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SMOOTH QUANTILE RATIO ESTIMATION WITH REGRESSION:

ESTIMATING MEDICAL EXPENDITURES FOR SMOKING ATTRIBUTABLE

DISEASES

Francesca Dominici and Scott L. Zeger

November 18, 2003

Abstract

In this paper we introduce a semi-parametric regression model for estimating the difference in the

expected value of two positive and highly skewed random variables as a function of covariates. Our

method extends Smooth Quantile Ratio Estimation (SQUARE), a novel estimator of the mean

difference of two positive random variables, to a regression model.

The methodological development of this paper is motivated by a common problem in economet-

rics where we are interested in estimating the difference in the average expenditures between two

populations, say with and without a disease, taking covariates into account. Let Y1 and Y2 be

two positive random variables denoting the health expenditures for cases and controls. SQUARE

estimates ∆ = E[Y1]− E[Y2] by smoothing across percentiles the log-transformed ratio of the two

quantile functions. Dominici et al. (2003) have shown that SQUARE: defines a large class of esti-

mators of ∆, is more efficient than common parametric and non-parametric estimators of ∆, and

is consistent and asymptotically normal.

In applications it is often desirable to estimate ∆(x) = E[Y1 | x]−E[Y2 | x], that is the difference in

means as a function of x. In this paper we introduce a two-part regression SQUARE for estimating
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∆(x). We use the first part of the model to estimate the probability of incurring any costs, and

the second part of the model to estimate the mean difference in health expenditures, given that

a non-zero cost is observed. In the second part of the model, we apply the basic definition of

SQUARE for positive costs to compare expenditures for the cases and controls having “similar”

covariate profiles. We determine strata of cases and control with “similar” covariate profiles by use

of propensity score matching.

We then apply two-part regression SQUARE to the 1987 National Medicare Expenditure Survey

to estimate the difference ∆(x) between persons suffering from smoking attributable diseases and

persons without these diseases. Using a simulation study, we compare frequentist properties of

two-part regression SQUARE with approaches based upon ordinary least square estimates for the

log-transformed expenditures.
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1 Introduction

This paper is motivated by a common problem in health economics of estimating the difference in

mean or total health expenditures between diseased and otherwise similar non-diseased persons as

function of covariates. In our motivating application, we study people affected by major smoking

attributable diseases: lung cancer and chronic obstructive pulmonary diseases (COPD). The non-

diseased group comprises people not affected by any of the diseases above nor by other major

smoking caused illness such as cardiovascular diseases.

Let Y1 and Y2 be two positive random variables representing health expenditures for the cases and

controls, and let x be a vector of covariates, such as smoking, age, race, gender, and socio-economic

factors. We seek to estimate the difference ∆(x) = E[Y1 | x]− E[Y2 | x].

Estimation of ∆(x) is challenging because health expenditures are very skewed toward high values,

tend to have a high proportion of zeros, and the number of cases tends to be much smaller than

the number of controls. Never-the-less ∆(x) is an important target for inference in econometrics,

statistics, and other disciplines (Duan, 1983; O’Brien, 1988; Fenn et al., 1996; Lin et al., 1997;

Hlatky et al., 1997; Lin, 2000; Tu and Zhou, 1999; Lipscomb et al., 1999). Econometric approaches

for analyses of health expenditure have been discussed extensively. Among the most common

approaches are linear regression models for log-transformed dependent variables and generalized

linear models (GLM) with a logarithm link function (Duan, 1983; Jones, 2000; Manning, 1998;

Mullahy, 1998; Blough et al., 1999). GLM estimate log E[Y | x] directly, whereas the linear

regression model for the log-transformed costs estimate E[log(Y ) | x] which can be converted into an

estimate of E[Y | x] by a suitable transformation that involves higher moments of the distribution
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of log Y (Duan, 1983). See Manning and Mullahy (2001) for a simulation-based comparison of

suitable estimators of E[Y | x] under the parametric approaches described above.

Dominici et al. (2003) http://biostat.jhsph.edu/∼fdominic/square.html have recently intro-

duced a novel estimator of the mean difference for two highly skewed distributions ∆ = E[Y1]−E[Y2]

called Smoothed Quantile Ratio Estimation or SQUARE. The most obvious non-parametric esti-

mator of ∆ is the sample mean difference ȳ1− ȳ2 =
∫

Q̂1(p)dp− ∫
Q̂2(p)dp which here is defined as

function of the empirical quantiles Q̂1(p), Q̂2(p). The basic idea of SQUARE is to replace the em-

pirical quantiles Q̂1(p) and Q̂2(p) with smoother and less variable versions obtained by smoothing

the log-transformed ratio of the two quantile functions log(Q1(p)/Q2(p)) = s(p) across percentiles.

SQUARE encompasses a large class of estimators of ∆ including the class of L-estimates (Serfling,

1980). For example if s(p) interpolates the log ratios of the order statistics, then SQUARE reduces

to the sample mean difference. If s(p) is very smooth, then SQUARE reduces to the maximum like-

lihood estimate of ∆ under a log-normal sampling distribution for Y1 and Y2 (Dominici et al., 2003;

Cope, 2003). Broadly speaking, SQUARE is a semi-parametric estimate of ∆ which compromises

between parametric estimates (such as maximum likelihood estimates), and non-parametric esti-

mates (such as the sample mean difference) with weights depending on the degrees of smoothness

of s(p).

Simulation studies (Dominici et al., 2003; Cope, 2003) have shown that SQUARE outperforms com-

mon estimators of ∆, such as sample mean difference and log-normal estimators commonly used for

the analysis of skewed data (Aitchison and Shen, 1980; Zellner, 1971; Zhou et al., 1997; Zhou and

Gao, 1997; Land, 1971; Angus, 1994; Duan et al., 1983; Zhou and Melfi, 1997; Lipscomb et al., 1999;
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Andersen et al., 2000). Theoretical developments of SQUARE including proofs of consistency, and

asymptotic normality are detailed in Cope (2003) http://biostat.jhsph.edu/∼fdominic/square.html.

In this paper we generalize SQUARE to a two-part regression model, and present a detailed example

of its use in the important public health problem of estimating the difference in medical expenditures

between people with and without smoking-related disease taking covariates into account. In the

first part of the model, we estimate the probability of incurring any costs among the cases and the

controls, P (Y1 > 0) and P (Y2 > 0). In the second part, we estimate the mean difference of the

positive expenditures for the cases and the controls. In summary we produce an estimate of the

following parameter:

∆(x) = P (Y1 > 0)×E[Y1 | Y1 > 0,x]− P (Y2 > 0)× E[Y2 | Y2 > 0,x].

In the second part of the model we use SQUARE to compare the positive expenditures for the

cases and controls having “similar” covariate profiles. We identify these homogeneous covariate

groups by using propensity score matching (Rosenbaum and Rubin, 1983). The propensity score,

here denoted by e(x), is the probability of having a smoking related disease given the covariates:

smoking dose, age, race and socio-economic factors.

For our analyses, we use the National Medical Expenditure Survey (NMES) (National Center

For Health Services Research, 1987) supplemented by the Adult Self-Administred Questionnarie

Household Survey (ASAQS). NMES and ASAQS provide data on annual medical expenditures,

disease status, age, race, socio-economic factors, and critical information on health risk behaviors

such as smoking, for a representative sample of U.S. non-institutionalized adults. A key component
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of our analysis is to estimate ∆̂(x) as function of e(x) to illustrate how differences in medical

expenditures might vary with respect to the propensity of having the disease.

Because SQUARE is a new idea, we compare it in a simulation study to a more standard econometric

approach: two-part linear regression model for log-transformed cost. We illustrate under which

sampling mechanisms two-part regression SQUARE provides a more efficient estimate of ∆(x)

than parametric alternatives commonly used in analysis of health cost data.

2 Smooth quantile ratio estimation (SQUARE)

In this section we briefly review the definition of SQUARE and its estimation approaches. Details

are in Dominici et al. (2003) and asympotic properties and examples are in Cope (2003). Let Y1 and

Y2 be the positive expenditures for the cases and controls, and let Q1 and Q2 be the corresponding

quantile functions, our goal is to estimate the difference:

∆ = E[Y1]− E[Y2] =
∫ 1

0
{Q1(p)−Q2(p)}dp. (1)

The basic idea of SQUARE is to estimate ∆ by smoothing across percentiles the log ratio of the

quantile functions:

log(Q1(p)/Q2(p)) = s(p, λ), 0 < p < 1. (2)

More specifically, let Q̂1, Q̂2 be the empirical quantile functions and let y1 = (y1(1), y1(2), · · · , y1(n1))

and y2 = (y2(1), y2(2), · · · , y2(n2)) be the order statistics of the positive medical expenditures for the

cases and the controls respectively. SQUARE estimates ∆ by the use of “smoothed” quantile

functions Q̃1 = Q̂2 exp(ŝ(p, λ)) and Q̃2 = Q̂1 exp(−ŝ(p, λ)), where ŝ(p, λ) is obtained by fitting the
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model

log
y1(i)

y2(i)
= s(pi, λ) + εi, i = 1, . . . , n (3)

with s(pi, λ) =
∑λ

j=0 Bj(pi)βj , pi = i/(n + 1), and where Bj(p) are orthonormal basis functions,

with B0(p) = 1.

We define the SQUARE estimate of ∆ as:

ŜQ(λ) = 1
2

∫ 1
0

[
Q̃1(p)− Q̃2(p)

]
dp + 1

2

∫ 1
0

[
Q̂1(p)− Q̂2(p)

]
dp '

' 1
2n

∑n
i=1

[
y1(i)e

ŝi − y2(i)e
−ŝi

]
+ 1

2n

∑n
i=1

[
y1(i) − y2(i)

] (4)

and where ŝi = ŝ(pi, λ).

Note that
∫ 1
0

[
Q̃1(p)− Q̃2(p)

]
dp is a biased estimate of ∆ but has smaller variance than the sample

mean difference because it borrows strength across samples, whereas (ȳ1 − ȳ2) is an unbiased

estimate of ∆ but is highly variable and sensitive to outliers. Therefore, taking the mean of

∫ 1
0

[
Q̃1(p)− Q̃2(p)

]
dp and (ȳ1− ȳ2) balances the bias-variance tradeoff. The method can be further

optimized by selecting from a range of linear combinations but doing so is beyond the scope of this

paper.

If n1 < n2 as in our real application, then we calculate ŜQ(λ) by replacing y2 by q2, the linear

interpolation of the order statistics y2(i) to the grid of points p1i = i/(n1 +1), i = 1, . . . , n1. Notice

that in our application, the total number of cases and controls are N1 = 188 and N2 = 9228,

respectively. Among these only n1 = 118 and n2 = 2262 have non-zero expenditures, the remaining

N1 − n1 = 70 and N2 − n2 = 6966 have observations with zero costs. If we let π1 = P (Y1 > 0)

and π2 = P (Y2 > 0) be the probabilities of non-zero expenditure for the cases and controls, and
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let E[Y1 | Y1 > 0] and E[Y2 | Y2 > 0] be the corresponding averages of the non-zero values, then

we seek to estimate ∆ = P (Y1 > 0)E[Y1 | Y1 > 0] − P (Y2 > 0)E[Y2 | Y2 > 0]. Therefore, it is

appropriate to revise the definition of SQUARE as follows:

ŜQ(λ) = π̂1 × 1
2

∫ [
Q̂1(p) + Q̃1(p)

]
dp − π̂2 × 1

2

∫ [
Q̂2(p) + Q̃2(p)

]
dp

= π̂1ū1 − π̂2ū2

(5)

where π̂1 and π̂2 are the proportions of zero costs among the cases and the controls, and u1 =

(y(1), y
?
(1)) and u2 = (y(2),y

?
(2)) are two samples of size 2n where y?

1(i) = y2(i)e
ŝi , and y?

2(i) =

y1(i)e
−ŝi .

3 Regression SQUARE

In our case study we are interested in estimating the difference in medical expenditures between

the cases and the controls as function of their covariates, that is we seek to estimate

∆(x) = E[Y1 | x]−E[Y2 |, x] = π1E[Y1 | Y1 > 0,x]− π2E[Y2 | Y2 > 0,x].

To extend SQUARE to the regression case we assume that the log-ratio of the quantile functions

is a smooth function of the percentiles given the covariates x, that is:

log Q1(p;x) = log Q2(p; x) + s(p, λ; x). (6)

To control for systematic differences in covariates between the two populations, a common strategy

is to group units into sub-classes based on covariate values, and then to compare medical expendi-

tures only for the cases and controls units who fall in the same sub-class. However, as the number of

6

Hosted by The Berkeley Electronic Press



covariates increases, the number of sub-classes grows exponentially (Cochran, 1965). This problem

can be overcame by matching with respect to the propensity scores (Cochran and Rubin, 1973;

Rubin, 1973). The propensity score in this case can be defined as the conditional probability

that an individual with vector xi of observed covariates has the disease, ei(xi) = P (di = 1 | xi).

Rosenbaum and Rubin (1983) showed that sub-classifications on the population propensity score

will balance x, in other words, population subgroups of cases and controls that have “similar”

propensity scores, will have a similar distribution of all their covariates.

We use the propensity score matching in the definition of regression SQUARE as follows:

1. for each case i = 1, . . . , N1, we construct a stratum of m1 cases and m2 controls with propen-

sity scores as similar to the case i as possible. Details on the matching algorithm are given

below;

2. within each stratum, we estimate:

• the fractions of non-zero expenditures; and

• the difference in average medical expenditures between the cases and the controls by

applying the definition of SQUARE (Equation 5) to the m1 cases and m2 controls that

belong to the i-th stratum, that is: ∆̂[i] = π̂
[i]
1 ū

[i]
1 − π̂

[i]
2 ū

[i]
2

3. we estimate ∆(x) by averaging the SQUARE estimates across the N1 strata, that is

ŜQ(λ;x) = 1
N1

∑N1
i=1 ∆̂[i] = 1

N1

∑N1
i=1

(
π̂

[i]
1 ū

[i]
1 − π̂

[i]
2 ū

[i]
2

)
(7)

.

7

http://biostats.bepress.com/jhubiostat/paper16



Matching was performed by using a modification of the nearest-neighbor matching algorithm (Rubin

and Thomas, 2000), beginning with the case with lowest propensity score and proceeding to the

case with highest propensity score. More specifically, let e1 = (e1(x1), . . . , eN1(xN1) be the ordered

vector of propensity scores for the cases. Then, for each case i:

1. we select m1 matching cases and identify their propensity scores e
[i]
1

2. we divide e
[i]
1 into S strata,

3. within each stratum, we sample with replacement H matched controls, thus obtaining a total

of S ×H = m2 matched controls.

4 Analysis of Medical Expenditures

In this section, we use two-part regression SQUARE to estimate the mean difference between annual

Medicare expenditures for persons with lung cancer (LC) or chronic obstructive pulmonary disease

(COPD) (cases, d = 1), diseases caused largely by smoking, and otherwise similar persons without

these two smoking-attributable diseases nor cardiovascular disease (controls, d = 0).

In our problem, the propensity score ei(xi), is an estimate of the probability that a person i has

lung cancer or COPD given his/her covariate profile xi. We estimate this risk by using the following

8
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logistic regression model (Johnson et al., 2003):

logitP (di = 1 | xi) = malei + afro-americani + ever smokedi + recent quiti+

+ povertyi + marital statusi + census regioni+

+ educationi + seat belt usei +

+ ns(agei, 3) + ns(agei, 3)× malei + ns(smokingi, 3)

(8)

where male, afro-american, ever smoked and recentquit are indicators for being male, being

African American, have ever smoked, and having quit smoking within one year; poverty, marital

status, education, census region, and seat belt use are categorical variables indicating socio-

economic status, place of residence, and propensity of an individual to take risks. The variable

smoking indicates self-reported total smoking exposure (packs of cigarettes over the lifetime). We

model age and smoking as natural cubic splines with 3 degrees of freedom. The full set of variables

included in the model are listed in Table 5. Details on this modelling approach and results for the

NMES data are given by Johnson et al. (2003).

We match the propensity scores on the logistic scale (Rubin and Thomas, 2000), with m1 = 25, S =

5 and H = 50 leading to a 50 : 250 matching scheme. The sensitivity of the results to the matching

scheme is summarized at the end of this section.

Figure 1 shows the average logit propensity scores for cases versus the average for controls within

each matched set. The proximity of the points to the diagonal line indicates reasonable performance

of the matching algorithm. Some deviation occurs among the highest risk subjects where the cases

are at slightly higher risk than the controls. To further assess the relative success of the propensity

score model for creating balanced matched samples, Table 5 compares the observed proportions for

categorical covariates, and the sample means for continuous covariates between cases and controls
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for the matched samples. The matching appears to have performed well.

In addition to estimating the mean difference in expenditures for persons with and without disease

caused by smoking, a second question is whether this difference is smaller for smokers than for non-

smokers perhaps because one group has a tendency to seek or receive fewer services. That is, does

smoking status modify the difference in medical expenditures between the cases and the controls?

Table 2 shows the number of disease cases and controls for smokers (current or former), and for the

non-smokers (never). The numbers within parentheses represent the percentage of people in that

cell with non-zero expenditures. The percentage of cases with non-zero expenditures is more than

twice as large as for the controls (65% and 25%); this is consistent with our expectation that people

with disease receive more services. These proportions are similar for smokers and non-smokers. For

the smokers, the percentage of non-zero expenditures is approximately two times larger than for

the non-smokers (32% and 18%); again, this is consistent with our expectation that smokers have

poorer health than non-smokers and therefore are likely to seek more services. Because of the very

low number of cases among the non-smokers, we report the results for everyone in the sample and

for the smokers.

We apply two-part regression SQUARE with λ = 2 to the NMES data base, and to the subset of the

NMES data for smokers only. We choose λ = 2, because previous applications of SQUARE to the

NMES data base (Dominici et al., 2003) have shown that λ = 2 minimizes a 10-fold cross-validation

method (Efron, 1983; Breiman and Spector, 1992; Efron and Tibshirani, 1993; Shao and Tu, 1995).

Table 3 summarizes the estimated mean differences in annual Medicare expenditures for the cases

and controls, with and without covariate adjustment, for everyone in the sample and for the smokers
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Hosted by The Berkeley Electronic Press



alone. We also report the weighted sample mean difference within each stratum, 1
N1

∑N1
i=1

(
π̂

[i]
1 ȳ

[i]
1 − π̂

[i]
2 ȳ

[i]
2

)
.

Medicare expenditures are estimated to be roughly $6000 greater per year for cases than for con-

trols. Adjusted results obtained by matching with the propensity scores are slightly smaller than

the unadjusted values for everyone and smokers respectively. Estimates for the smokers are larger,

with and without covariate adjustments. Notice that the SQUARE estimates have smaller boot-

strap standard errors than the sample mean differences, suggesting greater efficiency. Frequentist

properties of these estimators are studied more carefully in a simulation study presented in Section

5.1.

Figure 2 shows estimated probabilities of any cost (first row), estimated means of non-zero costs

(second row), and estimated mean costs (third row) for the cases and controls plotted against

propensity scores. The darker lines are the estimates for the smokers only. The grey polygon

represents the 95% bootstrap confidence intervals. At the far right, we display the pooled estimates

averaged across propensity scores with their 95% bootstrap confidence intervals.

We found that the estimated probabilities of any expenditure smoothly increase as the risk of

disease increases. The probabilities of any cost are consistently higher for the cases than for the

controls across propensity scores. In addition, at low propensity scores and for both the cases

and the controls, the probability of any cost for the smokers is slightly smaller than for everyone.

This may indicate that healthy smokers are more reluctant to seek for services that the rest of the

population.

Average positive expenditures are larger for the cases than for the controls. At low propensity

scores and for the cases, the average positive costs for the smokers are larger than everyone. This
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indicates that, although the smokers with low propensity of disease are more reluctant to seek for

services that the rest of the population, if they do use any service, they tend to have larger medical

expenditures than the rest of the population.

Figure 3 (top) shows the estimated mean differences plotted against propensity scores. As in Figure

2, the darker lines are the estimates for the smokers only. At the far right are plotted the pooled

estimates across propensity scores with their 95% bootstrap confidence intervals also reported in

Table 3. The shape of the distribution of the estimated mean differences is driven by the estimates

of mean costs for the cases (Figure 2). We found that: 1) at the very low propensity scores, the

estimated mean differences are roughly constant at approximately $3000; 2) at the moderate values

of the propensity scores, the estimated mean differences are larger reaching about $9000; and 3) at

the very high propensity scores the estimated mean differences drop to $4000. By examining the

covariates for the cases within low, medium and high propensity score strata, we found that cases

with high risk of disease tend to be older, poorer and less educated than the other cases, raising

the possibility that they have poorer access to services.

Figure 3 (bottom) shows the estimated mean differences plotted against propensity scores under

four alternative propensity score matching methods. These scenarios were selected after having

assessed the balance on observed covariates in the matched samples, and only scenarios that assured

a reasonable balance were examined in the sensitivity analysis. The scenario 125 : 50 is our baseline

the other three scenarios represent more or less coarse matching samples and they were 125 : 25,

50 : 25, and 50 : 50. Pooled estimates averaged across propensity scores are very similar under

the four scenarios. As expected, case-specific estimates are somewhat sensitive to the selection of

the number of cases leading to less smooth curves under the scenarios 125 : 25 and 50 : 25 than

12
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under the scenarios 125 : 50 and 50 : 50. However, these differences are small and all within the

case-specific confidence intervals of the baseline estimates.

4.1 Model Comparisons

As an alternative to two-part regression SQUARE, we can estimate ∆(x) by maximum likelihood

estimation under a two-part linear regression model for the log-transform costs (Duan, 1983; Mul-

lahy, 1998; Mullahy and Manning, 1995). In this section, we implement a simulation study where we

compare frequentist properties of two-part-regression SQUARE to alternative estimators commonly

used in the analysis of health cost data.

We generate cost data under non-parametric and parametric sampling mechanisms:

A. Sampling from the empirical distribution of the cost data: we divide the propensity

scores for the cases into 25 strata. Within each strata, first we identify the matched cases

and the matched controls, and second we sample with replacement observations from the

corresponding empirical distributions of the observed costs. Here we assume that the true

value of ∆(x) is equal to the weighted sample mean difference 1
25

∑25
j=1

(
π̂

[j]
1 ȳ

[j]
1 − π̂

[j]
2 ȳ

[j]
2

)

averaged across 1000 bootstrap samples.

B. Sampling from a two-part linear regression model of the log-transformed costs:

we generate cost data from the following model:

IYi>0|di=1 ∼ Bernoulli(π1), i = 1, . . . N1

IYi>0|di=0 ∼ Bernoulli(π2), i = 1, . . . N2

log Yi | Yi > 0, di,xi = βdi + γXi + εi, εi ∼ N(0, τ2), i = 1, . . . , n1 + n2

(9)
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where Xi is the design matrix including indicators for gender, race, having recently quit

smoking, and a natural cubic spline of age with 3 degrees of freedom. We choose as “true”

model parameters their estimates obtained by fitting model (9) to the NMES data. Here

∆(x) = 1
N1+N2

∑N1+N2
i=1

[
π1 exp(β + γXi + τ2/2)− π2 exp(γXi + τ2/2)

]
.

Note that under scenario B, the presence of heteroschedasticity implies that the log-scale prediction

E[exp(εi)] exp(βdi + γXi) provides a biased estimate of E[Yi|di, xi] and the bias depends on the

covariates (di, xi). This bias can be reduced by including an estimate of E[exp(εi)|di, xi], called

the smearing coefficient (Duan, 1983).

Within each data-generating mechanism we calculate the following consistent estimators of ∆(x)

(Duan, 1983; Parmigiani et al., 1997; Andersen et al., 2000):

T1 = sme 1
N1+N2

∑N1+N2
i=1

[
π̂1 exp(β̂ + γ̂Xi)− π̂2 exp(γ̂Xi)

]

T2 = 1
N1+N2

∑N1+N2
i=1

[
π̂1 exp(β̂ + γ̂Xi + τ̂2/2)− π̂2 exp(γ̂Xi + τ̂2/2)

]

T3 = sme1
1

N1

∑N1
i=1 π̂1 exp(γ̂1Xi)− sme2

1
N2

∑N2
i=1 π̂2 exp(γ̂2Xi)

T4 = 1
N1

∑N1
i=1

[
π̂1 exp(γ̂1Xi + τ̂2

1 /2)
]− 1

N2

∑N2
i=1

[
π̂2 exp(γ̂2Xi + τ̂2

2 /2)
]

T5 = 1
N1

∑N1
i=1

(
π̂

[i]
1 ū

[i]
1 − π̂

[i]
2 ū

[i]
2

)

T6 = 1
N1

∑N1
i=1

(
π̂

[i]
1 ȳ

[i]
1 − π̂

[i]
2 ȳ

[i]
2

)

where sme = 1
N1+N2

∑N1+N2
i=1 exp(ri), sme1 = 1

N1

∑N1
i=1 exp(ri1), sme2 = 1

N2

∑N2
i=1 exp(ri2) are the

so-called smearing coefficients (Duan, 1983) calculated as functions of the residuals ri , ri1, ri2 for

the entire sample and separately for the cases and the controls. T1 uses a common smearing and

T2 is the maximum likelihood estimate under the regression model (9). The estimators T3 and T4

are calculated by fitting a two-part linear regression model for the log-transformed costs separately

for the cases and the controls, T3 uses a separate smearing by group and T4 is the corresponding
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MLE. Finally, T5 is the two-part regression SQUARE, and the estimator T6 is similar to T5 but

with ū
[i]
1 and ū

[i]
2 replaced by the sample mean within the i-th propensity score strata.

Scenario A differs substantially from scenarios B: scenario A favors propensity score matching and

non-parametric estimation methods, scenario B favors model-based estimation approaches. The

results are summarized in Table 4. In Scenario A, two-part regression SQUARE and the weighted

sample mean difference (T5, T6) perform best. The estimates obtained with the smearing coefficients

(T1, T3) are second best, and the the maximum likelihood estimates (T2, T4) are the worst providing

highly biased estimates.

In Scenario B, the MLE (T2) performs best. This is expected because: 1) the data are generated

from a two-part log-normal model with a common variance, and 2) the large sample size of the

full sample N1 + N2 = 9416 leads to an efficient MLE of ∆(x). However although the data are

sampled from model (9), SQUARE is the second best and performs much better than (T3, T4) which

in theory should be preferred considering that they relies on the assumption of normality of the

log-transformed costs. SQUARE is more efficient than T3 and T4 because it borrows strength across

samples whereas T3 and T4 estimate average expenditures for the cases and the control separately.

Because of the small number of cases, it is inefficient to fit regression models for the cases only.

Finally, the weighted sample mean difference (T6) is unbiased but substantially more variable than

T5.
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5 Discussion

In this paper, we have extended SQUARE, a novel estimator of the difference in means for two

right-skewed distributions, to the regression case. The premise of SQUARE is to model the log

ratio of the two quantile functions as a smooth function of the percentiles producing an estimator

that is less variable than the difference in sample means and nearly unbiased in many practical

situations. SQUARE is a semi-parametric method using a non-parametric estimate of the quantile

function from the larger sample, and a parametric model for the log quantile ratio s(p). Additional

details on the theoretical development of SQUARE with its software implementation are available

at http://biostat.jhsph.edu/∼fdominic/square.html.

The development of SQUARE and its extension to the regression case was motivated by the estima-

tion of smoking attributable expenditures, a key component of which is the estimation of the mean

difference of Medicare-financed medical expenditures between persons with smoking attributable-

diseases (lung cancer or COPD) and otherwise similar persons without these diseases. To address

this substantive question we created an estimator of the difference of means of two highly skewed

distributions that borrows strength across the two samples. This idea has applications in a variety

of setting. For example SQUARE can be applied to estimate the mean of a single sample by bor-

rowing strength from a theoretical distribution such as the log-normal. In addition, SQUARE can

be used to compare multiple groups, where each group borrows strength from a “referent” sample,

which can be one of the samples or an average of all samples.

To control for possible imbalances in the observed covariates, we proposed an extension of SQUARE

to the regression case. Here we use a variation of propensity score matching (Rosenbaum and Rubin,
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1983, 1984) and estimate differences in mean expenditures for the cases and controls within strata

of propensity scores. Our analysis of Medicare expenditures allows smoking status to modify the

effect of disease on expenditures. We examine this effect modification by stratifying the cases and

the controls with respect to their smoking status, and then by estimating SQUARE separately for

smokers and all subjects. In addition, our plots of the estimated mean differences as function of the

propensity scores allow detection of effect modification by variables that are important predictors of

disease. For example the visual inspection of Figure 3 suggests that the estimated mean differences

drop from 9000$ to 4000$ for large propensity scores. We found that these individuals tend to

be older, poorer and less educated than the others, suggesting the the hypothesis that they have

poorer access to services.

In the application we use a fixed smoothing parameter λ that does not vary with the propensity

scores. We select λ = 2 because in previous analyses (Dominici et al., 2003) we found that this choice

minimizes a 10-fold cross-validation method (Efron, 1983; Breiman and Spector, 1992; Efron and

Tibshirani, 1993; Shao and Tu, 1995). Although simulation studies have shown that the frequentist

properties of SQUARE are robust to the choice of λ, for λ small, generalizations of our approach

might include methods for estimating a degree of smoothness that also vary with the propensity

scores.

Our formulation of SQUARE in the regression case is related to quantile regression (Ruppert and

Carroll, 1980; Koenker, 1982; Lifson and Bhattacharyya, 1983). Regression SQUARE is a two step

procedure: 1) we first estimate the difference in medical expenditures in a [0, 1] × [0, 1] grid of

points of the values of propensity scores and percentiles; and 2) we then estimate the parameter of

interest ∆(x) at each value of the propensity score by smoothing across percentiles (see Figures 2
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and 3). In quantile regression, we estimate the parameter of interest as function of the covariates

for a fixed percentile.

In the simulation study, we showed that: 1) under a non-parametric sampling mechanism, two-part

regression SQUARE is more efficient than the MLE under a linear regression model for the log-

transformed costs; and 2) under a parametric sampling mechanism where data are generated from a

linear regression model for the log-transformed costs, two-part regression SQUARE is less efficient

that the estimator for the true model. However, under a log-normal model SQUARE is considerably

more efficient than the MLE under two separate linear regression models for the log-transformed

costs for the cases and the controls, and it is more efficient than non-parametric methods based on

the sample mean. This is because two-part regression SQUARE borrows strength across cases and

controls and across percentiles. As future work, our simulation study can be extended to compare

two-part regression SQUARE with respect to the more general GLM framework (McCullagh and

Nelder, 1989) with an exponential conditional mean which include Poisson, Gamma, Weibull, and

Chi-square structures (Manning and Mullahy, 2001).
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Table 1: Matching variables used in the generalized additive model to estimate the propensity scores.
Comparison between the the distributions of each matching variable to check balance in the matched samples
of cases and controls.

Variable Cases Controls
gender
female 0.39 0.37
male 0.61 0.63
race
Other 0.97 0.93
African American 0.03 0.07
poverty
Poor 0.14 0.15
Near Poor 0.10 0.09
Low Income 0.21 0.20
Middle Income 0.30 0.28
High Income 0.24 0.28
marital status
Married 0.63 0.64
Separated 0.24 0.23
Divorced 0.10 0.10
Widowed 0.01 0.03
Never Married 0.01 0.01
census region
Northeast 0.20 0.21
Midwest 0.28 0.27
South 0.35 0.35
West 0.17 0.17
education
4+ Years of College 0.07 0.09
1-3 Years of College 0.09 0.09
Some/All High School 0.53 0.50
Less than High School 0.31 0.33
seat belt use
Seldom/Never 0.30 0.29
Sometimes 0.16 0.17
Nearly Always/Always 0.54 0.52
recent quit
current smoker 0.93 0.93
former smoker who quit within one year 0.07 0.07
age 69 69
smoking 45 47
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Table 2: Disease cases and controls for smokers (current or former) and for non-smokers. Numbers
within parentheses represent the percentage of people in that cell with non-zero expenditures.

Smokers Non Smokers Total
cases 165 (64%) 23 (70%) 188 (65%)
controls 4682 (32%) 4546 (28%) 9228 (25%)

4847 (32%) 4569 (18%) 9416 (25%)

Table 3: Unadjusted and covariate-adjusted estimated mean differences of Medicare expenditures
for people with and without smoking-attributable diseases. Results are reported for everyone in the
sample (N1 = 188, N2 = 9228) and for smokers only (N1 = 165, N2 = 4862). Bootstrap standard
errors are in parentheses.

Unadjusted Adjusted
Everyone Smokers Everyone Smokers

two-part regression SQUARE 6164 (1688) 6214 (1332) 5514 (2864) 6039 (3240)
weighted sample mean difference 6132 (1893) 6202 (1486) 5694 (3159) 6313 (3561)

Table 4: Results of the simulation study: average, standard deviation, and mean square error of the estimates
across 500 simulated data sets.

SCENARIO A
Estimator Mean Standard Deviation MSE/1000
Common smearing (T1) 8409 1819 10476
MLE with common variance (T2) 10191 2231 24861
Smearing by group (T3) 7026 2220 6601
MLE with variance by group (T4) 13241 4227 74254
Two-part regression SQUARE (T5) 5184 1304 2000
Weighted sample mean difference (T6) 5452 1379 1980
True 5731

SCENARIO B
Estimator Mean Standard Deviation MSE/1000
Common smearing (T1) 12111 3162 11638
MLE with common variance (T2) 12141 2782 9453
Smearing by group (T3) 11343 6920 48153
MLE with variance by group (T4) 13666 6023 44309
Two-part regression SQUARE (T5) 8961 4687 25472
Weighted sample mean difference (T6) 11021 7983 63766
True 10831
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Figure 1: Propensity score averages of the m1 = 25 matching cases plotted against averages of the 250
matched controls.
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Figure 2: Estimated probabilities of any Medicare expenditures (first row), estimated mean non-zero expen-
ditures (second row), and estimated mean expenditures (third row) for the cases (left), and controls (right)
plotted against propensity scores. The solid and dotted lines are the estimates for everyone and for smokers
only, respectively. The polygon represents the 95% bootstrap confidence intervals for everyone. At the far
right are plotted the estimates pooled across propensity scores with their 95% bootstrap confidence intervals.
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Figure 3: Top: SQUARE estimates ( ∆̂2) plotted against propensity scores. Solid and dotted lines represent
the estimates for everyone and for smokers only, respectively. Vertical segments represents the 95% bootstrap
confidence intervals for everyone. At the far right are shown the SQUARE estimates pooled across propensity
scores. Bottom: SQUARE estimates ( ∆̂2) plotted against propensity scores under four scenarios of strata
size selection used in the propensity score matching algorithm.
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