic state of disease to be

numerically valued.

Two sets of analysis were carried out on the data. One was with only 6 covariates

as in Li et al. (1999) and the other one with all 17 covariates.

We conduct the analysis with the 6 covariates first. Observations with missing data

were discarded, leaving 308 observations. These covariates were z1 =age, z2 =presence

of edema, z3 =serum bilirubin, z4 =albumin, z5 =platelet count and z6 =prothrombin

time. Fleming and Harrington (1991) conclude that five baseline covariates—age,

albumin, serum bilirubin, presence of edema and prothrombin time—are significant,

and the true lifetime depends on x through the variable Q = 0.0333z1 + 0.7847z2 +

0.8792 log z3−3.0553 log z4+3.0157 log z6. Using our proposed marginal predictor test,

we identify covariates age, albumin, presence of edema and prothrombin time to be

important. Survival time is independent of serum bilirubin (platelet count) given the

other covariates. Different from previous results, serum bilirubin is not significant

after adjusting for other variables. The dimension tests indicate that the central

subspace dimension is two. Specifically, starting from d = 1, the test statistic is larger

than the bootstrap critical value and we reject the null hypothesis. We do not reject

the null when testing d = 2. Li et al. (1999) performed SIR separately for the failure

time and the censoring time under the assumption that both the failure time and the

censoring time are functions of the estimated predictors and an unknown error, while

our approach is independent of the model assumption. The two lifetime SIR directions

obtained in Li et al. (1999) are (0.02, 0.90, 0.09, -0.62, -0.00, 0.38) and (0.03, -2.3,
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0.20, -0.28, -0.00, -0.68). The basis estimates and bootstrap standard error of the

corresponding covariates are given in Table 2. We can see that basis estimates from

both approaches have higher coefficients for edema, albumin and prothrombin time

but edema contributes less to the linear combination using our proposed procedure.

Table 2: Estimates of the basis for d = 2 for the pbc data with 6 original covariates.
Bootstrap standard errors are given in parentheses.

Basis estimate 1 Basis estimate 2 Covariate
0.006(0.013) -0.004(0.072) Age
0.174(0.445) -0.214(0.338) Edema
0.032(0.207) -0.078(0.159) Serum bilirubin
0.672(0.650) -0.683(0.569) Albumin
0.016(0.030) -0.005(0.110) Platelet
-0.719(0.575) -0.694(0.717) Prothrombin time

Now we redo the analysis with all 17 predictors. 276 cases remained after dis-

carding observations with missing data. We performed a similar procedure to the

one described above. Using the marginal predictor test, we identify the covariates

age, serum bilirubin, albumin, prothrombin time, sex and spiders to be important.

The dimension test of d = d0 indicate that the central subspace dimension is two yet

again. The basis estimates and bootstrap standard error of corresponding covariates

when d = 2 are given below in Table 3. From the table, we find that some covariates

such as edema have high coefficients even if they are not identified as significant us-

ing a marginal test. This is probably because they contribute very little marginally

but have higher impact when entering jointly. Fitting a cox proportional hazards

regression model, we also list the estimates in Table 3. Our basis estimates reflect

less effects from age, serum bilirubin, platelet, copper, alkaline phosphatase, SGOT,

triglycerides and serum cholesterol, which is consistent with Cox regression estimates.
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Table 3: Estimates of the basis for d = 2 for the PBC data with 17 original covariates,
with bootstrap standard errors given in parentheses, along with estimates (standard
error) using Cox regression.

Basis estimate 1 Basis estimate 2 Cox Model Estimate Covariate
0.009(0.034) 0.009(0.044) 0.025(0.010) Age
-0.697(0.318) -0.291(0.323) 0.711(0.460) Edema
-0.080(0.224) 0.024(0.282) 0.072(0.166) Serum bilirubin
-0.262(0.128) 0.153(0.134) 2.651(1.030) Albumin
0.004(0.004) -0.007(0.007) 0.002(0.001) Platelet
0.126(0.120) -0.098(0.102) 0.743(1.270) Prothrombin time
0.371(0.418) -0.049(0.370) 0.268(0.203) Treatment
-0.385(0.378) 0.079(0.373) 0.987(0.431) Sex
-0.003(0.005) 0.002(0.009) 0.001(0.001) Copper
0.003(0.004) -0.000(0.008) 0.000(0.000) Alkaline phosphatase
0.007(0.007) -0.007(0.011) -0.001(0.002) SGOT
0.005(0.006) 0.001(0.011) -0.002(0.002) Triglycerides
0.004(0.006) -0.000(0.010) -0.001(0.001) Serum cholesterol
0.205(0.290) -0.107(0.332) 0.137(0.136) Histologic stage
0.264(0.333) -0.566(0.340) 0.610(0.469) Ascites
-0.069(0.388) -0.717(0.371) -0.207(0.226) Hepatomegaly
0.139(0.391) 0.162(0.380) 0.158(0.236) Spiders

6 Future research and additions

We have shown the asymptotic normality of the discrepancy function. Future

theoretical derivation of the variance of this limiting distribution of the discrepancy

function can potentially improve efficiency in estimation. Namely, we can set Vn in

the discrepancy function equal to a consistent estimate of the inverse of the basis

estimate’s asymptotic variance Γζ̂ . In the context of dimension determination and

variable selection, approaches have been developed based on bootstrap procedure.

However, we can also potentially develop methods for central subspace dimension

determination and variable selection using the theoretical variance Γζ̂ , which could

reduce the computational burden significantly. In addition, we are interested in de-

veloping a conditional predictor test of
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PHST̃ |Z = Op given d versus PHST̃ |Z 6= Op given d.

Conditional predictor hypotheses should have greater power than the marginal tests

if we know the true dimension of the central subspace. Conditional on the dimension

of the central subspace being d, we can obtain the basis estimate Bp×d. To determine

if a predictor is significant, we can utilize the difference in minimum discrepancies to

carry out conditional testing, i.e.,

T (H|d) = nF̂d,H − nF̂d,

which has a well-defined distribution. Currently, we have difficulties implementing

the conditional test since the F value obtained under our setting does not follow a

chi-square distribution, but is a mixture of chi-square distributions. This problem

should be solved if we can obtain the true limiting variance Γζ̂ of the discrepancy

function.

Further research could also include developing a fully automated approach to bin

selection, possibly using cross validation. As seen from the theoretical results, the

convergence rate depends on the complexity of the bins. For the estimator of the

censoring distribution, for example, it may be helpful to use principle components to

reduce dimension of the bins. Also, it would be useful to obtain the optimal number

of intervals needed when partitioning the log of the failure time T .

The goal of this paper is to augment current methodology for variable selection

and for selecting significant predictors. This work should prove to be a useful tool

that will aid in analysis of survival data. An R (http://www.r-project.org) package

is being developed for practical implementation of the entire proposed methodology.

Appendix

A.1. Proof of Theorem 1 :

To prove consistency of the estimator for GZ(t), we first show that the weighted ver-

sion of the Nelson-Aalen estimator is consistent. Since the weighted Kaplan-Meier can
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be re-expressed as a continuous functional of the Nelson-Aalen estimator, consistency

of the Nelson-Aalen estimator will suffice. Therefore, we will show that Λ̂n(t), the

weighted version of the Nelson-Aalen estimator of the cumulative hazard is consistent

for Λ(t).

Consider
∫ t

0
dN̄∗/Ȳ ∗ − dN0/Y0. This can be re-expressed as

∫ t

0

dN̄∗/Ȳ ∗−dN0/Ȳ
∗+dN0/Ȳ

∗−dN0/Y0 =

∫ t

0

n−1dN̄∗ − dN0

n−1Ȳ ∗ −
∫ t

0

(n−1Ȳ ∗ − Y0)dN̄∗

Y0n−1Ȳ ∗ .

(12)

Hence, the following is true,

∣∣∣∣
∫ t

0

dN̄∗/Ȳ ∗ − dN0/Y0

∣∣∣∣ ≤
∣∣∣∣
∫ t

0

n−1dN̄∗ − dN0

n−1Ȳ ∗

∣∣∣∣ +

∣∣∣∣
∫ t

0

(n−1Ȳ ∗ − Y0)dN̄∗

Y0n−1Ȳ ∗

∣∣∣∣ = I + II.

(13)

We can write the integral,

∫ t

0

dD/A = D(t)/A(t)−D(0)/A(0)−
∫ t

0

D(s)dA(s)

A(s)A+(s)
, (14)

for A left continuous. Therefore, | ∫ t

0
dD/A| ≤ C(A)‖D‖∞. Consider the setting

where w(n) = 0 for Z values outside of An
z , and note that

PnI(C ≤ t, T > C, Z ∈ An
z )

PnI(Z ∈ An
z )

− Pz(C ≤ t, T > C)

=
(Pn − P )I(C ≤ t, T > C, Z ∈ An

z )

PnI(Z ∈ An
z )

+PI(C ≤ t, T > C, Z ∈ An
z )

PnI(Z ∈ An
n)

−Pz(C ≤ t, T > C). (15)
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Therefore, we have,

(Pn − P )I(C ≤ t, T > C, Z ∈ An
z )

PnI(Z ∈ An
z )

+
PI(C ≤ t, T > C,Z ∈ An

z )

PnI(Z ∈ An
n)

− Pz(C ≤ t, T > C)

= [
(Pn − P )I(C ≤ t, T > C, Z ∈ An

z )

PnI(Z ∈ An
z )

]

+

[
PI(C ≤ t, T > C,Z ∈ An

z )

PnI(Z ∈ An
z )

− PI(C ≤ t, T > C,Z ∈ An
z )

PI(Z ∈ An
z )

]

+[PI(C ≤ t, T > C)− Pz(C ≤ t, T > C)]

≡ D + E + F. (16)

Let us consider the probability PnI(Z ∈ An
z ) to simplify the denominator in the first

term of the previous equation. Since Z is a VC class, we have,

PnI(Z ∈ An
z ) = (Pn − P )I(Z ∈ An

z ) + PI(Z ∈ An
z ) ≈ Op(n

−1/2 + m/n). (17)

Now we evaluate each of D, E, and F separately. Let us first consider terms D

and E. D and E can be re-expressed as follows:

D =
Op(n

−1/2)

ÕP (m/n)
+ Op(n

−1/2),

E = −P (C ≤ t, T > C,Z ∈ An
z ) ·Op(n

− 1
2 )

P (Z ∈ An
z )PnI(Z ∈ An

z )
= Op(n

1/2m−1).

(18)

Now, F =[PI(C ≤ t, T > C) − Pz(C ≤ t, T > C)]. Before obtaining the rate of

F , we need the following identity, where Q(Z) is the probability measure of Z:

P (C ≤ t, T > C|Z ∈ An
z ) =

∫

An
z

Pu(C ≤ t, T ≥ C)dQ(Z)(u)

Q(Z)(An
z )

. (19)

By substituting this probability in the expression for F , F can be re-written as,

F =

∫

An
z

(Pu(C ≤ t, T ≥ C)− Pz(C ≤ t, T ≥ C))dQ(Z)(u)

Q(Z)(A
n
z )

. (20)

In order to obtain the rate now, we try and bound the absolute value of F . To do
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so, we proceed as follows:

|F | ≤ sup
z̃∈An

z

|Pz̃(C ≤ t, T ≥ C)− Pz(C ≤ t, T ≥ C)|
≤ max

1≤j≤kn

sup
z1,z2∈An

j

|Pz1(C ≤ t, T ≥ C)− Pz2(C ≤ t, T ≥ C)|

≤ B max
1≤j≤kn

sup
z1,z2∈An

j

‖z1 − z2‖γ = O(m/n)δγ. (21)

This implies that D + E + F = Op(n
1/2m−1 + (m/n)δγ).

Hence m = ÕP (n(1+2δγ)/(2+2δγ)) yields the optimal rate leading to an overall rate

of n−δγ/[2(1+δγ)]. Unless otherwise stated, we will assume m has this rate hereafter.

Therefore, I is bounded by Op(n
−δγ/[2(1+δγ)]).

Now, we prove that Ȳ ∗ − Y0 is also bounded by Op(n
−δγ/[2(1+δγ)]).

PnI(T > t, C ≥ t, Z ∈ An
z )

PnI(Z ∈ An
z )

− Pz(T > t, C ≥ t)

=
(Pn − P )I(T > t, C ≥ t, Z ∈ An

z )

PnI(Z ∈ An
z )

+
PI(T > t, C ≥ t, Z ∈ An

z )

PnI(Z ∈ An
z )

−Pz(T > t, C ≥ t). (22)

Therefore, we have,

(Pn − P )I(T > t, C ≥ t, Z ∈ An
z )

PnI(Z ∈ An
z )

+
PI(T > t, C ≥ t, Z ∈ An

z )

PnI(Z ∈ An
z )

− Pz(T > t, C ≥ t)

=
(Pn − P )I(T > t, C ≥ t, Z ∈ An

z )

PnI(Z ∈ An
z )

+

[
PI(T > t, C ≥ t, Z ∈ An

z )

PnI(Z ∈ An
z )

− PI(T > t, C ≥ t, Z ∈ An
z )

PI(Z ∈ An
z )

]

+[PI(T > t, C ≥ t)− Pz(T > t, C ≥ t)]

≡ G + H + J. (23)

Using similar arguments as the ones used to show N̄∗ − N0 is bounded, we can

conclude that, G + H + J = Op(n
−δγ/[2(1+δγ)]). Thus,

sup
z∈Z,t∈[0,τ ]

|Λ̂z(t)− Λz(t)| = Op(n
−δγ/[2(1+δγ)]).
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Hence, the estimator of the cumulative hazard is consistent. By applying the prod-

uct integral to the Nelson-Aalen estimator, we obtain the Kaplan-Meier estimator.

Since the product integral is Hadamard differentiable, the desired uniform consistency

of the Kaplan-Meier follows (van der Vaart (1998) Theorem 20.8 and Lemma 20.14).

Analysis of the above proof shows that the same results follow if w(n) is allowed to

be o(m/n) for values of Z outside of An
n. Thus the proof is complete.¤

A.2. Proof of Lemma 1:

To show that the estimator of the survival function of T is consistent, we first prove

consistency of the weighted Nelson-Aalen estimator. Let Λ̂T (t) be the estimator of

the true cumulative hazard ΛT (t). Consider,

Λ̂T (t)− ΛT (t) =

∫ t

0

∑ dNi(s)

L̂Z(s−)∑ Yi(s)

L̂Z(s−)

− ΛT (t). (24)

Therefore we have,

Λ̂T (t)− ΛT (t) =

∫ t

0

∑ dNi(s)

L̂Z(−)
−∑ dNi(s)

LZ(s−)
+

∑ dNi(s)
LZ(s−)∑ Yi(s)

L̂Z(s−)
−∑ Yi(s)

LZ(s−)
+

∑ Yi(s)
LZ(s−)

− ΛT (t)

=

∫ t

0

−∑ dNi(s)(L̂Z(s−)−LZ(s−))

L̂Z(s−)LZ(s−)
+

∑ dNi(s)
LZ(s−)

−∑ Yi(s)(L̂Z(s−)−LZ(s−))

L̂Z(s−)LZ(s−)
+

∑ Yi(s)
LZ(s−)

− ΛT (t). (25)

Since we have already proved the consistency of the weighted Kaplan-Meier esti-

mator for C, the above form reduces to

Λ̂T (t)− ΛT (t) =

∫ t

0

∑ dNi(s)
LZ(−)∑ Yi(s)
LZ(−)

− ΛT (t) + O[0,τ ]
p (n−δγ/2(1+δγ))

=

∫ t

0

dN̄

Ȳ
− dN0

Y0

+ O[0,τ ]
p (n−δγ/2(1+δγ)), (26)

where O
[0,τ ]
P is a quantity bounded in probability uniformly over t ∈ [0, τ ], and where

N̄(t) = Pn

[
I(T≤t,T≤C)

LZ(t−)

]
and Ȳ (t) = Pn

[
I(X≥t)
LZ(t−)

]
are respectively the weighted number
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of events and number at risk. Therefore, the above expression reduces to
∫ t

0

dN̄ − dN0

Ȳ
− dN0(Ȳ − Y0)

Ȳ Y0

+ O[0,τ ]
p (n−δγ/2(1+δγ)),

(27)

where, N̄(t)−N0(t) can be written as

(Pn − P )

[∫ t

0

I(C ≥ s)dG(s)

LZ(s−)

]
. (28)

Note that I(C ≥ T ) and I(T ≤ t) belong to Donsker classes. LZ(s) is a

Lipschitz continuous function and therefore bounded. We can thereby argue that

N̄ − N0 can be represented as φ(N̄ , LZ), where φ(H, LZ) =
∫ t

0
dH
LZ

. Since the stan-

dard Nelson-Aalen estimator for censored data is
√

n consistent, and φ is Hadamard-

differentiable, we can apply the functional delta method to this functional, and thus

obtain
√

n consistency for N̄ . In an identical fashion we can argue that Ȳ − Y0

is also
√

n consistent. Hence, the weighted estimator of the cumulative hazard

based on known LZ(t−) is
√

n consistent. We obtain the Kaplan-Meier by apply-

ing the product integral to the Nelson-Aalen estimator. Since the product integral is

again Hadamard differentiable (van der Vaart (1998)), the weighted Kaplan-Meier

estimator is n−δγ/[2(1+δγ)] consistent for the true survival function of T . Hence,

f̂uj
= Ŝ(tj+1)− Ŝ(tj), j = 1, . . . , h, is also Op(n

−δγ/[2(1+δγ)]) consistent for fuj
. There-

fore, we have P̂ (Y ∈ uy)− P (Y ∈ uy) = O
[0,τ ]
p (n−δγ/[2(1+δγ)]).¤

A.3. Proof of Lemma 2:

Consider,

Pn

[
ZδI(Y ∈ uy)

L̂Z(Y−)P̂ (Y ∈ uy)

]
= Pn

[
ZδI(Y ∈ uy)

L̂Z(Y−)P (Y ∈ uy)
× P (Y ∈ uy)

P̂ (Y ∈ uy)

]
. (29)

Now, we have ,

P (Y ∈ uy)

P̂ (Y ∈ uy)
=

P (Y ∈ uy)

P (Y ∈ uy) + Op(n−δγ/[2(1+δγ)])

=

[
1 +

Op(n
−δγ/[2(1+δγ)])

P (Y ∈ uy)

]−1

= 1 + Op(n
−δγ/[2(1+δγ)]).
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Therefore the equation (29) reduces to

Pn

[
ZδI(Y ∈ uy)

L̂Z(Y−)P (Y ∈ uy)

]
(1 + Op(n

−δγ/[2(1+δγ)])). (30)

Since A is a VC class,
[

ZδI(Y ∈uy)

L̂Z(Y−)P (Y ∈uy)

]
is eventually contained in a VC class. Hence,

the above form reduces to

P

[
ZδI(Y ∈ uy)

LZ(Y−)P (Y ∈ uy)

]
+ Op(n

−δγ/[2(1+δγ)]).
(31)

Now, consider,

P

[
ZδI(Y ∈ uy)

LZ(Y−)P (Y ∈ uy)

]
= P

[
Z

P (Y ∈ uy)
E

[
δI(Y ∈ uy)

LZ(Y−)

∣∣∣∣ Z

]]

= P

[
Z

LZ(Y−)P (Y ∈y)
E[δI(Y ∈ uy)|Z]

]

= E

[
δZ

LZ(Y−)

∣∣∣∣ I(Y ∈ uy)

]
. (32)

We have δ = I(C ≥ T ), and hence, E
[

δZ
LZ(Y−)

∣∣∣ Y ∈ uy

]
can be re-expressed as:

E

[
ZP (Y ∈ uy|Z)

P (Y ∈ uy)

]
= P (Z|Y ∈ uy).

(33)

So, we can conclude that,

Pn

[
ZδI(Y ∈ uy)

L̂Z(Y−)P̂ (Y ∈ uy)

]
= P [Z|Y ∈ uy] + Op(n

−δγ/[2(1+δγ)]). (34)

Using similar but simpler arguments we can say the same when uy = (τ,∞).

Hence we can conclude that Z̄y. is consistent for E[Z|Y ].¤

A.4. Proof of Theorem 2:

Let µ be the expected value of Z̄.. and µy be the expected value of Z̄y.. Let Z̃ be the

standardized value of Z and ε∗ the residual from the weighted regression of Jy on Z̃.
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Consider,

f̂uy ξ̂uy − fuyξuy = f̂uyΣ̂
−1(Z̄y. − Z̄..)− fuyΣ

−1(µy − µ)

= f̂uyΣ̂
−1(Z̄y. − Z̄..)− f̂uyΣ

−1(µy − µ)

+f̂uyΣ
−1(µy − µ)− fuyΣ

−1(µy − µ)

= f̂uy [Σ̂
−1(Z̄y. − Z̄..)− Σ−1(µy − µ)]

+Σ−1(f̂uy − fuy)(µy − µ)

= (f̂uy − fuy)[Σ̂
−1(Z̄y. − Z̄..)− Σ−1(µy − µ)]

+fuy [Σ̂
−1(Z̄y. − Z̄..)− Σ−1(µy − µ)]

+Σ−1(f̂uy − fuy)(µy − µ)

= Op(n
−δγ/[2(1+δγ)]) (35)

Therefore, using arguments similar to those in Hall (1991), we can claim that the

limiting distribution of vec(ξ̂Df̂ ) is asymptotically normal with rate n−δγ/[2(1+δγ)].

Hence, we can further claim that the limiting distribution of F̂d, the discrepancy

function, is a mixture of chi-squared distributions with the same rate.¤.

A.5. Proof of Theorem 3

To prove this theorem, we make use of Proposition 3.1 and 4.1 in Shapiro (1986).

Shapiro’s results are applicable for fixed V , and thus we need to modify for when

V is random. We use Cook and Ni’s results for random V to show that the results

hold. Lemma A.3 in Cook and Ni (2005) permits connecting minimum discrepancy

functions with fixed inner products to those with random inner products. We can

then claim that the basis estimate is consistent for the true value, and, provided we

use a consistent estimate for V , the asymptotic properties of the discrepancy function

are preserved. The desired results now follow since the minimization of Fd always

provides a consistent estimate of vec(βν) for any sequence Vn > 0 that converges to

V > 0.¤
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