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Estimating the number of essential genes in a genome
by random transposon mutagenesis

Natalie J. Blades and Karl W. Broman

Department of Biostatistics, Johns Hopkins University

29 July 2002

We describe a Bayesian method for estimating the number of essential genes in a genome, on the basis of data
on viable mutants for which a single transposon was inserted after a random TA site in a genome, potentially
disrupting a gene. The prior distribution for the number of essential genes was taken to be uniform. A Gibbs
sampler was used to estimate the posterior distribution. The method is illustrated with simulated data. Further
simulations were used to study the performance of the procedure.

INTRODUCTION

The CDC1551 strain ofMycobacterium tuberculosis is
an extremely virulent organism that can be quite damag-
ing to humans. Its circular genome, which consists of
4.4 Mbp (million base pairs), has been completely sequenced
(http://www.tigr.org), and the locations of 4250 known or in-
ferred genes have been identified. Knowledge of which of
these genes are essential for the organism’s viability is valu-
able, since such genes could serve as targets for new drugs.
One approach to learn about the identity of all essential genes
would be to knock out each gene individually. Alternatively,
one may use random transposon mutagenesis to knock out
genes completely at random, selecting for viable mutants that
have exactly one gene disrupted.

The Himar1 transposon of the Mariner family inserts it-
self completely at random at a site reading TA (Lampeet al.
1996). One may ensure the incorporation of exactly one such
transposon intoM. tb. CDC1551, select for a viable mutant,
and sequence across the junctions to identify the exact TA site
at which the transposon was incorporated.

The transposon, which is 2.1 kbp long, includes at least
20 stop codons in each of the six possible reading frames.
Thus, if the transposon is incorporated within a gene, the gene
product will be truncated, with a portion of the transposon in-
cluded at the tail. The gene product will thus be inactive,
and so the presence of a viable mutant with an insertion in a
particular gene indicates that the gene isnot essential for the
organism. Any mutant for which the transposon was inserted
within an essential gene will not be viable.

Figure 1 contains the sequence of the gene MT598 inM.
tb. CDC1551, which consists of 123 bp. (Note that this gene
is unusually short. The 4250 genes in this organism range in
length from 93 to 12,456 bp, with a median length of 813 bp.)
There are three transposon insertion sites in this gene: one at
the start codon, one at the stop codon, and one 60% of the
way through the gene.

It may be that the insertion of a transposon at a site close
to the tail of a gene will not be sufficiently disruptive to elim-
inate the activity of the gene product, and so viable mutants
may be observed even for essential genes. Thus, follow-
ing Hutchisonet al. (1999), we consider only insertion sites
within the initial 80% of a gene. The observation of a viable
mutant for such a site is assumed to indicate that the corre-
sponding gene is non-essential. A viable mutant for a site
in the tail 20% of a gene maynot indicate that the gene is
non-essential.

The M. tb. CDC1551 genome contains 74,403 such TA
sites for transposon insertion, including 65,649 that are within
genes, of which 51,370 are in the initial 80% of a gene. Of
the 4250 genes in the genome, 4234 contain at least one in-
sertion site, with 4204 genes containing at least one insertion
site in the initial 80% of their sequence. Figure 2 contains a
histogram of the number of insertion sites in the initial 80%
of each gene, for the 4204 genes containing at least one such
site. The median number of such sites is 10; 46 genes contain
50 or more sites, with one gene containing 162 sites.

Insertion sites in regions of gene overlap require careful
consideration. Of the 4250 pairs of adjacent genes in this
circular genome, 1110 overlap by at least 1 bp; 547 pairs of
adjacent genes overlap by exactly 4 bp, and one pair overlaps
by 547 bp. Of the 65,649 transposon insertion sites within
genes, 547 sites are in regions of gene overlap. (It is strange
that the number 547 shows up three times here.) For a pair of
genes that overlap in the initial portions of their sequences, a
transposon insertion at a site in the overlapping region would
disrupt both genes, and so a viable mutant with an insertion
at such a site indicates that both genes are non-essential. An
insertion at a site in the overlap between the initial portion
of one gene and the tail portion of another gene would likely
disrupt the former gene but may not disrupt the latter gene,
and so a mutant for such a site would indicate that the for-
mer gene was non-essential but may not be informative for
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Figure 1: The sequence of the gene MT598 inM. tb. CDC1551 (consisting of 123 bp), as well as the 5 bp preceding and
following the gene. Arrows indicate the three transposon insertion sites in this gene.
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Figure 2: Histogram of the number of TA sites in the initial 80% of each of the 4204 genes in theM. tb. CDC1551 genome that
contain such a site. The tick marks below the histogram indicate the actual observations, jittered slightly.

the latter gene. Thus, to be conservative, we eliminate from
consideration any insertion sites that are in regions of overlap
but which are not in the initial 80% ofboth genes. Of the
547 insertion sites shared by two genes, 62 fall in the initial
80% of each of the two genes. These 62 shared sites involve
30 pairs of genes; 18 of these gene pairs share exactly one
site, while one pair shares 11 sites. We are left with a total of
51,105 sites, including the 62 shared sites.

In random transposon mutagenesis, one obtains a number
of viable mutants that contain exactly one transposon inser-
tion and identifies the exact location of the insertion in each
mutant by DNA sequencing. As discussed above, we con-
sider only insertion sites and mutants that are in a single gene
and are in the initial 80% of that gene, or that are in the initial
80% of each of two genes. Genes for which a mutant was
observed are thus inferred to be non-essential.

We have developed a Bayesian statistical method to esti-
mate the overall number of essential genes in the genome on
the basis of such data. We assume that the prior distribution
for the number of essential genes is uniform, and estimate the

posterior distribution (given the data) using a Gibbs sampler,
a form of Markov chain Monte Carlo. The overall number of
essential genes is estimated by the estimated posterior mean.

The results of the Gibbs sampler also allow us to estimate,
for each gene, the probability, given the data, that it is essen-
tial. Further, we may consider recognized families of genes,
and identify families that appear to be enriched in essential
genes.

In the following sections, we describe our method in de-
tail, illustrate it with simulated data, and describe the results
of further computer simulations to assess the performance of
our procedure.

METHODS

Let N denote the number of genes, numbered according
to their order around the genome. Letxi denote the number
of insertion sites that are in the initial 80% of genei and that
appear in no other gene, and letwi denote the number of in-
sertion sites that are in the initial 80% ofboth genesi and
i+1, with wN corresponding to the number of insertion sites
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shared by genesN and 1. (Recall that the genome is circular.)
Let θi = 1 if the ith gene is non-essential and = 0 otherwise.
For convenience of notation, letθN+1 ≡ θ1, θ0 ≡ θN , and
w0 ≡ wN . Let S =

∑

i(xiθi + wiθiθi+1), the total number
of viable targets for transposon insertion. Letpi = xiθi/S
andqi = wiθiθi+1/S. Thenpi is the proportion of viable tar-
get sites that appear in genei alone, andqi is the proportion
of viable target sites that are shared by genesi andi + 1. Let
θ = (θ1, . . . , θN ), p = (p1, . . . , pN ), andq = (q1, . . . , qN ).

Consider data onn mutants. Letyi denote the number
of mutants with an insertion in theith gene alone, and let
zi denote the number of mutants with an insertion in the re-
gion of overlap between genesi and i + 1. As before,zN

corresponds to the number of mutants shared by genesN
and 1, and for convenience of notation we letz0 ≡ zN .
Note that

∑

i(yi + zi) = n. Let y = (y1, . . . , yN ) and
z = (z1, . . . , zN).

Let Oi = 1 if yi > 0, zi > 0, or zi−1 > 0, and letOi = 0
otherwise. In other words,Oi = 1 if at least one mutant was
observed with transposon insertion at a site in genei. (Recall
that if zi > 0, at least one viable mutant was observed for
an insertion site in the region of overlap between genesi and
i + 1, and soOi = 1 andOi+1 = 1. This indicates thatboth
of these genes are non-essential, and soθi = 1 andθi+1 = 1.)

We seek to estimateθ+ =
∑

i θi, the total number of non-
essential genes. Note thatN − θ+ is the number of essential
genes and1 − θ+/N is the proportion of essential genes.

We assume that(y, z) ∼ multinomial(n, (p, q)). This
gives the following likelihood function forθ:

L(θ | y, z) =

(

n

(y, z)

) ∏

i(xiθi)
yi(wiθiθi+1)

zi

(
∑

i xiθi + wiθiθi+1)n

∝ (
∑

i xiθi + wiθiθi+1)
−n

provided thatθi = 1 wheneverOi = 1.
It is interesting to note that the likelihood function does

not depend on the particular numbers of mutants observed
for each gene, but only on the overall number of mutants and
on the identity of genes for which at least one mutant was
observed. Note that the maximum likelihood estimate (MLE)
for θ+ is simply the minimum number of non-essential genes,
given the data: the number of genes for which at least one
mutant was observed.

We assume the following prior distribution forθ:

Pr(θ) =
1

N + 1
·

1
(

N
θ+

) =
(θ+)! (N − θ+)!

(N + 1)!

That is,θ+ ∼ uniform{0, 1, . . . , N} andθ | θ+ is uniform
over all sequences of 0’s and 1’s having

∑

i θi = θ+.
We use a Gibbs sampler (Geman and Geman 1984), a

form of Markov chain Monte Carlo (MCMC), to estimate the
posterior distribution ofθ, given the observed data,(y, z).
In MCMC, one forms a Markov chain whose stationary dis-
tribution corresponds to the posterior distribution of interest.
Sequential draws from such a chain provide an estimate of the

posterior distribution. (See Gelmanet al. (1995) for a review
of MCMC.)

We begin with an initial stateθ(0). Of course, genes for
which a mutant was observed (Oi = 1) are known to be non-
essential, and are assignedθ

(0)
i = 1. We typically assign all

other genes to be essential (withθ
(0)
i = 0) initially, though we

may also assign them all to be non-essential, or assign them
to be essential independently with some specified probability.
That the starting point is unimportant will be demonstrated
below.

At step s of the Gibbs sampler, we cycle through the
genes, one at a time, and drawθ(s+1)

i conditional on the ob-
served data and on the current values of all otherθ’s. Let
θ

(s)
−i = (θ

(s+1)
1 , . . . , θ

(s+1)
i−1 , θ

(s)
i+1, . . . , θ

(s)
N ). Then

Pr(θi = 1 | θ
(s)
−i , y, z) =











1 if Oi = 1

(Ai+1)(Ci)
−n

(Ai+1)(Ci)−n + (N−Ai)(Bi)−n if Oi = 0

where

Ai =
∑

j<i θ
(s+1)
j +

∑

j>i θ
(s)
j

Bi =
∑

j<i xjθ
(s+1)
j +

∑

j>i xjθ
(s)
j +

∑

j<i−1 wjθ
(s+1)
j θ

(s+1)
j+1 +

∑

j>i wjθ
(s)
j θ

(s)
j+1

Ci = Bi + xi + wi−1θ
(s+1)
i−1 + wiθ

(s)
i+1

The above equations are greatly simplified if insertion
sites in regions of gene overlap are not considered. In that
case, the terms containingw’s are eliminated.

We begin the chain at some initial stateθ(0). At each
step of the chain, we update theθi in a random order. We
discard the initial 500 or so steps (called the burn-in period),
and use the results of every 50th or so of the remaining steps
to estimate the posterior distribution ofθ. Let M denote the
number of values so used.

We estimate the number of non-essential genes by its es-
timated posterior mean,

∑

s θ
(s)
+ /M , whereθ(s)

+ =
∑

i θ
(s)
i is

the number of non-essential genes at steps in the Gibbs sam-
pler. A 95% credible interval for the number of non-essential
genes is estimated as(L, U) whereL andU are the 2.5 and
97.5 percentiles of the observedθ(s)

+ . Of course, both the
point estimate and the interval estimate may easily be turned
into corresponding estimates regarding the number or propor-
tion of essential genes. Note that the 95% credible interval
may be viewed as an approximate 95% confidence interval;
see the simulation results below.

We may further estimate the posterior probability that
each gene is essential. Of course, genes for which a mutant
was observed are known to be non-essential and so have pos-
terior probability to be essential of zero. For genes for which
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Figure 3: Number of essential genes at each of the first 1000 MCMC steps of five independent chains initiated at dispersed
starting points, for the example data.

no mutant was observed, the posterior probability is estimated
by 1 −

∑

s θ
(s)
i /M .

Finally, suppose that the genes have been partitioned into
families, and letj(i) denote the family for genei. Let
nj denote the number of genes in familyj, and letφj =
∑

i:j(i)=j θi/nj denote the proportion of non-essential genes
in family j. We may say that familyj is enriched with
essential genes if the proportionφj is less than the over-
all proportion of non-essential genes,θ+/N . We may esti-
mate the probability, given the data, that familyj is enriched
with genes asPr(φj < θ+/N | data) ≈ #{s : φ

(s)
j <

θ
(s)
+ /N}/M , whereφ(s)

j =
∑

i:j(i)=j θ
(s)
i /nj.

Computer software implementing the above method
has been constructed as an add-on package, R/negenes,
for the freely available statistical software R (Ihaka and
Gentleman 1995), and will soon be made available at
http://www.biostat.jhsph.edu/˜kbroman/software .

EXAMPLE

In order to illustrate our method and to inspect the prop-
erties of the Gibbs sampler, we simulated an example data set
patterned after theM. tb. CDC1551 genome. We considered
only the 4204 genes that contain at least one TA site in the
initial 80% of their length, chose 1850 (44%) genes, at ran-
dom, to be essential, and simulated 756 viable mutants with
insertions at one of the 51,105 TA sites under consideration.
One of these simulated mutants had insertion at a site shared
by two genes. A total of 593 genes were observed to have at
least one mutant. Thus the minimum number of non-essential
genes was found to be 593, and the maximum number of es-
sential genes was 3611.

In Figure 3, the number of essential genes at the first 1000
steps in each of five independent chains is displayed. These
five chains were initiated at dispersed starting points, with ei-
ther none, 25%, 50%, 75% or all of the 3611 genes for which
no mutant was observed taken to be essential. The five chains
converge upon each other within their first 200 steps, indicat-
ing that the Gibbs sampler converges rapidly to the stationary
distribution, and that the results will not be sensitive to the
particular starting point of the chain.

Figure 4 contains the estimated autocorrelation function
for the number of essential genes, based on 50,000 MCMC
steps, following a burn-in period of 500 steps. While there is
considerable autocorrelation, values that are 50 or more steps
apart are approximately uncorrelated. Figure 5 contains the
number of essential genes at every 50th step of these 50,000
MCMC steps. There appears to be some residual autocorre-
lation, but the Gibbs sampler is mixing well.

To obtain our final estimate of the posterior distribution of
the number of essential genes, based on these simulated data,
we considered the results of every 50th of 500,000 MCMC
steps (a total of 10,000 values), following a burn-in period of
500 steps.

The estimated posterior mean number of essential genes
was 1897 (45.1%). The estimated 95% credible interval (the
2.5 and 97.5 percentiles of the 10,000 values) was the interval
1590 to 2166 (37.8 to 51.5%). Note that this interval contains
the simulated number of essential genes, 1850 (44%).

In Figure 6, the estimated posterior probability of being
essential is plotted against the number of TA sites, for each of
the 4204 genes. The 593 genes for which a mutant was ob-
served have posterior probability of being essential of zero,
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Figure 4: The autocorrelation function estimated from the number of essential genes in 50,000 MCMC steps, following a burn-
in of 500 steps, for the example data. Horizontal lines indicate approximate pointwise confidence bounds for an uncorrelated
series. Note that the estimated autocorrelation for small lag is truncated so as to more clearly show the region for which the
autocorrelation reaches 0.
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Figure 5: Number of essential genes at every 50th of 50,000 MCMC steps, following a burn-in of 500 steps, for the example
data.
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and are jittered vertically so that the points may be distin-
guished. The vertical scatter in the remaining points is largely
due to MCMC sampling error. Note that genes that have more
than 50 insertion sites, and for which no mutant was observed,
have a greater than 75% chance, given the data, of being es-
sential. In fact, 21 of the 26 such genes (81%) were simulated
to be essential.

The two red points in Figure 6 correspond to genes 1856.1
and 1857. These adjacent genes are 1161 and 2085 bp long,
respectively, and overlap by 547 bp. The genes contain 24
and 29 transposon insertion sites in the initial 80% of their
lengths, respectively. These include 11 insertion sites that
are in the region of overlap between the genes. Such shared
insertion sites are somewhat less informative than insertion
sites that are not in regions of gene overlap, since lack of a
mutant at a shared site provides information that at least one
of the genes may be essential, while lack of a mutant at a
single-gene site provides information that that particular gene
may be essential. Thus, these genes, with many shared in-
sertion sites, have somewhat lower posterior probabilities of
being essential than other genes with an equivalent number of
transposon insertion sites.

In summary, this simulated example has shown that the
Gibbs sampler, on which our method is based, converges
rapidly to its stationary distribution (so that the results will de-
pend little on the point of chain initiation) and mixes rapidly
(so that the values at every 50th MCMC step are approxi-
mately uncorrelated). The 95% credible interval for the pro-
portion of essential genes was 37.8 to 51.5%, which contains
the simulated proportion (44%).

SIMULATIONS

In order to study the performance of our procedure for es-
timating the number of essential genes, we performed a small
simulation study. We assigned either 25, 50 or 75% of the
4204 genes, at random, to be essential, and simulated data
on either 750, 1500, 3000, or 4500 mutants. For each pro-
portion of essential genes and each number of mutants, we
performed 1000 simulation replicates. (Note that the partic-
ular genes that were chosen to be essential varied between
replicates.) For each replicate, we used every 10th of 20,000
MCMC steps, following a burn-in period of 500 steps, to esti-
mate the proportion of essential genes and obtain a 95% cred-
ible interval.

The results of the simulations appear in Figure 7. Fig-
ure 7A contains the estimated bias in the estimate of the per-
cent of essential genes (i.e., the difference between the aver-
age of the estimates across replicates and the simulated per-
cent of essential genes). Figure 7B contains the estimated
coverage of the 95% credible interval (i.e., the fraction of the
replicates in which the interval contained the simulation pro-
portion of essential genes). As seen in this figure, our pro-
cedure is performing appropriately: the estimate is approxi-
mately unbiased (though there is a small negative bias in the
case of data on 750 mutants) and the 95% credible interval
has approximately 95% coverage.

Figure 7C contains the average length of the 95% credible
interval for the percent of essential genes. The intervals be-
come considerably smaller with data on more mutants. Also,
the intervals are somewhat smaller in the case of a larger un-
derlying proportion of essential genes. For example, in the
case of 1500 mutants, the average length of the interval is
10.7% when 25% of the genes are essential, 6.3% when 50%
of the genes are essential, and 2.5% when 75% of the genes
are essential.

OPERONS

An additional issue deserving consideration is that of
operons. In bacteria, one often finds a group of adjacent
genes (called an operon) that are transcribed in one piece. The
genes in an operon are always oriented in the same direction
and have very short (< 15 bp) gaps between adjacent genes.
The insertion of a transposon at a site in an “upstream” gene
within an operon can disrupt all downstream genes. (This is
sometimes called the “polar effect.”) Thus, if genes 1, 2, . . . ,
k, form an operon and genek is essential, a transposon in-
sertion in any of the genes 1, 2, . . . ,k − 1, may prevent the
production of the product for genek, and so each of these
genes will appear essential in a random transposon mutagen-
esis experiment, insofar as no viable mutants can be obtained,
even though their particular gene products may not be essen-
tial for the viability of the organism.

The key issue with operons in relation to random transpo-
son mutagenesis experiments is a change in the meaning of an
“essential” gene. A gene must be called essential if either (a)
a transposon insertion in the gene disrupts the activity of its
gene product leading to a mutant that is not viable, or (b) the
gene appears in an operon upstream of a truly essential gene,
and a transposon insertion in the upstream gene disrupts the
activity of the downstream gene.

If the identity of all operons were known and this “polar
effect” were known always to be in effect, this would provide
considerable information for the estimation of the overall pro-
portion of essential genes, as, for example, if a mutant were
observed for a gene appearing in an operon, all downstream
genes in that operon would then also be known to be non-
essential.

In the absence of concrete information on the identity of
operons, one may be concerned that the presence of such
operons may bias the results of the methods described above,
but we believe that no such bias is introduced. Using the no-
tation from the Methods section above, the distribution of
the observed data,(y, z), given θ and the identity of the
operons, doesnot depend on the identity of the operons:
Pr(y, z | θ, operons) = Pr(y, z | θ). If the identities of
operons are known, such information should be used in form-
ing the prior onθ, but without such information, the perfor-
mance of our method should not be unduly affected.

In order to verify this argument, we performed a small
simulation study. We first attempted to infer the identity of
operons in theM. tb. CDC1551 genome. All groups of adja-
cent genes that appear in the same orientation and for which
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Figure 6: Estimated probability of being essential, given the observed data, for each of the 4204 genes with a TA site, as a
function of the number of TA sites in the genes, for the example data. The estimates are based on the results of every 50th of
500,000 MCMC steps, following a burn-in of 500 steps. Genes for which a mutant was observed have posterior probability of
zero and are jittered vertically so that the points may be distinguished. The vertical scatter in the remaining points is largely
due to MCMC sampling error. The two points colored red, that have an unusually small posterior probability to be essential,
given the number of insertion sites they contain, are overlapping genes with 11 insertion sites in their overlapping region.

no two adjacent genes are separated by more than 10 bp were
inferred to be operons. Of the 4250 genes, 1847 genes were
assigned to an operon with two or more genes. There were
739 inferred operons in total, with an average of 2.5 genes
per operon. The two largest operons each contained eight
genes. While little trust should be placed in the identity of
these inferred operons, they provide a reasonable structure
for a simulation study to assess the effect of the presence of
operons on the performance of our method for estimating the
number of essential genes in the genome.

Our simulation procedure was as follows. First, we chose
a fixed proportion of essential genes (either 20, 35, 50, 65 or
80%) to be essential. Second, we assigned this fraction of
the 4250 genes in the genome, at random, to be the essential
genes. Third, we used the polar effect, with the locations of
genes within operons and the orientation of the operons, to
classify additional genes as essential. (For example, if genes
5, 4 and 3 are in an operon, oriented so that gene 5 is up-
stream, and gene 4 is essential, gene 5 will then also be clas-
sified as essential.) Fourth, we simulated data on 759 mutants.
Finally, we applied our Bayesian method to estimate the pro-
portion of essential genes and obtain a 95% credible interval.
Note that the true proportion of essential genes was taken us-
ing the final assignment of genes as essential, and considering
only the 4204 genes that included at least one transposon in-
sertion site in the initial 80% of their length.

For each value for the proportion of essential genes, we
performed 1000 simulation replicates. At each replicate, we

used every 10th of 10,000 MCMC steps following a burn-in
of 200 steps. (This rather small number of steps was used in
order to save computation time.)

The results of these simulations are displayed in Figure 8.
In Figure 8A, the bias in the estimate of the percent of essen-
tial genes is displayed. While there may be a positive bias
in the case of a small proportion of essential genes, this bias
is less than 0.5%. Figure 8B contains the estimated coverage
of the 95% credible interval—that is, the percent of simula-
tion replicates in which the 95% credible interval contained
the simulated proportion of essential genes. The coverage is
reasonably close to 95%.

In summary, the presence of operons in bacteria affects
the meaning of “essential” in the consideration of random
transposon mutagenesis experiments, but does not introduce
bias in our estimation procedure. While knowledge of the
identity of operons, with the assumption of the polar effect,
could provide considerable information regarding the number
of essential genes, in fact few such operons are known forM.
tb. CDC1551, and the polar effect is not incontrovertible.

DISCUSSION

Random transposon mutagenesis is a valuable tool for
identifying which genes in a genome are essential for the via-
bility of the organism. We have developed a Bayesian statisti-
cal method, using Markov chain Monte Carlo, to estimate the
overall proportion of essential genes on the basis of data from
a random transposon mutagenesis experiment. The method
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Figure 7: Results of simulations to assess the performance of the estimation procedure. A. Estimated bias in the estimate of
the percent of essential genes. B. Percent coverage of the 95% credible interval for the percent of essential genes. C. Average
length of the 95% credible interval for the percent of the essential genes. The intervals are 95% confidence intervals based on
1000 simulation replicates.
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Figure 8: Results of simulations to assess the effect of the presence of operons on the estimation of the proportion of essential
genes. A. Estimated bias in the estimate of the percent of essential genes. B. Percent coverage of the 95% credible interval for
the percent of essential genes. The intervals are 95% confidence intervals based on 1000 simulation replicates.

further allows the estimation of the posterior probability that
each gene is essential, as well as the posterior probability that
a gene family is enriched in essential genes.

Application of the method to an example set of simulated
data demonstrated that the Gibbs sampler has good mixing
qualities. Further computer simulations showed that the pos-
terior mean number of essential genes is approximately un-
biased, and that the 95% credible interval, when viewed as a
confidence interval, has approximately 95% coverage.

We assumed that the prior distribution of the number of
essential genes in the genome was uniform. We further as-
sumed that all genes are equally likely,a priori, to be es-
sential. The latter assumption is critical. In particular, we
assume that whether a gene is essential is independent of the
number of transposon insertion sites it contains. If essential
genes tend to have fewer insertion sites than non-essential
genes (e.g., if essential genes tend to be shorter), our esti-
mate of the number of essential genes will exhibit consider-
able negative bias (i.e., we will infer too few essential genes).
If essential genes tend to have more insertion sites that non-
essential genes, our estimate of the number of essential genes
will be positively biased (i.e., we will infer too many essen-
tial genes). An understanding of the relationship between the
essential nature of a gene and the number of insertion sites
it contains will likely require data on a very large number of
mutants.

The method described herein may serve as a valuable
Gibbs sampler example for a course in computational statis-

tics, especially if one neglects the case of insertion sites in
regions of gene overlap. If one ignores these shared sites,
the method can be quite simply described and implemented.
Further, this method demonstrates the possible advantages of
Bayesian methods and of Markov chain Monte Carlo.
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