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A Varying-Coefficient Cox Model for the
Effect of Age at a Marker Event on Age at

Menopause

Bin Nan, Xihong Lin, Lynda D. Lisabeth, and Sioban D. Harlow

Abstract

. It is of recent interest in reproductive health research to investigate the valid-
ity of a marker event for the onset of menopausal transition and to estimate age
at menopause using age at the marker event. We propose a varying coefficient
Cox model to investigate the association between age at a marker event, denned
as a specific bleeding pattern change, and age at menopause, where both events
are subject to censoring and their association varies with age at the marker event.
Estimation proceeds using the regression spline method. The proposed method is
applied to the Tremin Trust Data to evaluate the association between age at onset
of the 60-day menstrual cycle and age at menopause. The performance of the
proposed method is evaluated using a simulation study.
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1 Introduction

It is of recent interest in female reproductive aging research to identify marker events for

the onset of the menopausal transition, and to investigate their use for estimating age at

menopause. Menopause is defined as the final menstrual period (FMP), with the FMP

confirmed after at least 12 months of amenorrhea. Although several marker events based on

menstrual bleeding criteria have been proposed (Mitchell, et al., 2000; Soules, et al., 2001;

Taffe and Dennerstein, 2001), there is a lack of appropriate statistical models to formally

evaluate their validity due to the complex nature of the data. Specifically both age at onset

of a marker event and age at menopause are subject to censoring, and their relationship is

complicated and varies with age at onset of the marker event.

This paper is motivated by the analysis of the Tremin Trust data. This data set provides

a unique opportunity to evaluate the association between age at menopause and ages at on-

set of the marker events proposed by reproductive health experts based on bleeding criteria

(Treloar, et al., 1967). The study enrolled 1997 white college students at the University of

Minnesota between 1935 and 1939 and followed them up to 40 years through their repro-

ductive life. The study participants were asked to use menstrual diary cards to record the

days when bleeding was experienced. Only limited covariate information was available in

the data.

Lisabeth et al. (2003) analyzed a subset of 562 women from the original Tremin Trust

cohort, who were age 25 or less at enrollment and still participating in the study at age 35.

They performed descriptive analyses to examine the associations between ages at onset of

several proposed marker events, e.g., the age a woman first experienced a menstrual cycle

at least 60-days in length, and age at natural menopause, which was defined as the age a

woman experienced the final menstrual period. Their preliminary analysis results suggest

that a 60-day cycle might be a useful marker for predicting age at menopause. To illustrate
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the main issue of the analysis and the main idea of the proposed approach, we focus in this

paper on investigating the association between age at onset of the 60-day cycle marker event

and age at menopause.

Figure 1 provides the Kaplan-Meier curves of age at the 60-day cycle marker event and

age at menopause. A total of 282 women experienced the 60-day cycle marker event, and

280 (50%) women were censored for the marker event. The median age at the 60-day cycle

marker was 48.7 years. A total of 193 women experienced natural menopause, and 369 (66%)

women were censored for menopause. The median age at menopause was 51.7 years. There

were 9 women who experienced menopause without having the 60-day cycle marker, and 271

women who were censored for both the 60-day cycle and menopause events. Note that these

271 women who were censored for the marker event were part of the 369 women who were

censored for menopause and their censoring times for those two events were the same.

As the first step to explore the relationship between age at the 60-day cycle marker and

age at menopause, we restricted ourselves to the 282 women who had an observed 60-day

cycle marker event and classified them into several groups based on their ages at onset of the

60-day marker as [35, 40), [40,43), and so on. For each marker age group, we calculated the

quartiles of age at menopause using the Kaplan-Meier method and displayed these estimated

quartiles using a boxplot. These boxplots are given in Figure 2. The number of women in

each marker age group is given above the corresponding boxplot. Figure 2 shows that the

relationship between age at the 60-day cycle marker and age at menopause is complicated

and varies with age at the 60-day cycle marker. For example, women who had experienced

the 60-day cycle marker before age 40 had a median age at menopause of 53; while for women

who had experienced the 60-day cycle marker between age 40 and 43, the median age at

menopause dropped quickly to 47, with median menopause age subsequently increasing with

age at marker event.

2
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The first scientific interest is to quantify the association between age at the 60-day marker

and age at menopause using a statistical model. The second scientific interest, especially

for clinicians and women themselves, is to estimate the distribution of age at menopause

given age at onset of the 60-day cycle marker. For example, if a woman first experiences a

60-day cycle at age 40, she would like to know from her physician her expected median age

of menopause. From a clinical point of view, this would be a very useful piece of information

for helping determine a woman’s need for continued contraception and the likelihood of

initiating interventions such as bone density screening.

The development of such a statistical model however has the following challenges. First,

the graphical analysis, such as Figure 2, was informative but only descriptive. Further,

it was restricted to the 282 women who had observed the 60-day cycle marker. However,

the remaining 280 women who had been censored for the 60-day cycle marker event also

contained some information about age at menopause, and one would like to include these

women in the analysis. Second, we need a flexible model to allow the association between

age at the 60-day cycle marker and age at menopause to vary with age at the 60-day cycle

marker.

Several approaches have been proposed for modeling intermediate marker events. Crow-

ley and Hu (1977) analyzed the Stanford heart transplant data using the Cox partial likeli-

hood method and treated transplant status, which was an intermediate marker event, as a

time dependent covariate. Lefkopoulou and Zelen (1995) and Nam and Zelen (2001) studied

the same model from a different angle, which leads to a contingency table interpretation. For

an overview of the existing methods handling intermediate marker events, see Kalbfleisch and

Prentice (2002, Section 6.4). All of these authors assumed a constant regression coefficient

for modeling the effect of the intermediate marker event. The results in Figure 2 however

suggest that this assumption is not appropriate for the Tremin Trust data. In particular, if
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we model age at onset of the 60-day marker event as a time-dependent covariate, we need

to allow its regression coefficient to vary with age at the marker event. We hence consider a

varying coefficient model.

Hastie and Tibshirani (1993) proposed general varying-coefficient models. In the Cox

model setting, it is commonly assumed in such models that the regression coefficient β(·)
is a function of the follow-up time, e.g., see Murphy and Sen (1991), Marzec and Marzec

(1997), Cai and Sun (2003), among others. Since our purpose is to evaluate the effect of age

at the 60-day cycle marker event on age at menopause, as demonstrated in Figure 2, it is

natural and biologically more interpretable to assume that, the regression coefficient β(·) of

the time dependent covariate, which indicates the onset of the marker event, be a function

of age at the marker event, instead of a function of the follow-up time.

The remainder of the paper is organized as follows. We introduce in Section 2 a varying

coefficient Cox model for age at menopause, where age at onset of the 60-day cycle marker

is a time dependent binary covariate and its coefficient is assumed to be a smooth function

of the marker event age. We discuss in Section 3 an estimation procedure using regression

splines. We analyze in Section 4 the Tremin Trust data, and conduct a simulation study

in Section 5 to evaluate the performance of the proposed method, followed by concluding

remarks in Section 6.

2 The Varying-Coefficient Model

Suppose the data consist of n subjects. Let Yi be the observed time to the event of interest,

which is defined as the minimum of the survival time Ti, e.g., age at menopause, and the

censoring time Ci for the ith subject (i = 1, · · · , n). We assume independent censoring. Let

∆i be a censoring indicator, which takes value 1 if a failure is observed and 0 otherwise. Let

Zi(t) be a binary time dependent variable to indicate the onset of a marker event.

4
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Assuming λ0(t) is the baseline hazard and λi{t|Zi(t)} is the hazard rate of the survival

time to the endpoint event at t given Zi(t). A standard Cox model with a time dependent

covariate has the following form:

λi{t|Zi(t)} = λ0(t)exp{βZi(t)} . (1)

It is common to use (1) to model the effect of an intermediate marker event by defining Zi(t)

as a binary indicator which takes value 0 and changes to 1 after the marker event happens

(Crowley and Hu, 1977; Kalbfleisch and Prentice, 2002).

In the Tremin Trust data, t is age, time to the endpoint event is age at menopause,

and time to the marker event is age at the first occurrence of the 60-day cycle marker event.

Model (1) assumes the log relative risk comparing subjects who have experienced the marker

event with subjects who never experienced the marker event is constant β, and is irrelevant

to the age they have experienced the marker event. The discussions in Section 1 suggest

that the association between age at menopause and age at the marker event varies with age

at the occurrence of the 60-day cycle marker event in the Tremin Trust data. We hence

propose to extend model (1) to allow the regression coefficient β to be a function of age at

the marker event.

Let Si be the true age at the 60-day marker event for woman i. We have

Zi(t) =

{
1 if t ≥ Si

0 if t < Si.
(2)

Equivalently, Zi(t) = I[t ≥ Si], where I(·) is an indicator function. This means that Zi(t) is

zero and jumps to 1 if a woman experiences the marker event at age Si. We extend model (1)

to allow the association between age at menopause and age at the marker event to depend

on age at the marker event Si = s as

λ{t|Zi(t)} = λ0(t)exp{β(s)Zi(t)} =

{
λ0(t)exp{β(s)} if t ≥ s
λ0(t) if t < s,

(3)
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where β(s) is an unknown smooth function.

We now compare the interpretations of model (1) and model (3). In both models, the

baseline hazard λ0(t) is the hazard for women who never experienced the marker event.

Suppose a woman experiences the marker event at s. Before the marker event happens,

her hazard of menopause is the baseline hazard λ0(t). Once the marker event happens at

age Si = s, her hazard of menopause changes to the baseline hazard λ0(t) multiplied by a

factor exp{β(s)} as t ≥ s, and her survival function starts to diverge if β(s) 6= 0, from those

who have not yet observed any marker event at time s. This means that we assume the

hazards are proportional after the onset of the marker event. Under the constant relative

risk Cox model (1), this proportional factor is constant and free of the age at onset of the

marker event s, e.g., exp {β(s)} = exp(β). Under the varying-coefficient Cox model (3), the

proportional factor varies with age at onset of the marker event s.

The difference between model (1) and model (3) is more easily illustrated using Figure

3(a) and 3(b) on the log hazard scale by contrasting two subjects who have experienced the

marker event at time 1 and time 2 respectively. Under the constant coefficient Cox model

(1), the first subject’s hazard is the baseline hazard before time 1 (s1) and changes from

the baseline hazard since time 1 by an amount of β, while the second subject’s hazard is

the baseline hazard before time 2 (s2) and changes from the baseline hazard since time 2

by the same amount β. Under the varying-coefficient Cox model (3), both women’s haz-

ards also change at time 1 and time 2 respectively, but by different constants β(s1) and

β(s2) respectively. Note that the lines are all parallel and reflect the proportional hazards

assumption.

It should be noted that Zi(t) is always observable at any t during the observed follow-up

time period, even though both age at marker event and age at menopause are subject to

censoring and their true values are unknown. Specifically, if the marker event is observed for
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a woman, Zi(t) is fully observed at any t and is a step function, which takes value 0 before

the marker event time and 1 afterwards, during the follow-up. If the marker event is not

observed for a woman during the follow-up time, i.e., age of the marker event Si is censored

and the true value of Si is not observed, then Zi(t) = 0 during the observed follow-up time,

and her age at menopause will either be censored at the same time or is observed before Si.

If baseline covariates X i are available, model (3) can be easily extended to incorporate

baseline covariates X i as

λi{t|Zi(t), X i} = λ0(t)exp{β(s)Zi(t) + γ ′X i} , (4)

where X i is age at menarche in the Tremin Trust data. For extension of (4) to accommodate

multiple marker events, see Discussion. Since model (3) is a special case of model (4), we

shall focus on model (4) in this paper.

3 The Estimation Procedure

3.1 Estimation Using B-splines

We consider estimation of the nonparametric function β(s) using the regression spline method

by approximating β(s) using the natural cubic B-spline basis. Let K be the number of

interior knots. Knot locations are usually chosen such that there are roughly equal numbers

of observed data points between any two adjacent knots. This can be done by placing the K

knots using the 100j/(K +1) (j = 1, · · · , K) percentiles of the observed marker event times.

We discuss in Section 3.2 estimation of the number of knots K using GCV.

Since a natural spline is constrained to be linear beyond the two boundary knots, the

function β(s) can be parameterized using K +2 natural cubic B-spline basis functions Bk(s)

(k = 1 . . . , K + 2) as

β(s) =
K+2∑

k=1

θkBk(s). (5)

7

http://biostats.bepress.com/umichbiostat/paper16



Replacing β(s) by its B-spline approximation in equation (5), model (4) can be written as

λ{t|Zi(t), X i} = λ0(t)exp{θ′Z̃i(t) + γ ′X i} , (6)

where θ = (θ1, . . . , θK+2)
′ and Z̃i(t) = {B1(s)Zi(t), . . . , BK+2(s)Zi(t)}′. Note that Z̃i(t) is

always observable during follow-up because Zi(t) is fully observed during follow-up. Specifi-

cally, if the marker event is observed at Si for the ith woman during follow-up, then Z̃i(t) = 0

if t < Si and Z̃i(t) = {B1(Si), . . . , BK+2(Si)}′ if t ≥ Si. If the marker event is not observed,

i.e., Si is censored and the true Si is not available, then Z̃i(t) = 0 for any observed follow-up

time t. This is because in the latter case, even though the true Si is unknown and thus

Bk(Si) cannot be evaluated, we have Zi(t) = 0 and hence Z̃i(t) = 0. It follows that θ can

be estimated and hence β(s) is identifiable and can be estimated without difficulty.

Now model (6) becomes a standard Cox proportional hazards model with the time depen-

dent covariate vector Z̃(t) and the baseline covariate vector X i. Estimation of the parameter

vectors (θ,γ) can be obtained by maximizing the following log partial likelihood function

`(θ,γ) =
n∑

i=1

∫ [
θ′Z̃i(t) + γ ′X i − log

n∑
j=1

I(Yj ≥ t)exp
{

θ′Z̃j(t) + γ ′Xj

}]
dNi(t) , (7)

where Yi is the minimum of censoring time Ci and time to menopause Ti and Ni(·) is the

counting process of menopause event for subject i.

The maximum partial likelihood estimators of θ and γ can be calculated using any

statistical package that does Cox regression, e.g., SAS PROC PHREG. Note that as discussed

above, if the marker event is censored for subject i, i.e. Si is not observable, then Zi(t) = 0 at

any observed follow-up time t, and we can assign Si any value for numerical implementation

when fitting the Cox model (6). Denote by (θ̂, γ̂) the maximum partial likelihood estimators

of (θ,γ) and cov(θ̂) and cov(γ̂) their covariance estimators. The nonparametric function

8
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β(s) can be estimated by

β̂(s) =
K+2∑

k=1

θ̂kBk(s) . (8)

The pointwise confidence interval for β̂(s) can be estimated using its variance estimator

var{β̂(s)} = B(s)′cov(θ̂)B(s), where B(s) = {B1(s), · · · , BK+2(s)}′. Note that for two

arbitrary women who have experienced the marker event at age s1 and s2 (s2 > s1), their

log relative risk after age s2 can be easily calculated as β̂(s2)− β̂(s1) and its variance can be

easily calculated as {B(s2)−B(s1)}′cov(θ̂){B(s2)−B(s1)}.
As discussed in the Introduction Section, it is of both clinical interest and a woman’s own

interest to estimate age at menopause if a woman has experienced the 60-day marker event

at a certain age. This can be done by estimating the survival function of age at menopause

given a specified age at onset of the 60-day marker event s using model (4). We first estimate

the baseline cumulative hazard function Λ0(t) using Breslow estimator,

Λ̂0(t) =

∫ t

0

[
n∑

i=1

I(Yi ≥ u)exp{β̂(Si)Zi(u) + γ̂ ′X i}
]−1 {

n∑
i=1

dNi(u)

}
. (9)

Then the survival function for menopause given the age at the marker event S = s and the

covariates X = x can be estimated by

F̂ (t|s, x) = exp

{
−

∫ t

0

exp[β̂(s)Z(u) + γ̂ ′x] dΛ̂0(u)

}
, (10)

where Z(u) = I(u ≥ S).

3.2 Estimation of the Number of Knots

An advantage of the use of a regression spline for estimating the nonparametric function β(s)

is its computational simplicity. However this method requires estimation of the number of

knots. For uncensored data, cross-validation (CV) and generalized cross validation (GCV)
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are commonly used to choose the number of knots, see, e.g. Hastie and Tibshirani (1990).

For survival data, O’Sullivan (1988) proposed CV and GCV for choosing the smoothing

parameter for the smoothing spline estimator assuming that the baseline cumulative hazard

function Λ0(t) =
∫ t

0
λ0(u)du is known. We extend O’Sullivan’s method to choose the number

of knots in the regression spline setting and account for the fact that Λ0(t) is unknown and

is estimated.

We first consider the case when Λ0(t) is known. Following O’Sullivan (1988), under model

(6), for a given number of knots K, if Λ0(t) is a known function, the likelihood function of

(θ,γ) is available and can be maximized using an iterated reweighted least square algorithm.

If the estimators of (θ, γ) at the lth iteration are (θ̂(l), γ̂(l)), the working weight wi and the

working dependent variable yi for subject i can be written as

wi =
1

2
Λ0(Yi)exp{θ̂′(l)Z̃i(Yi) + γ̂ ′(l)X i} ,

yi = θ̂
′
(l)Z̃i(Yi) + γ̂ ′(l)X i + ∆i/(2wi)− 1 ,

where ∆i = I(Ti ≤ Ci) is the censoring indicator. One calculates (θ̂(l+1), γ̂(l+1)) by minimiz-

ing
∑n

i=1 wi{yi−θ′Z̃i(Yi)−γ ′X i}2. Denote by X̃ i = {Z̃i(Yi),X
′
i}′ and X̃ =

(
X̃

′
1, · · · , X̃

′
n

)′
.

Denote by ŷ = (ŷ1, · · · , ŷn)′, Ŵ = diag(ŵ1, · · · , ŵn) and f̂ = (f̂1, . . . , f̂n)′ the working de-

pendent variable, the working weight matrix, and the predicted value vector at convergence.

Then f̂ can be calculated as f̂ = X̃(X̃′ŴX̃)−1X̃′Ŵŷ = Ĥŷ, where Ĥ is the linearized hat

matrix. The generalized cross-validation (GCV), which is a function of the number of knots

K, is given by

GCV (K) =

∑n
i=1 wi(ŷi − f̂i)

2

(1− h̄)2
, (11)

where h̄ is the average of the diagonal elements of Ĥ, the so-called mean leverage.

We now consider the case when the baseline hazard Λ0(t) is unknown and is estimated by

the Breslow estimator (9). O’Sullivan (1988) suggested to calculate the Breslow estimator of
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Λ0(·) for each K and plug it into (11) as if it were known. However, this plug-in procedure

ignores the fact that different choices of K give different baseline hazard estimators of Λ0(t),

but the above procedure assumes the same true baseline hazard is used for different K. We

hence propose a modified procedure to account for this.

First, a series of Cox models as in (6) are fitted for a range of the number of interior

knots K. We used 1 to 20 in the analysis of Tremin Trust data. For each choice of K, the

cumulative baseline hazard function estimator Λ̂0(t; K) and the B-spline estimator β̂(s; K)

are calculated. They are then plugged into equation (11) to calculate GCV(K). Note that

different baseline hazard estimators are used for different K at this step. We then select K

that minimizes GCV(K), call it K∗ and obtain the corresponding baseline hazard estimator

Λ̂0(t; K∗). At the next step, we replace the true Λ0(t) by this estimated Λ̂0(t; K∗) and treat

it as fixed and known. Then recalculate the GCV statistic (11) using the above least square

procedure for each choice of K and select a new K that minimizes GCV(K). Note here a

common Λ̂0(t; K∗) is used to calculate GCV for different choices of K. The procedure is

repeated until the chosen K∗ at the current step is the same as the K∗ at the previous step.

The cross-validation (CV) statistic can be calculated similarly.

4 The Analysis of the Tremin Trust Data

We applied the proposed varying coefficient Cox model to the analysis of the Tremin Trust

data. The goals of our study were to investigate the relationship between age at menopause

and age at the 60-day cycle marker event, and to estimate the distribution of age at

menopause given any particular age at onset of the 60-day cycle marker. The data were

described in detail in Section 1. The data used in our analysis were the same as that used

in Lisabeth, et al. (2003) and consisted of 562 women who were 25 years or younger at

enrollment and still participated in the study at age 35. We used age 35 as the time origin
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in our analysis. The median age at enrollment was 19 years, the median age at menarche

was 12 years and ranged from 9 to 18 years, and the length of follow-up ranged from 9 to 39

years with median of 27 years.

For each woman, the data set contained the minimum of the age at menopause and the

censoring age, i.e., the observed menopause age; a censoring indicator for age at menopause;

a 60-day cycle marker event indicator; the age at the marker event if it occurred during the

follow-up time; and age at menarche. For descriptive Kaplan-Meier analysis results of age

at menopause and age at the 60-day cycle marker event, see Section 1 and Figure 2.

We considered the semiparametric varying coefficient Cox model (4) by letting Zi(t) be

a time-dependent binary indicator for the onset of the 60-day cycle marker event and the

baseline covariate Xi be age at menarche. We fit model (4) using the B-spline method via

the Cox model (6). The method of Therneau and Grambsch (2000) was used to expand the

data set for the time dependent covariate Zi(t). For subject i, if the 60-day cycle marker

event was observed, i.e. Si was observed, then the i-th record was expanded into two records:

the first one had the starting time 0 and the stopping time Si with Zi(t) = 0 and ∆i = 0; the

second one had the starting time Si and the stopping time Yi = min(Ti, Ci) with Zi(t) = 1

and the observed censoring indicator ∆i. If the 60-day cycle marker event was not observed,

i.e. Si was censored, the starting time was zero and the stopping time was Yi, and Zi(t) = 0

and ∆i was the observed censoring indicator ∆i. Then the risk set at time t was defined

as the set of all the records with t falling in between each pair of their starting times and

stopping times. The baseline covariate Xi kept the same value during the data expansion.

Among the 562 women, 282 experienced the 60-day cycle marker during the follow-up.

The observed marker times were used to determine the knot allocations and generate the

natural cubic B-spline basis functions Bk(s) used for estimating β(s). The extreme values

of the observed marker times were used as the two boundary knots. The number and the
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locations of the interior knots were determined using the GCV method described in Section

3.2. The optimal number of interior knots was estimated as Koptimal = 8. The spline

estimator of β(s) and its 95% point-wise confidence interval are plotted in Figure 4. For

illustrative purpose, we also considered approximating β(s) using piecewise constants as

β(s) =
∑K+1

k=1 βjI[sk−1 < Si ≤ sk], where {s0, s1, · · · , sK+1} is the set of knots including the

boundary knots, and fit λ{t|Zi(t), Xi} = λ0(t)exp
{ ∑K+1

k=1 βjI[sk−1 < Si ≤ sk]Zi(t) + γXi

}
.

The piecewise constant estimator of β(s) using the age intervals [35, 38), [38, 40), etc., is

superimposed in Figure 4. We can see that the B-spline estimate and the piece-wise constant

estimate of β(s) agree well with each other.

The results in Figure 4 suggest that the 60-day cycle marker is strongly associated with

age at menopause, and its effect varies with age at the 60-day cycle marker event. But

when age at marker event is close to 35, the estimated β(s) does not significantly differ

from zero which implies that having a marker around age 35 is uninformative about age

at menopause. The curve is mainly positive and increases before age 44 and then starts to

decrease. This indicates that before age 44, the association between age at menopause and

age at the 60-day cycle marker becomes stronger as age increases. Among women who first

experience the 60-day cycle before 44, as age at onset of the 60-day cycle increases, she is

likely to have menopause more quickly. For example, consider two women: the first woman

experiences the 60-day cycle at age 39 and the second woman experiences the 60-day cycle

at age 42. Then relative risk of menopause at any age after age 42 for the second woman is

exp{β̂(42)− β̂(39)} =exp(4.1-2.2)=6.7 times higher than the first woman (p-value < 0.0001).

The estimated β(s) curve starts decreasing after age 44. This indicates that after age

44, the association between age at menopause and age at the 60-day cycle marker becomes

weaker as age increases. Among women who first experience the 60-day cycle after 44, as

age at onset of the 60-day cycle increases, a woman is likely to have menopause at a later
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age. For example, consider two women: the first woman experiences the 60-day cycle at

age 48 and the second woman experiences the 60-day cycle at age 51. Then relative risk of

menopause at any age after age 48 for the second woman is exp{β̂(51) − β̂(48)}=exp(1.9-

3.2)=0.27 times lower than the first woman (p-value < 0.0001). In other words, the relative

risk of menopause at any age after age 51 for the first woman is 1/0.27=3.7 times higher of

the second woman.

The estimated log relative risk for age at menarche was −0.16 (RR = 0.85) for a one year

increment (p-value = 0.01). This means that a younger age at menarche has a significant

effect on advancing the expected age at menopause. We also found that the effect of age

at the 60-day cycle marker was independent of age at menarche. Particularly the estimated

curves of β(s) were almost identical with and without adjusting for age at menarche.

The survival probabilities of age at menopause were calculated using equation (10) for

several selected ages at the 60-day cycle marker event given age of menarche equaled to

12, which was the median age of menarche. The estimated survival curves are plotted in

Figure 5(a) and the estimated corresponding percentiles are summarized in Table 1. For

example, if a woman experiences the 60-day cycle marker at age 36, 39, 42, 45, 48, or 51,

her median age of menopause is expected to be 54.4, 51.9, 47.5, 49.3, 50.6 or 53.1. These

results are consistent with the pattern of the estimated β(s) curve in Figure 4. For a woman

who experiences the 60-day cycle marker before age 44, the later she experiences the marker

event, the earlier she is likely to experience menopause. For a woman who experiences the

60-day cycle marker after age 44, the later she experiences the marker event, the later she is

likely to experience menopause.

These results are biologically meaningful. Women who are observed to have a 60-day

cycle before age 40 may belong to a subgroup of women who cycle infrequently, e.g. women

with polycystic ovarian disease, and for whom the pattern of change in menstrual bleeding
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with age may differ from other women. Additional research on this subgroup of women is

needed.

Another interesting and probably more intuitive piece of information for both clinicians

and midlife women is the number of years from the onset of marker event to menopause.

The percentiles of this quantity can be easily calculated by subtracting age at marker event

from the corresponding estimated percentiles for age at menopause, which are also given in

Table 1. The median number of years for a woman who experiences the 60-day cycle marker

at age 36, 39, 42, 45, 48, or 51, is expected to be 18.4, 12.9, 5.5, 4.3, 2.6, or 2.1. The survival

curves for menopause after the onset of marker event are plotted in Figure 5(b).

5 The Simulation Study

We conducted a simulation study to evaluate the performance of the natural cubic B-spline

estimator for β(s) in model (3). The follow-up time was restricted from 0 to 1. To roughly

mimic the shape of the estimated β̂(s) for the 60-day cycle marker event in Figure 4, we

assumed that true β(s) = 3sin(πs). The age at the marker event S was generated from a

Weibull distribution with shape parameter 2 and scale parameter 1. The age at menopause T

was generated from the model λ{t|Z(t)} = λ0(t)exp{β(s)Z(t)} , where Z(t) = I(t ≥ S) and

the baseline hazard λ0(t) = 0.5t2, which corresponds to the hazard of a Weibull distribution

with shape parameter 2 and scale parameter 4. The censoring time C was generated by C =

U · I(U ≤ 1) + I(U > 1), where U ∼ Uniform(0, 2). Thus the observed time Y = min(T, C)

was within the interval [0, 1]. The censoring percentage was about 70%. We assumed a

sample size of n = 500 in each simulated data set.

To reduce the computational burden, we chose the optimal number of interior knots

in spline estimating β(·) by minimizing the mean square error of β̂(·) defined as MSE =

∑J
j=1

{
β̂(tj) − β(tj)

}2

, where tj, j = 1, . . . , J , are equally spaced grid points in (0,1). We
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used J = 1000. The two boundary knots were chosen to be 0 and 1, respectively.

We performed 100 simulations and analyzed each simulated data set using the varying

coefficient model (3) using B-splines by fitting the Cox model (6). The estimated optimal

numbers of interior knots varied from 1 to 6 with the average number of estimated knots

equal to 1.6. The average of the 100 estimated β̂(s) and the true curve β(s) are plotted in

Figure 6. The 95% pointwise confidence intervals for β̂(s) using the empirical standard errors

and the average of the 100 estimated standard errors are also plotted. Figure 6 suggests that

the pointwise biases of the B-spline estimator β̂(·) are close to zero, and the pointwise model

based SEs of β̂(s) agree well with their empirical counterparts, except for the boundary.

6 Discussion

We have proposed in this paper a varying-coefficient Cox model to investigate the association

between time to an intermediate marker event and time to a primary endpoint event, where

the coefficient of the time dependent marker indicator is assumed to be a nonparametric

function of time at the marker event, and baseline covariate effects are modeled paramet-

rically. We estimate the nonparametric regression function using B-splines which can be

easily formulated into a standard Cox model and fitted using the standard partial likelihood

method. We estimate the number of knots using a modification of O’Sullivan (1988)’s GCV

method. Our simulation results suggest the proposed method works well in finite samples.

The large sample theory for the partial likelihood based regression spline estimator β̂(s) is

beyond the scope of this paper. For discussions of such spline estimators in linear regression

settings, see Zhou et al. (1998) and Huang (2003). An extension of their results to the Cox

model setting requires further research. Our simulation results provide empirical evidence

that similar results are likely to hold for Cox regression with varying-coefficients. If the

parametric parameter γ in the semiparametric varying coefficient model (4) is of primary
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interest, the results of Huang (1999) might be extended to our model.

For simplicity, we have focused in this paper on a single marker event. Several other

bleeding criteria based markers were also considered by Lisabeth, et al. (2003), e.g., a 90-day

cycle marker or a skipped cycle marker. Model (4) can easily be extended to incorporate

multiple marker events with varying coefficients. Specifically, suppose there are two marker

events. Let S1 be the time to marker 1 and S2 the time to maker 2. Let Z1(t) and Z2(t) be

the marker indicators at time t for these two markers, respectively. Let X be the baseline

covariate vector. Then we can model the hazard function for the time to the final event as

λ{t|Z1(t), Z2(t), X} = λ0(t)exp{β1(s1)Z1(t) + β2(s2)Z2(t) + γ ′X}

=





λ0(t)exp{γ ′X} if t < min(s1, s2)
λ0(t)exp{β1(s1) + γ ′X} if s1 ≤ t < s2

λ0(t)exp{β2(s2) + γ ′X} if s2 ≤ t < s1

λ0(t)exp{β1(s1) + β2(s2) + γ ′X} if t ≥ max(s1, s2).

(12)

Notice that for each subject, only one of the middle two conditions in (12) can happen.

Similar to the single marker situation, β1(·) and β2(·) can be estimated using the natural

cubic B-splines based on the partial likelihood method.

Interactions between a marker event and baseline covariates can also be modeled similarly.

Let X be a scalar for illustrative purpose. Then model (4) can be extended to

λ{t|Z(t), X} = λ0(t)exp{β(s)Z(t) + γX + φ(s)Z(t)X} , (13)

where φ(·) is the interaction effect. Model (13) does not introduce any extra technical

difficulty in terms of estimation when spline methods are used to estimate β(·) and φ(·).
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Table 1: Estimated percentiles for the survival probabilities of age at menopause given age
at onset of the 60-day cycle marker. For each marker event age, the upper entries are
the estimated percentiles of chronological age at menopause; and the lower entries are the
estimated percentiles of the length in years from the onset of marker event to menopause.

Age at the marker event Estimated percentiles

(in years) 90% 75% 50% 25% 10%

36 50.6 52.5 54.4 55.3 56.2

14.6 16.5 18.4 19.3 20.2

39 47.5 49.8 51.9 53.1 54.3
8.5 10.8 12.9 14.1 15.3

42 43.3 45.2 47.5 49.2 50.3
1.3 3.2 5.5 7.2 8.3

45 46.3 47.6 49.3 50.6 51.7
1.3 2.6 4.3 5.6 6.7

48 48.6 49.3 50.6 51.7 52.4
0.6 1.3 2.6 3.7 4.4

51 51.5 52.2 53.1 54.4 54.9
0.5 1.2 2.1 3.4 3.9
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List of Illustrations

Figure 1. The Kaplan-Meier survival curve estimates of age at menopause and age at

the 60-day cycle marker event: —— the KM estimate of age at menopause; – – – the KM

estimate of age at the 60-day cycle marker event.

Figure 2. The box-plots for the estimated KM survival functions of age at menopause

given different ages at the 60-day cycle marker event among the subset of women who had

experienced the marker event. The number of women in each marker event age group is

given above the corresponding boxplot.

Figure 3. An illustration of the log hazard functions at two marker event times under

the constant coefficient Cox model (1) (Fig. (a)) and the varying-coefficient Cox model (3)

(Fig. (b)): —— Baseline hazard; · · · Hazard if the marker event occurs at time 1; – – –

Hazard if the marker event occurs at time 2.

Figure 4. Estimates of β(s) using the B-spline and the step-function for the Tremin

Trust data: —— estimated β(s) using the B-spline basis; · · · 95% CI; – – – estimated β(s)

using piece-wise constants.

Figure 5. Estimated survival curves for age at menopause (Fig. (a)) and for time from

onset of the 60-day cycle marker to menopause (Fig. (b)) given different ages at the 60-day

cycle marker: —— Age 36; – – – Age 39; · · · Age 42; – · – Age 45; — — Age 48; — ·
— Age 51.

Figure 6. Average of the estimated nonparametric functions β̂(s) based on 100 simula-

tions and its 95% pointwise confidence intervals: —— true curve; – – – estimated curve; ·
· · 95% CI using the pointwise estimated SEs; – · – 95% CI using the pointwise empirical

SEs.
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