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Semiparametric Methods for Semi-competing
Risks Problem with Censoring and Truncation

Hongyu Jiang, Jason Fine, and Richard J. Chappell

Abstract

Studies of chronic life-threatening diseases often involve both mortality and mor-
bidity. In observational studies, the data may also be subject to administrative
left truncation and right censoring. Since mortality and morbidity may be corre-
lated and mortality may censor morbidity, the Lynden-Bell estimator for left trun-
cated and right censored data may be biased for estimating the marginal survival
function of the non-terminal event. We propose a semiparametric estimator for
this survival function based on a joint model for the two time-to-event variables,
which utilizes the gamma frailty specification in the region of the observable data.
Firstly, we develop a novel estimator for the gamma frailty parameter under left
truncation. Using this estimator, we then derive a closed form estimator for the
marginal distribution of the non-terminal event. The large sample properties of
the estimators are established via asymptotic theory. The methodology performs
well with moderate sample sizes, both in simulations and in an analysis of data
from a diabetes registry.
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Abstract. Studies of chronic life-threatening diseases often involve both mortality
and morbidity. In observational studies, the data may also be subject to adminis-
trative left truncation and right censoring. Since mortality and morbidity may be
correlated and mortality may censor morbidity, the Lynden-Bell estimator for left
truncated and right censored data may be biased for estimating the marginal survival
function of the non-terminal event. We propose a semiparametric estimator for this
survival function based on a joint model for the two time-to-event variables, which
utilizes the gamma frailty specification in the region of the observable data. Firstly,
we develop a novel estimator for the gamma frailty parameter under left truncation.
Using this estimator, we then derive a closed form estimator for the marginal distri-
bution of the non-terminal event. The large sample properties of the estimators are
established via asymptotic theory. The methodology performs well with moderate
sample sizes, both in simulations and in an analysis of data from a diabetes registry.
Key Words: Bivariate survival function; Concordance probability; Copula; Semi-

competing risks; Truncation.

1. Introduction

Chronic life-threatening diseases usually involve multiple landmark events in the

Hosted by The Berkeley Electronic Press



progression of the disease. The landmarks are non-terminal and observation of such
events occurs until death. For complex diseases, certain events may not be observed
prior to death, in which case the censoring by death may be informative. Such data
have been referred to as semi-competing risks data (Fine, Jiang and Chappell, 2001),
since death may dependently censor landmark events, but not vice versa.

The motivating example for our methodologic research is registry data on dia-
betes patients, for whom landmark events might include the development of diabetic
retinopathy, a major cause of blindness, and diabetic nephropathy, an indication of
kidney failure (Andersen et al., 1983; Mogensen, 1984; Borch-Johnsen et al. 1985).
When studying the natural history of diabetes, investigators may intend to report the
marginal probabilities of the landmark events; see Bojestig et al., 1994; Remuzzi and
Ruggenenti, 1998; and Dahlquist et al., 2001. However, because diabetic morbidities
and death are associated, the Kaplan-Meier estimator for right censored data may be
biased for the marginal distribution of the non-terminal event (Fine et al., 2001). For
administratively right censored semi-competing risks data, Fine et al. (2001) showed
that the dependence between morbidity and mortality can be estimated separately
from their marginals under a gamma frailty copula in the region of the observable
data (Day et al., 1997). They also provided a closed-form estimator for the marginal
distribution of landmark events.

In the diabetes registry, there is another complication: administrative left trun-
cation. The patients in this registry were treated at the Steno Memorial Hospital
in Greater Copenhagen, a diabetes specialist hospital in Denmark (Borch-Johnsen
et al., 1985; Ramlau-Hansen et al., 1987). Patients were referred to the Steno from
general practitioners and/or other hospitals between 1933 and 1981. Those who died
prior to the start of the study or failed to be referred were excluded from the registry.

Thus, both time to landmark event and mortality are observed conditionally on death
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occurring after study enrollment. To avoid bias, the observation of the event times
on each enrolled patient was left-truncated at the time of first contact at the Steno.
For an event time subject to independent left truncation and right censoring, the
Lynden-Bell product limit estimator may be used to estimate the survival function
(Lynden-Bell, 1971; Wang, et al., 1986; Tsai et al., 1987; Gu and Lai, 1990; Lai and
Ying, 1991; Gijbels and Wang, 1993). In our set-up, the non-terminal event is sub-
ject to dependent censoring, in addition to administrative left truncation and right
censoring, and the Lynden-Bell estimator may be biased.

Such left-truncated semi-competing risk data could be analyzed using a three-state
illness-death transition intensity model (Andersen et al., 1993, Ch. IV.4.), However,
methods for quantifying the association between illness and death and estimating
the marginal distribution of the non-terminal illness event are not available. In the
diabetes example, the marginal distribution is important in comparing cohorts from
different calendar periods. The distribution corresponds to time to nephropathy in
the absence of death prior to nephropathy. The overall management of diabetes
has improved over calendar time, with recent medical care being more effective in
prolonging times to nephropathy and to death following nephropathy, as well as time
to death without nephropathy. The marginal distribution may be used to evaluate
the net effect of care on nephropathy, independently of its effects on other aspects of
diabetes which lead to dependent censoring via mortality prior to nephropathy.

To address these issues, we extend the methods of Fine et al. (2001) to the left-
truncated semi-competing risk problem. In Section 2, we introduce our notation and
the modified Clayton model on the upper wedge. In Section 3, new estimators are
proposed for the association parameter in the Clayton model for left truncated semi-
competing risks data. The closed-form estimator for the marginal distribution of

the non-terminal event is given in Section 4. Technical details related to estimation
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and inference are relegated to the Appendix. To illustrate the performance of our
estimators, they are applied to simulated datasets and data from the aforementioned
diabetic cohort study. The results are summarized in Sections 5 and 6 with some

concluding discussion in Section 7.

2. Notation and model

To fix notation, let X and Y be two possibly dependent failure times observable
from the same subject. The random variable Y can censor X, but not vice versa.
Hence, data are only observable in the upper wedge of the support of (X,Y"), where
X < Y. Let A denote the left truncation variable and C' be the right censoring
variable. It is assumed that (A, C) are independent of (X,Y’). This assumption is
analogous to that made with univariate data and is reasonable when both truncation
and censoring are administrative, as in the diabetes study. Because of censoring, we
observe Y =Y ANC, 0 =1V <C), X' =XAYAC,and n =I{X < (Y AC)},
conditionally on Y’ > A, where zAy is the minimum of z and y and I(-) is the indicator
function. The observed data consists of n independent realizations of (X', Y, A, n, ),
denoted by {(X!, Y/, A;,m;,0;),i =1,...,n}.

The traditional truncation problem only considers estimating the distribution of
Y, the terminating endpoint, in the presence of independent left-truncation and right-
censoring. With truncated data, it may not be possible estimate the unconditional
survival curve Pr(Y > y) (Klein and Moeschberger, 1997, Ch. 4.6). Typically, one
estimates the survival distribution given that the event occurs after a certain time
point a. In practice, a could be A(;), the minimum of the A;’s or another time
point greater than Ay which is scientifically meaningful. The questions of interest
are framed in terms of the conditional survival function Pr(Y > y|Y" > a). If the

truncation variable has a continuous distribution with support [0, ] where b € [0, 00),
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then we can consistently estimate the unconditional survival function of Y since
Any = 0 as n — oo (Woodroofe, 1985). Applying the Lynden-Bell technique to

{(Y/, A;,8;),i =1, ..n} gives the estimator

S
<
—~

3
~—

Pr(Y >ylY >a)= ][ {1—

a<Y/<t
where d,(t) = X0, I{Y/ =t,6; = 1} and r,(t) = X1, [{A; <t <Y/}. For the semi-
competing risks problem, this is always a valid approach to estimate the distribution
of Y since Y is only subject to independent censoring from C'.

Estimation of the distribution of X is more complicated. Although X' is not
necessarily > the truncation variable A for Y, the observation of X' is conditional on a
subject being sampled, that is, Y’ > A. Hence, only the conditional distribution of X
given the corresponding Y in the observable region Y > a is identifiable. An exception
is when X and Y are independent, in which case the unconditional distribution of X
is identifiable and may be consistently estimated by the Kaplan-Meier estimator using
data {(X/,m;),i =1,...,n}, regardless whether or not the unconditional distribution
of Y is estimable. However, when Y can dependently censor X, neither the Kaplan-
Meier estimator nor the Lynden-Bell estimator by artificially truncating X at A is
valid for estimating either the unconditional or the conditional distribution of X. To
recover the distribution of X with dependent censoring by Y, it is necessary to model
the joint distribution of X and Y. In this paper, we propose a semi-parametric model
which specifies a flexible parametric relationship between X and Y, while leaving the
marginal survival functions completely unspecified. Using the approach in Day et al.
(1997) and Clayton (1978), we posit a modified Clayton (1978) copula restricted to
the observable region where X <Y and Y > a.

Let R,(y) be the conditional survival function of Y, that is, R(y)/R(a), where

R(y) = Pr(Y > y). Define Fy(z,y) = Pr(X > z,Y > y|Y > a) = F(z,y)/R(a),

5
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where F(z,y) = Pr(X > z,Y > y). For 0 < max(z,a) < y < oo, the model is
Fu(w,y) = {Su(2)" " + Ra(y) " = 1}77, (1)

where S,(x) meets the definition of a conditional survival function given ¥ > a.
Interestingly, if Fy(z,y) = F(z,y) satisfies (1) for z < y with Sy(z) and Ry(y) = R(y)
in place of S,(x) and R,(y), respectively, then F,(x,y) satisfies (1) with the same 0
and S,(x) = Fy(z,a)/Ro(a) and R,(y) = Ry(y)/Ro(a) for all a > 0 (Hougaard,
Section 7.3, 2002). Note that Sy(x) may denote the unconditional distribution of X.
We show later that this distribution is estimable under the assumed model (1) when
Ry(y), the unconditional distribution of Y, is estimable.

The parameter # > 0 quantifies the association between X and Y. When 0 =1,
F,(z,y) = Sp(z)R.(y) and the event times are said to be independent on the upper
wedge. For # > 1, there is positive association and 6 is related to a gamma frailty
model for X and Y (Day et al., 1997). For # < 1, negative dependence occurs (Oakes,
1989), but a frailty model representation does not exist.

To interpret S, as the conditional marginal of X, we require that S,(t) = F,(t,a) =
Fy(t,a)/R(a) for all t > a. A mild additional assumption which guarantees this to
be true is to require that the joint conditional survival function in the lower wedge
(z > y) can be written in a copula form in terms of the same functionals S,(.) and
R,(.), and agrees with model (1) at x = y > a. The technical details of this model
are given in Fine et al. (2001). In the sequel, when interpreting S,(-) as the marginal,

we implicitly assume that this additional assumption holds.

3. Inferences for the dependence structure
We develop an estimator for 6 in (1) which does not require estimators for S, and
R,. Let (X;,Y;) and (X, Y;) denote independent pairs of event times from the ith

Jite¥17

and jth subjects. The estimator uses an indicator of the concordance or discordance

6
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of these pairs,
A [T X X)) >0
TTL0 (X - X (Y - Y)) < 0.

Under model (1), the expectation of A;; given Y; AY; > a is 6y/(1 + 6p), where
6y is the true value of # (Hougaard, Section 7.3, 2002). In the left-truncated semi-
competing risks setting, A;; is computable from comparable pairs of event times when
(A;; VX)) < Yy < Cij, where Ay; = A;VA;, Xy = XiAX;, Y = YinY;, Cij = CiACy,
and u V v stands for the maximum of v and v. Truncating f/ij by flij ensures that A;;
has the desired conditional expectation.

The following extension of Oakes’ (1982, 1986) estimator for 6 exploits these
properties of A;;. Let O;; = I(Aij VoaV Xij < }N/Z-j < éij) and define U(f) =
Sie; W(X! i Z]) ii{A;; — 0/(1 + 0)}, where W(u,v) is a random weight function
with a deterministic limit, W (u,v), which is bounded for (u,v) in the support of
{)N( = X/ A X;,Ylg = Y/ AY]}. By solving U(f) = 0, we obtain the concordance

estimator

é: Zz’<] W( z]:Y;I])O A ) (2)
Sicg WXL, Vi) 045 (1 —Aij)

YRV ]

As discussed in Fine et al. (2002), a useful weight function is
n
Wcjdl(x,y) :n’IZI{Xl{ >z A, Y! >ynd}, (3)
i=1
where ¢ and d are some constants. With ¢ = d = 0, Wy, = 1 and 0 reduces to
unweighted concordance estimator. With ¢ = d = oo, W, 4(z,y) is the inverse of
proportion of subjects in the risk set defined by (z,y) (Oakes, 1986). In practice, ¢
and d in (3) may be selected so that excessive weight is not given to large = and y
where the risk set may be small.
It is easy to show that as n — oo, n 2{U(#) — U(#)} vanishes uniformly for # in

a neighborhood of 6y, where U is U with W replaced by . Thus, f has the same

Hosted by The Berkeley Electronic Press



limit as f, the root of U(f) = 0. Assuming model (1) holds, A;; is independent of
(Xij, Yij). On the other hand, by the independence between {A;;, Cy;} and {X,;, Vi, 1,

159

we have A, is independent of W (X!, Y/, %)Oij which implies that E{U(#)} = 0. The

ij
strong law of large numbers for U-statistics and a continuous mapping theorem give
that 0 is strongly consistent for 6,. Hence, 0 is strongly consistent. In Appendix 1,
we show that n/2(f — 6) has a limiting normal distribution with variance ¥ which
is consistently estimated by S = f_Qj, where

Z zg? (1+9)727

1<j

J=2n73 > (QuQkm + QrQim + QunQim),

k<l<m
and Qg = W (X", Y') Di{Aw — 0/(1 + 6)}.

Since inferences about S, rely on the copula (1), it would be helpful to assess
this formulation. Similar to the model checking technique for evaluating the fitness
of Clayton copula for semi-competing risks data (Fine et al. 2001), a goodness-of-
fit statistic based on the distance between two estimators from U(f) with different
weights can be derived (Shih, 1998). Under misspecification, the estimators may
converge to distinct values and the test rejects with probability one. Of course, the
test has low power against certain alternatives. When X > Y the (X,Y") pairs are
unobservable and the relationship between X and Y is nonidentifiable.

Let W; = W, 4,,U; be U with W; in place of W, and é, be the corresponding
estimator, i = 1,2. In Appendix 1, we show that when the copula is specified correctly
nt/ 2(@1 — éQ) is asymptotically normal with variance that is consistently estimated by

F=2n"" 3" (QuQbm + Qi Qi + Qi Qi)
k<l<m
where Q}’;l = flelkz — f{lQle, and fi and Qikl are I and le with W replaced by

Wi, i =1,2. For a 2a level test, the critical region is n*/2|0; — 6,0 ~1/2 > th;_,, where

8
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1, is the gth quantile of the standard normal distribution.

4. Estimating the marginal conditional distribution

To develop an estimator for S,(t) from model (1), we require estimators for both
R, (t) and F,(t,t) in addition to §. While it is straightforward to estimate R, () using
the Lynden-Bell estimator, to our knowledge, the conditional distribution F,(t, %)
cannot be nonparametrically estimated using available methods.

To circumvent this difficulty, we further condition on X > a on both sides of

model (1). Following Hougaard (Section 7.3, 2002), the relationship
Fi(z,y) =Pr(X > 2,V > y|X >a,Y >a) = {Sa(z)" " + Ra(y)"? — 1}ﬁ, (4)

holds with the same 6 as in (1), but where R;(y) = Pr(Y > y|X > a,Y > a).
As when conditioning only on Y > a, if a = 0, then the unconditional distribution
of X is identifiable from the assumed model for F;. Now, let Z7 = X A'Y and
v =I1(Z < (). Tt is easy to see that v = 9+ (1 — n)d and the minimum of Z
and C is X'. Define H;(t) = Pr(X > t,Y > t|X > a,Y > a). Equality (4)
implies S;(t) = g{Ha(t), Ra(t),0}, where g(a,b,c) = (a'=¢ — b'~¢ 4+ 1)/0-9. Both
H;(t) and R;(t) can be consistently estimated by Lynden-Bell estimators using data
{(Ziyvi, Ai) = Xi > a,Y; > a0 =1,...,n} and {(Y;,0;,4;) : X; > a,Y; > a,i =
1,...,n}, respectively. Hence, using ideas from Fine et al. (2001), we propose an
estimator S;(t) = g{Ha(t), Rs(t),0}, where H(t) and Ry(t) are the Lynden-Bell
estimators for H;(t) and R;(t), respectively, and 6 is the concordance estimator.
Note that 6 is strongly consistent for fy, and Hz(t) and Rg(t) are strongly con-
sistent for H(t) and R;(t), uniformly for ¢t € [a, 7], where P(X' > 7) > € > 0, €
fixed (Tsai et al., 1987; Lai and Ying, 1991). This plus the fact that g has bounded

derivatives gives the uniform strong convergence of S;(t) to {Si(t) : t > a}. The

9
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convergence of n'/2{S;(t) — S;(t)} to a Gaussian process for t € [a, 7] can be easily
established by extending the theoretical developments in Fine et al. (2001) to the
left-truncated data. Hence, in Appendix 2, we present the variance estimator for Sa
with the proof omitted. To obtain a confidence interval for S; bounded in [0,1], we
can take monotone transformation of the estimator and apply the delta method.
Unlike the Lynden-Bell estimator for S; (), which decreases at each ¢t > a with
Sin (X! =1t) > 1, the estimator S; is a step-function which changes value at both
the observed values of X and Y whenever H;(t)'?—R;(t)"? jumps. In finite samples,
Sz(t) may not be monotone or may not be well-defined for some ¢ since Hz(t) may
be greater than R;(t), in contrast to the theoretical stochastic ordering of Hj(t) and
R;(t). The difficulties occur most often when estimating probabilities in the tail of
Sa, especially when censoring of X by Y is heavy. To address tail instability, we
restrict attention to the interval [a, #*], where t* < max{s : Hy(u)""? — Ry(u)"~? >
—1,0 < Si(u) < 1,u < s}. The monotone estimator Si(t) = ming.,<,{Sa(s)} is

asymptotically equivalent to S, for t € la, t*].

5. Numerical Studies

To evaluate the performance of our proposed estimators, we generated (X,Y)
pairs from model (1) with both X and Y following a Weibull marginal distribution
with scale parameter 1 and shape parameter 0.5 and we chose a to be 0.5, § =
1,2, or 3 and sample size n = 100 or 200. The truncation variable A was generated
from an independent Weibull(1, 0.5) distribution with a shift of 0.5. Conditional on
A, a censoring variable C' independent of (X,Y") follows a uniform distribution on
[A, A + 25|, giving 15% independent censoring on Y. Censoring by either C' or Y on
X is 42%. 1000 datasets were simulated for each combination of § and n.

~

In studying the estimator of the association parameter, #, we compared two

10
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weights of the form (3), one with ¢ = d = 0 (W = 1) and the other with ¢ and d equal
to x g5 and Y95, the 95th percentiles of the uncensored X and Y values, respectively.
In Table 1, we report the average of the following quantities from 1000 simulations:
0 (Ave), the empirical variance of f (EmpVar), the estimated variance (AveVar), the
coverage probability of the nominal 95% confidence interval for # (Cov95). In all
cases, the bias of 6 is small, decreasing as n increases. The estimated asymptotic
variance n~'Y and the empirical variance agree well and the confidence intervals have
the right coverage probability. In most cases, the weighted estimator is more efficient
than the unweighted estimator and has slightly higher coverage probabilities.

The performance of S%(t) in simulated datasets is summarized in Table 2. We es-
timated S;(¢) with the weighted estimator of # and constructed a confidence interval
using log(—log(.)) transformation. At various quantiles of S;(¢), we computed the
mean estimates of the conditional probabilities (Ave), the empirical variance (Emp-
Var), the average of estimated variance (AveVar), the percentage of valid estimates
(%Val) and the coverage probability of 95% confidence interval (Cov95). The average
and the empirical variance of the naive Lynden-Bell estimator are also presented in
Table 2.

In all cases, the proposed estimator for S;(¢) is unbiased. The estimated variance
is larger than the empirical variance on average, but the difference diminishes as
sample size increases. The coverage is generally close to 0.95 and improves with
larger samples. Under independence, the Lynden-Bell estimator is somewhat more
efficient since 6 is estimated and not fixed at 1 when computing 5’;‘ However, when
there is moderate dependence between X and Y (f = 2,3), the naive estimator is

noticeably biased upwards, with bias increasing as the dependence strengthens.

6. Application to the Denmark Diabetes Registry

11
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We applied our methods to the aforementioned prospective cohort study on insulin-
dependent diabetic patients conducted in the Steno Memorial Hospital in Greater
Copenhagen. From 1933 to 1981, the study accrued roughly 2700 patients, who were
diagnosed with insulin-dependent diabetes mellitus prior to age 31 and between 1933
and 1972. At entry, patients’ age, age of diabetes diagnosis and the presence of di-
abetic nephropathy (DN) were recorded. The patients were then followed to death,
emigration, or December 31, 1984 and the incidence of DN if not present at entry. A
detailed description can be found in Andersen et al. (1993, Ch.1.3.).

Our focus is to quantify the association between time to DN and time to diabetes-
related death and to estimate the probability of developing DN after being diagnosed
with insulin-dependent diabetes. The relevant time origin is the time of diabetes
diagnosis. As discussed in Section 1, an analysis of the marginal distribution of DN
quantifies the net effect of care on prolonging time to DN, independently of its effect
on death prior to nephropathy. The association between times of DN onset and death
and the marginal distributions of the event times may vary across birth cohorts, and
it is of interest to study the changes in these quantities over calendar time. In this
paper, we illustrate our methods with the [1935, 1940) and [1945, 1950) birth cohorts.

Table 3 summarizes the observed data in the cohorts. Not surprisingly, fewer
deaths were observed in the 1945-50 birth cohort. A crude analysis showed a rate of
9.7 deaths per 1000 person-year in the 1935-40 birth cohort versus a rate of 6.0 deaths
per 1000 person-year in the 1945-50 birth cohort. T'wo possible reasons are that the
latter cohort is younger and have access to more recent treatments for diabetes. It
is also noted that 7% and 5% of subjects in the 1935-40 and 1945-50 birth cohorts,
respectively, had already developed DN at the time of admission to registry.

Since 24.4% and 27.7% of patients were truncated at the diagnosis time (i.e., A =

0) in the 1935-40 and 1945-50 birth cohorts, respectively, we assumed unconditional

12
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Clayton copula model with a = 0 for both cohorts. The bottom part of Table 3 shows
that model (1) fitted the data in each cohort reasonably well using the goodness-
of-fit test described in Section 3. The estimates of # indicate strong association
between time to the development of DN and time to death in both cohorts, with the
dependence in 1935-40 being noticeably stronger. For any = < y, the hazard of death
at time y for a patient who has developed DN at time x is about 8.8 times the hazard
of death at time y for a patient who has not developed DN by time x in the 1935-40
cohort. The ratio is about 5.4 in the 1945-50 cohort. This finding supports the well
known fact that diabetic nephropathy is a strong prognostic factor for death. It also
suggests that the increased risk of mortality following DN has decreased over calendar
time. The difference in association is marginally significant, with p-values of 0.06 and
0.08 obtained with tests using the weighted and unweighted estimators, respectively.

To estimate the marginal distribution of DN in insulin-dependent diabetic pa-
tients, we used the weighted estimator for the association parameter in Table 3 for
each cohort. Figure 1 plots the estimated DN-free probabilities curves (thick solid
lines) and their point-wise confidence intervals (thin dashed lines). Recall that these
curves refer to scenarios in which death prior to DN is not possible. Hence, when
comparing the two birth cohorts, these probabilities may be interpreted as the net
effects of changes in care over calendar time, after adjusting for the indirect effects
of changes in care on death from other aspects of diabetes prior to the occurrence of
DN. To indicate the potential bias from the Kaplan-Meier estimator which assumes
independence between time to DN and time to diabetes-related death, these esti-
mators (thick dotted lines) are also plotted in Figure 1. For both cohorts, the naive
estimator markedly overestimates the probabilities obtained with S';‘ For the 1935-40
cohort, the dependent censoring rate for DN onset is moderate, and the Kaplan-Meier

estimator lies almost entirely outside the point-wise 95% confidence interval based on
13
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our proposed estimator. For the 1945-50 cohort, the dependent censoring is lighter
and differences between the Kaplan-Meier estimator and our estimator are smaller.

Figure 2 simultaneously plots the estimated event-free probabilities side by side
for the two birth cohorts. In both panels, the solid line and the dotted line correspond
to the 1935-40 and the 1945-50 birth cohorts. The lower panel confirms that survival
of diabetic patients is improving in 1945-50 birth cohort, with a clear 4-5% advantage
at most time points. In the upper panel, it is interesting to notice that after adjusting
for the dependent censoring from death prior to DN, the DN-free probability curves
of the two birth cohorts do not differ much in the first 23 years post-diagnosis. The
noticeable divergence after 23 years post-diagnosis should be interpreted with care
since for those who did not develop DN by 23 years post-diagnosis in the 1935-40
birth cohort, 94% had their incidence of DN censored at a later time. The estimated
tail probabilities may not be reliable. Still, bearing in mind this tail instability, the
stochastic ordering of the DN and death distributions is different in the two cohorts.
Based on the point estimates, it is more likely to observe the development of DN prior
to death in the 1945-50 cohort, even with this cohort’s improved survival. A possible
explanation is that increased survival post diagnosis has enabled diabetics to live
long enough to develop severe complications, like nephropathy, at a higher rate. The
increase in DN and the lengthening of survival might occur if the improvements in
survival result from the prevention of death prior to DN and individuals experiencing
DN are able to live longer with this condition. This scenario does not seem out of
line with our results, which showed that the risk of death following DN is lower in
the 1945-50 cohort.

The validity of the above interpretation involves several layers of assumptions.
The first is that the underlying model (1) is correctly specified. The gamma-frailty

copula on the upper wedge was not rejected using the numerical tests, so there is at

14
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least some evidence that the model fits well in the observable region. Jiang et al.
(2003) have shown that when the dependence structure is misspecified, the estimates
of the marginal of X tend to be robust to this misspecification. The second and more
critical assumption is that S; defined on the upper wedge corresponds to the marginal
distribution of X defined in the lower wedge, where no data is observable. Even when
the adjustment for dependent censoring is correctly specified by (1), this additional
assumption is still needed to interpret S; as the marginal of X and cannot be verified

empirically.

7. Discussion

To analyze left-truncated semi-competing risk data, we proposed a conditional
version of the Clayton copula, with completely unspecified conditional marginals.
This specification respects that the marginal and joint distributions for X and Y may
not always be identifiable from left-truncated data. The modeling approach has three
merits. Firstly, it retains the same flexibility as the standard Lynden-Bell estimator
for left-truncated data with independent right censoring. The analyst may choose
the parameter a based on the observed pattern of truncation in the data. Secondly,
the conditional Clayton model preserves the nice interpretation of the association
parameter @ as the predictive hazard ratio (Day et al., 1997) in the observable region.
The value of € is the same in both the conditional model and the unconditional model
with @ = 0. In other words, the concordance probability is not affected by conditioning
on event times larger than a. Thirdly, unlike previous methods of estimating event-
free probabilities of non-terminal event, our methods do not discard data of subjects
whose non-terminal events occur prior to the corresponding truncation times for the

terminating event. This extra information is useful in the estimation of # and R;(t).
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In extending Fine et al. (2001) to left-truncation, we used data pairs satisfying

(Ai\/Aj)\/(Xi/\Xj)<Y;'/\Xj<ci/\cj

to estimate #. This ensured the independence between A;; and W()N({j,Yz-’j)Oij in
the concordance estimator §. While this estimator performed well in simulations
and the diabetes registry analysis, there may be loss of efficiency by excluding some
observed concordance-discordance information using A; V A;. Methods for recovering
this information are a topic for future research.

Following Fine et al. (2001), it can be shown that the closed form estimator for S;
is robust to the misspecification of the copula model in the lower wedge where X > Y.
In other simulation studies (not reported), we found that when the two time-to-event
variables are associated but follow some bivariate distribution other than the Clay-
ton model in the upper wedge, S, is still less biased than the Lynden-Bell estimator.
Intuitively, the association parameter in a misspecified model can, at least to some

extent, capture the true dependence between the two time-to-event variables, whereas

assuming independence completely ignores the relationship between X and Y.

APPENDIX 1: Asymptotic normality of n'/2(6 — 6;)

A Taylor expansion of U(f) in 0 around 6, and the consistency of 6 give n'/2(f —
00) = I {n=32U(6y)} + 0,(1), where I is the probability limit of /. Straightforward
calculations show n */2U(6y) = n %% ¥;; Qi; + 0,(1), where Q;; = W(X{j, 37;’])01]
{A;; — 0p(1+6p)~"}. A central limit theorem for U-statistics and Slutsky’s law yield
the normal distribution for n'/2(6 — 6,) with variance I=2J, where .J is the limit of .J.

Under the null hypothesis, the distributions of 0, and 0, are centered around

the same . Using the previous results, n'/2(f, — 6,) = n=32%,; Q5 + 0,(1),
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where Qf = I7'Quij — I3 Qaijy Iy = limyyo0 I, and Qpy; is Qi with W replaced
by Wi = limy_oo Wi, k = 1,2. A limit theorem for U-statistics gives asymptotic

normality, with variance I' = lim,,_, o, 2n73 Yhctem(QuQrm + QuQry + Qi Qi) A

consistent estimator [ is computed with Q;‘j in place of @}; in I'.

APPENDIX 2: Variance estimator of n'/2{S;(t) — Si(t)}

Similarly to Fine et al. (2001), it can be shown that n'/2{S;(t) — S5(t)} is asymp-

totically equivalent to n=*?2 3, _; Vi;(t), where

Vi) = —gu {Ha(t), Ra(t), 0} Hat) [ () M) + M5 ()

a

—go{Ha(t), Ra(t), 00} Ra(t) /at 7y ()~ {dMyi (u)+d My, (u) }+-gs{ Ha(t), Ra(t), 0}~ Qi
and

g1(a,b,¢) = dg(a,b,¢)/da = a=(a'~¢ = b'~¢ 4+ 1)/017),
g2(a,b,c) = g(a,b,c)/0b = —b (a* ¢ — b ° + 1)1~
gs(a,b,c) = 0g(a,b,c)/0c =

(a.b.0) log,(a'=¢—b'""¢+1) —a'"¢log,(a) + b'~¢log,(b)
el (1= 0 (@<—bc+)(1—c) |

t
M,(t)=I(A4;Va< X, <tn,;=1) —/0 I(X]>u> A;Va)dA,(u) and

t
Myi(t) = I(a < X\, A < Y! < t,nyi = 1) — /0 1Y) > u> Ay, X! > a)dA, (u)

are martingales, and A,(u) and A,(u) are cumulative hazard functions for Z and Y,

respectively, given X > a and Y > a; 7, and 7, are the limits of

() =n ") _I(X] >t > A;Va),

=1

F(t) =Y _I(Y] >t > A, X] > a).

=1
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A consistent estimator for the covariance function o(s,t) = cov[n!/2{S;(s) — Sa(s)},

n'/2{S;(t) — Sz(t)}] is given by

6(s,1) = 107 Thcram { Vi (8) Vi (1) + Vien () Vi (1)
Vi (8)Vien (8) + Vi () Via(8) + Vi () Vit (8) + Vi () Vin (1)},

where

~ t A
M,(t)=1(A;Va< X] <t v=1) —/0 I(X]>u> A; Va)dA,(u),

t N
Myi(t) = I(a < X!, A < Y! < 1,6 =1) — / I(Y] > u> A, X! > a)dA, (),
0

and A, and Ay are modified Nelson-Aalen estimators for A, and A, respectively:

A Vi A di
A= > — and Ay(t) = > — .
a<X[<t Ny (XZI) ! a<y]<t nﬂ'y(Y;-’)
a<X]
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Table 1. Comparison of the weighted and unweighted estimators for 6.

0 (c,d) Ave EmpVar AveVar Cov9b
n = 100
1 (0,0) 101 0022 0029 968
2 (0,0) 2.01 0.108 0.125 96.1
3 (0,0) 3.04 0274 0302 954
(x.95,9.95) 3.05 0.265 0.302 96.1
n = 200
1 (0,0) 1.01 0.012 0.015 96.4
(2.95,1.95) 1.00 0.009 0.015 98.6
2 (0,0) 2.02 0.060 0.064 96.3
(2.95,1.95) 2.02 0.056 0.065 96.9
3 (0,0) 3.04 0.150 0.155 94.9
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Table 2. Comparison of S}L‘ and the Lynden-Bell estimator.

Sz(t) Lynden-Bell
Sa(t) n Ave EmpVar AveVar %Val Cov95 Ave EmpVar
=1
0.9 100 0.90 0.790 3.363 100 91.5 0.90 0.770
200 0.91 0.412 1.291 100 96.0 0.90 0.402
0.7 100 0.71 1.235 1.813 100 96.0 0.70 1.116
200 0.70 0.622 1.201 100 97.2  0.70 0.568
0.5 100 0.50 1.574 1.906 100 97.4  0.50 1.163
200 0.50 0.703 1.141 100 97.8  0.50 0.566
0.3 100 0.31 1.660 2.521 100 97.4  0.30 1.071
200 0.30 0.777 1.481 100 99.0 0.30 0.542
0.1 100 0.11 2.625 3.236 99.6 83.5 0.12 1.062
200 0.10 1.121 1.784 100 88.2  0.11 0.549
0=2
0.9 100 0.91 0.489 1.216 100 93.4 0.91 0.418
200 0.90 0.253 0.618 100 98.2  0.90 0.201
0.7 100 0.71 0.940 1.434 100 97.2  0.74 0.620
200 0.70 0.532 0.820 100 97.8 0.74 0.305
0.5 100 0.50 1.146 1.363 100 95.7  0.58 0.672
200 0.50 0.541 0.727 100 96.8  0.58 0.311
0.3 100 0.31 1.032 1.226 100 95.9 0.42 0.671
200 0.31 0.531 0.584 100 96.0 0.42 0.364
0.1 100 0.13 1.589 6.431 96.3 86.4  0.23 0.894
200 0.11 0.510 0.737 99.6 92.2 0.23 0.389
0=3
0.9 100 0.91 0.458 1.213 100 94.1 0.91 0.344
200 0.90 0.223 0.540 100 97.9 0.91 0.171
0.7 100 0.71 0.970 1.448 100 96.8  0.76 0.508
200 0.70 0.484 0.775 100 97.6  0.75 0.253
0.5 100 0.51 1.138 1.396 100 96.3 0.61 0.550
200 0.50 0.529 0.662 100 96.8 0.62 0.261
0.3 100 0.31 0.877 0.978 99.4 95.2 047 0.610
200 0.31 0.452 0.466 100 95.1  0.47 0.293
0.1 100 0.12 0.803 22.70 92.3 88.2 0.27  0.698
200 0.11 0.302 1.554 98.1 93.4  0.27 0.334

Ave, empirical mean; EmpVar, empirical variance; AveVar, model-

based variance; %Val, percentage of valid estimators; Cov95, empirical
coverage probability in percentage. Empvar and AveVar are multiplied
by 100.
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Table 3. Association between time to DN and time to death in insulin-dependent

diabetic patients by birth cohorts.

(1935, 1940) (1945, 1950)
n 349 394
(n,0) = (0,0) | 235 (67.3%) | 280 (71.1%)
(n,8) = (1,0) | 24 (6.9%) 62 (15.7%)
(n,0) = (0,1) | 35 (10.0%) 22 (5.6%)
(n,8) = (1,1) | 55 (15.8%) 30 (7.6%)
0 unwelghted1 8.03 (5.5,10.6) | 5.51 (3.1, 7.8)
f weighted! | 8.77 (6.2, 11.4) | 5.44 (3.1, 7.8)

Lack-of-fit test | 1.4 (p=0.16) | 0.12 (p =0.9)

! The figures in the parentheses are 95% confidence intervals for 6.
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Fig. 1. Estimated curves of DN-free probabilities by birth cohorts.
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Fig. 2. Comparison of event-free probabilities by birth cohorts.
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