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Semiparametric Regression Analysis on
Longitudinal Pattern of Recurrent Gap Times

Ying Qing Chen, Mei-Cheng Wang, and Yijian Huang
Abstract

In longitudinal studies, individual subjects may experience recurrent events of
the same type over a relatively long period of time. The longitudinal pattern of
the gaps between the successive recurrent events is often of great research interest.
In this article, the probability structure of the recurrent gap times is first explored
in the presence of censoring. According to the discovered structure, we introduce
the proportional reverse-time hazards models with unspecified baseline functions
to accommodate heterogeneous individual underlying distributions, when the on-
gitudinal pattern parameter is of main interest. Inference procedures are proposed
and studied by way of proper riskset construction. The proposed methodology is
demonstrated by Monte-Carlo simulations and an application to the well-known
Denmark schizophrenia cohort study data set



1 INTRODUCTION

For the subjects in a longitudinal follow-up study, individual subject may experience suc-
cessive events of same type over a relatively long period of time, for example, recurrent
superficial tumors of cancer patients, recurrent hospitalizations of schizophrenic patients,
and recurrent seizures of pediatric cerebral malaria patients. When the events are consid-
ered as points occurring along the time axis, they form point processes.

As noted in Cox & Isham (1980, p.11), there are three equivalent perspectives to study
the point processes: (a) the intensity perspective (the complete intensity function of occur-
rences), (b) the counting perspective (the joint distribution of the occurrence counts in any
arbitrary sets), and (c) the gap perspective (the joint distribution of gaps between successive
events). Perspectives (a) and (b) are relatively convenient to study in general theory de-
velopment. Nevertheless, the gap perspective is of important scientific interest as well. For
example, in Eaton, et al. (1992), the distributional pattern of the gaps between the succes-
sive hospitalizations serves as an important index of the schizophrenic disease progression:
do the gaps progress longer and longer (progressive amelioration), or shorter and shorter
(progressive deterioration), over the time? if there seems to be such a progressive pattern,
can it be tested and the magnitude be estimated?

The goal of this article is to develop statistical approaches to tackle the scientific questions
such as the ones above. The main interest is in the longitudinal pattern of the gap times.
However, the study subjects are often heterogeneous in their underlying distributions. For
example, it is usually not practical to assume the underlying homogeneity of 8,811 patients
in 86 psychiatric institutions across the entire nation of Denmark (Eaton, et al., 1992). Our
specific approach is thus to define and estimate the longitudinal pattern parameters through
regression models, when the individual underlying distributions are considered as nuisance.

Toward this end, we risk ourselves with fast growing number of nuisance parameters
when the sample size increases, and therefore encounter the classical problem of Neyman-
Scott type. More seriously, when censoring is present, the well-known “induced dependent
censorship” further complicates the statistical modeling of recurrent event data and may
lead to bias with naive application of the traditional survival analysis techniques (Gelber,
Gelman & Goldhirsch, 1989; Huang, 1999; Lin, Sun & Ying, 1999). Recently, researchers
have been developing various statistical methodologies trying to overcome the potential bias.
A good summary of recent research development can be found in Cook & Lawless (2002).

Because of the longitudinal nature and the induced dependent censorship, the recurrent
event data have distinctive features of their own. In §2.1, we first explore some of the features
in probability structure of the observed gap times. In §2.2, the semiparametric regression
models are introduced according to the discovered structure. In §?7, we develop model
estimation procedures by way of proper riskset construction. Numerical analyses including
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some Monte-Carlo simulations and an application to the Denmark psychiatric registry data
are in §4. Several remaining issues are discussed in §5. The technical proofs are collected in
the Appendix.

2 SEMIPARAMETRIC REGRESSION MODELS

2.1 Probability structure

Suppose there are n independent subjects in a study. Denote: = 1,2, ..., n the subject index,
and 7 = 0,1,2,... the recurrent event index. For the ¢th subject, let T;; be the gap time
between the (j — 1)st and the jth recurrent events, where T;o = 0, and C; be the censoring
time. It is assumed that, given any specific participant ¢, ¢t = 1,2,...,n, (C;, Ti1, Tia, . ..) are
independent. More discussion on the assumptions will be in later sections.

Suppose that (tio,til,...,ti7mi_1,tj:ml,) is an observed sequence of the gap times, 1 =
1,2,...,n, where M; = m; is the event index of stopping time such that
m;—1 m;
Z tij < ¢ and Ztij > ¢
for censoring time C; = ¢;, and t;':mi = ¢ — Z;n:'al t;;. The first M; — 1 gap times are

considered as “complete” duration times, while the last gap time 7} 5, 1s always “censored.”
To simplify our discussion, we further assume that the underlying (751, T}z, . . .) that generate
(tiy ... 7ti7me‘—17t;’},—m,‘) are also identically distributed.

For any fixed index j > 1, the shorter gap time T;; is more likely to be observed as
complete t;;, given C; and (T;y,...,T; ;—1). In addition, although (7;1, T}2, . ..) are identically
distributed, the observed complete gap times #;;, 1 < j < m; tend to be shorter as j
increases. To see this, let W;; = C; — ch;ll ik, the censoring time of the jth gap time 7},
given (Ti1,...,T;j—1). Then the complete ¢;; is observed from the conditional distribution
of T;1 given T;y < Wij, and hence right-truncated (Lagakos, Barraj & De Gruttola, 1988,
Kalbfleisch & Lawless, 1989). As a result, larger j leads to smaller W;; and hence shorter
complete ;.

However, the last gap time of T; s is observed subject to intercept sampling (Vardi,
1982). The backward recurrence time W; ar, (Cox, 1962, p. 61) serves as its left truncation
time. That is, given W; as, = w, T a, 1s in fact sampled from the conditional distribution of
Ti given Ty > w. Although T; p, is subject to the truncation of different direction from the
observed complete gaps, it is not counterbalanced by simply pooling together the gap times

of all the subjects (Wang & Chang, 1999).
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2.2 Proportional reverse-time hazards models

As discussed in §2.1, the complete gaps are always subject to right-truncation. In fact,
researchers have extended the traditional survival techniques in reverse time to the right-
truncated failure times (Lagakos, Barraj & De Gruttola, 1988; Kalbfleisch & Lawless,1991;

Gross & Huber-Carol, 1992). Denote the cumulative distribution function Fj;(t) = Pr{T;; <
t} and its corresponding reverse-time hazard function

g Pr{t — At < Tij < t|Tij < t} _ dlog Fij(t>
Rijll) = i, At T

?

for the (7, j)th gap. Then the natural extension of the Cox proportional hazards model to the
right-truncated failure times is the proportional reverse-time hazards model, as recommended

in Kalbfleisch & Lawless (1991) and Gross & Huber-Carol (1992):

k(1] Zi) = mio(t) exp(8 Zij), (1)
where Z;; is p-dimensional covariate and § € B C RP is parameter for 1 = 1,...,n and
J=1,2,.... In fact, if the negative time scale were allowed, e.g., let 77, = —T;;, then T7,

would be in theory to follow the usual proportional hazards model with identical regression
coefficients in model (1):

Aij (L Zig) = doo(t) exp(B'Zs;),
where \;;(t) = k,;(—t), for t < 0.

In (1), {kio(t);t > 0,i =1,2,...,n} are unspecified and hence the models are semipara-
metric. This is similar to the proportional hazards models or the log-linear models proposed
for the paired failure times in Kalbfleisch & Prentice (1980, p. 190). As pointed out by
one reviewer, when all the subjects are believed to share similar distributions of baseline
characteristics, {ki(t);t > 0,0 =1,2,...,n} can be further modeled in a standard fashion,

Kio(t) = a;ko(l),

for i =1,2,...,n, where £¢(t) is unspecified and a1, as,...,a, are random effects of some
parametric distribution function, as in Aalen & Husebye (1991). When the study population
is highly heterogeneous, however, it may be more feasible by treating {xi(¢);¢ > 0,1 =
1,2,...,n} as nuisance parameters if its longitudinal pattern remains the major interest.

Parameter 3 in (1) serves as the longitudinal pattern parameter of recurrent gap times.
Its interpretation is better reflected in an equivalent form of (1):

F(11Z5) = Fo(t)™#0"%). e

For example, when Z;; is univariate and increases with j, (3 represents an assigned trend
measure over the longitudinal course of the gap times (Abelson & Tukey, 1963). However,
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the identifiability of  is in doubt if the longitudinal pattern is of minor interest, for an
extreme example, Z;;’s are always constant from gap to gap within every subject. This is
usually not an issue for the scientific questions concerning the longitudinal pattern, such as
the ones in §1, though, because certain distinguishable gap indicator(s) or time-dependent
covariates will be included into the models naturally.

3 INFERENCE PROCEDURES

3.1 Biased risksets

The concept of riskset was used to develop proper inference procedures in analysis of left-
truncated failure times (Woodroofe, 1985; Wang, Jewell & Tsai, 1986). Brookmeyer & Gail
(1994, p. 89) extended the same concept in reverse-time to right-truncated failure times.
A proper riskset is supposed to contain a random sample at risk in order to construct the
parameter estimators with sound statistical properties, otherwise it is called “biased.” We
first consider the usual way of riskset construction for the complete gap times as right-
truncated observations.

According to the definition in Brookmeyer & Gail (1994), the individuals in the riskset
at the observed t,;, are those “whose truncation times [w;;] are greater than or equal to” ¢,
and “whose incubation periods [i.e., observed failure times, ¢;;] are less than or equal to” ¢;;.
That is, the seemly proper riskset at ¢;; is

Rij=A{k:ty <ty <wp,k=1,...,m; — 1}, (3)

where w;;, = ¢; — Z;:ll t;; as defined in §2.1. This leads to the partial likelihood function in

reverse-time as
m;—1

PL. — eXp(ﬁTZZ»]-)
(2 bl
j=1 EkERZ‘] eXp(/BTZik)
assuming that £;;’s are distinct complete gap times. If R;; were proper, the members in R;;

would form a random sample, and each one of them would have fair probability to fail at
ti;. Therefore, the score function that is the derivative of log(PL;),

= {Z~ B > rer,, Zinexp(8" Zix) }

= ; ZkeRi] exp(BT Zix)

would be zero unbiased.

However, complication arises with R;;. For any specific k in R;;, although ;5 1s observed
independently of wiy, t;; does have impact on wix = ¢; =Y, ta = ¢ — (ta 4+t +- -+

4
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tik—1) for any j < k, i.e., increases (decreases) in ¢;; cause decreases (increases) in w;;. As a
result, the occurrence ordering of ¢;; relative to {;; alone may determine its inclusion in R;;,
regardless of model (1). Because of this inherent longitudinal nature, R;; are not random
samples at risk and hence biased. The estimators constructed by S;(3) of the biased risksets
are no longer guaranteed with the sound statistical properties as basic as consistency.

3.2 Unbiased reduced risksets

As discussed in §?77, the cause of biased risksets is clear, i.e., the gaps in R;; do not have
fair probabilities to fail at ¢;;. An ideal treatment of correction is to allow fair probability
for t;; € R;; to fail at ¢;;. That is, replacing every gap ¢;; with ¢;; in R;;,

|Rijlti; + Z i < ¢ (4)

IERS,

still holds, where |R;;| is the size of R;; and Rf; = {1,2,...,m; — 1} \ R;;. Then unbiased
estimating functions can be constructed based on the risksets satisfying (??). However, this
way of construction is expected to be cumbersome because (?7) needs to be verified for at
most 277! times to obtain the maximal R;;.

More feasible approaches can be considered by limiting the number of replacements of ¢;;
in R;;. This can be achieved by reducing |R;;|. The most aggressive reduction is to include
only one gap 1;; € R;j, say, at a time, in addition to ¢;; itself. That is, a meaningful reduced
riskset ];’” at {;; would always have two gaps, {;; and {;;. Similarly as discussed in §77,
however, not every t¢;; is eligible for E)w to be unbiased. To explore the eligibility, we plot

two possible cases in Figure 1 that may appear in reality: (a) k > j, R;; is to include a later

gap; (b) k < 7, R;; is to include an earlier gap, respectively.

In Figure 1(a), because t,; occurs later than ¢;;, w;; < w;; by default. To allow t;; € fm’ij
with fair probability to fail at ¢;;, the usual condition for riskset construction of right-
truncated observations applies. That is, ¢;z < t;; < wix. In Figure 1(b), however, because t;;
occurs sooner than ¢;;, w;, 2> w;; by default. Although ¢;; may not be bigger than ¢;;, it does
have the positive probability of being greater than w;;, which ¢;; will never have. We need
to curtail w;;, to eliminate such an excessive probability. In fact, due to the right-truncation,
the largest room left for ¢;; to probably grow is w;; — ¢;;. This is also supposed to be the
largest room left for ¢;; to fairly fail at ¢;;. Therefore, the curtailed right-truncation time for
tik should be Wiy — tij + tik-

In summary, two gaps must satisfy one of the following two conditions in the unbiased

Eiji (a) for k& > j, tik < ti]' < Wik, (b) for k < j, tik < tij < Wi; — tij + . Therefore, |E”| is
2 if either condition holds, and degenerates to 1 otherwise.
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[Figure 1 about here]

3.3 Inferences based on reduced risksets

The unbiased reduced risksets constructed in §?7 are neither necessarily existing, nor nec-
essarily unique when existing Denote {E’”k, k=1,2,...,m;_1} the entire reduced risksets
at t;;, and 0,5 = [{|ka| > 1} the unbiased R”k mdlcator Given R”k and d;;5 = 1, the
conditional likelihood contribution of R”k is then

exp(687 Z;;)
exp(8T Zi;) 4 exp(BT Zir)’

which resembles the ones from the Cox proportional hazards model for paired failure times
as in Kalbfleisch & Prentice (1980, p. 191). Its corresponding score function is:

(5)

Siin(B) = Zi; — Ziin(B),
where
Ziix(B) = Zij exp(B" Zij) + Zi exp(B" Zix)
vt exp(ﬁTZij) + exp(/BTZik)
It is true that E{S;s(B8)|Rijk, ik = 1; 8} = 0. In addition, E{S;jx(B3)|Rij, 6 = 0; 3} = 0.
Therefore, we can use S;jx(3)’s as “building blocks” to construct the estimating function for
subject 7 as

m;—1 m;—1 1
gy = 2=l 2k SijkSije(B)
Z(ﬁ) - m;—1 mi—15 .

2imn 2k dige
10 we let 8y = Y7 dijrs gis = 05/ 27y 8y and Zij(8) = 6,51 S0y SujaZiji(B), straight-
forward algebraic manipulation shows that the ultimate set of estimating functions using all
the subjects are

S = Y8 =t Y3 i {2 - 260).

It is straightforward that g(ﬁ) is unbiased and thus the estimators of # can be obtained by
solving S(f3) =

With the special way of the reduced riskset construction, the martingale theory for count-
ing processes of the usual proportional reverse-time hazards model may not be applied in
any straightforward sense. However, standard asymptotic likelihood methods will be able
to show the existence of B, its uniqueness and consistency under the assumed regularity
conditions in the Appendix.
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In addition, since S(f) is the sum of {S;(0)}2, as iid unbiased estimating functions, it
is true that n_l/Qg(ﬁ) is asymptotically normal with mean zero and variance X(3y) by the
Central Limit Theorem. Following the consistency ofﬁ3 and a Taylor series expansion, we
are able to establish the asymptotic normality ofﬁ3 as well. Details of technical proofs are
given in the Appendix.

THEOREM 1. Under the assumed regularity conditions,

n'12(8 = Bo) 5 N(0, D7 (B0)S(Bo){ D" (30)}7).

And a consistent_estimator of D_l(ﬁo)E(ﬁo){D_l(ﬁo)}T can_be obtained by replacing 3
with 3, n=' D=H(B)S(B){ D1 (B)}", where D(B) = E{(3/08)5:(8)}.

In practice, to solve the estimating equation, a Newton-Raphson iteration algorithm can
be adapted. That is, at the kth step of iteration, let the (k 4 1)st solution to the equation
to be

Bk — 304 D1 (G130
To our experience, this algorithm is reasonably efficient and the burden of computing is not
demanding. The variance estimation of sandwich-type is also straightforward.

Since the estimating equations are constructed from the conditional score functions based
on the eligible reduced risksets with equal weight, it is not expected that the proposed es-
timating equations would be fully efficient in general. However, if one prefers, deterministic
weights can be added to the components in g(ﬁ) to enable potentially more efficient esti-
mating equations. For example, let

n m;—1

S n”! Z Z G 1/292]{22] - 2]( )} (6)

i=1 7=1
where G;; is the diagonal matrix with identical diagonal elementsin £ [gij{Zij — Z”(ﬁ)}] “2.

Similar to the Cox proportional hazards model, the assumption of multiplicative form
is critical to the proportional reverse-time hazards models. To assess the model adequacy,
the rationale in Gill and Schumacher (1987) for the Cox proportional hazards model can be
adopted. Denote ﬁ the solution to SG(ﬁ) = (0. Then we can compare in difference the two
corresponding estimators of ﬁG and 5, using the quadratic form

Tas = (8% - B)"V(B% - B),

where V is an appropriate estimator of variance-covariance matrix of BG — B The statistic
Tst, is asymptotically x, if the proposed models are true.
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4 NUMERICAL STUDIES

Monte Carlo simulation studies are conducted to evaluate the validity of the proposed infer-
ence procedures, when the underlying models are the reverse-time hazards models as specified
in (1). The following proportional reverse-time hazards models are used in our simulation

studies:
T 7.
Fy(t) = Foi(1) 7 7). (7)
where Z;; = (Zij1,Zij2) and (1, 3;) are two-dimensional vectors, for j = 1,2,..., ¢ =
1,...,n. The censoring times ¢;, © = 1,2,...,n, are independently generated by the ex-

ponential distribution with mean p. For subject ¢, the recurrence times under model (5)
are independently generated by first generating u;; from Uniform(0, 1) distribution and then

sz ]
—log {1 —u" =PI

The observed data thus include (¢;1, ..., ¢, 1,1t}

m;

calculating

tij = F7 ' (uij)b

),i=1,...,n, such that

m;—1

m;
Z tij < ¢, and Ztij > C;.
J=1 J=1

To characterise the underlying heterogeneity among the subjects, individual baseline haz-
ard function Fp;(t) is chosen between the standard Weibull distribution with density of
etV exp(—t°), where ¢ > 0, and the standard Log-normal distribution function with density
of (2m)~"%~  exp{—(logt)?/2}, with equal probabilities of 0.5. We select ¢ to be 0.8, 1 and
2.5, to represent decreasing, constant and increasing baseline hazard functions of Weibull,
respectively. Sample sizes are selected to be 100 and 250 to represent relatively small and
large sample sizes, respectively. Censoring times are selected to be 10 and 15 to represent
relatively short and long follow-up period, respectively. Two covariates are used: Z;;, = j for
trend measure, while Z;; 2 = ¢;; simulated from uniform distribution U[0, 1] to represent some
time-dependent confounding variable needed to be adjusted. True parameter 3y = (310, 320)
are selected to be (0,0), (1,0), (0,1) and (1,1), respectively. For each configuration, 10,000
simulations are conducted. Its empirical bias, defined as the difference between empirical
mean and the true parameter, and coverage probabilities are computed. Details of results
are listed in Table 1. As shown in the table, the proposed estimators are virtually unbiased
and the corresponding confidence intervals have proper confidence levels.

[Table 1. about here]

In 1938, systematic registration was started in Denmark for the mental health patients
admitted to the hospitals for treatment. The registration includes all the cases from 86
psychiatric institutions in the entire nation of Denmark. In investigating the schizophrenic
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epidemiology of such a population, the average schizophrenia progression over a relatively
long period of time is of critical research interest. Specifically in the Denmark schizophrenia
study, the gap times between two consecutive hospitalizations are thus selected as endpoints
to study the longitudinal pattern of schizophrenia progression (Eaton, et al., 1992). In fact,
the gap times are measured by days and collected from 8,811 patients (5,493 males and 3,318
females) who were admitted to the hospitals due to schizophrenic symptoms for the first time
in their lives between April 1, 1970 and March 25, 1988. Given the nature of dataset of this
magnitude over a wide geographic region, heterogeneity among subjects is highly probable
and any assumption on the underlying characteristics may need to be scrutinized.

In Wang & Chen (2000), a testing procedure was proposed and applied to this data set
and detected that there is similar deterioration patterns of the disease among the patients
with onset ages less than 20 and those with above. A regression model based on the semi-
parametric accelerated failure time model was also used to estimate the magnitude of the
pattern. In order to contrast with their findings, we first choose the same index of trend
measure of Z;; = j and Z;; = 1/7 in model (1), as used in Wang & Chen (2000). We obtain
the (-estimates of -0.0196 and -0.1684, with standard errors (s.e.) of 0.0010 and 0.0069,
respectively. Both of associated p-values are extremely small, and their negative signs sug-
gest deterioration pattern, which is consistent with the reported results. When model (1)
is applied separately to the group with onset age < 20 and otherwise, the -estimates are
-0.0155 (s.e. = 0.0018, p < 0.0001) and -0.0213 (s.e. = 0.0012, p < 0.0001) for Z;; = j,
respectively. This means there is same deterioration pattern for both onset age groups,
although the later onset age group may show a stronger pattern. Similar conclusions are
reached for Z;; = /J: the (-estimates are -0.1585 (s.e. = 0.0145, p < 0.0001) and -0.1713
(s.e. =0.0078, p < 0.0001) for the younger and older onset age groups respectively.

Although it is not of main interest in this article, the grouping effect, or the time-
independent covariate effect, is not estimated because of the “stratification” nature of our
proposed models and inference procedures. However, similar to the conditional logistic
regression models for the matched case-control study, we are still able to estimate the inter-
action terms of the time-independent and -dependent covariates. For example, we estimate
that the interaction of longitudinal pattern measure and the onset age grouping is 0.00071
(s.e. = 0.00017, p < 0.0001). This suggests that the longitudinal patterns of schizophrenia
progression are significantly different between the two onset age groups, although they share
same direction of progressive deterioration separately.

5 DISCUSSION

Because of the longitudinal nature, it is well known that the recurrence times as a type of
serial multivariate survival times have different statistical structure from those of parallel
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multivariate survival times, such as collected in the family studies. For example, pervious
works such as Wei, Lin & Weissfeld (1989) may be more applicable to the data sets of the
latter type, as noted in Pepe & Cai (1993). Other works such as Prentice, William & Peterson
(1981) and Chang & Wang (1999) focus more on the conditional analysis of recurrence times.
More recently, marginal approaches such as in Huang (2000) are also explored to model the
recurrence times, although maybe under different contexts. The focus of our article is to
model and estimate the longitudinal pattern parameter of the recurrence times, when the
study population is considered highly heterogeneous and under censoring.

To accommodate censoring and heterogeneity, this paper utilizes the comparability con-
cept to construct appropriate risksets of gap times as truncated observations. Similar to
the usual univariate right-truncated data, the proportional hazards model does not serve
as a natural model, but instead, the proportional reverse-time hazards model is proven to
be a more proper candidate. The comparability condition for the reduced risksets identi-
fied in this paper subsequently fits the model and overcomes all the heterogeneous baseline
distribution functions as nuisance.

However, the comparability condition does have limitations to certain degree. One major
limitation is that the complete recurrence times are only considered as “comparable” pair-
wise. So it is of greater interest but non-trivial to extend to the comparability condition to
more than paired recurrence times, which will allow us to gain more efficiency in estimation.
In addition, similar to the conditional inference procedures of the fixed-effect logistic regres-
sion models for matched case-control studies, the proposed inference procedure does not aim
to estimate the subject-specific covariate effects, if the population heterogeneity is related to
such subject-specific covariates. A straightforward approach is to use first gap times only,
although more effective and more efficient approaches are needed.

10
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APPENDIX
Asymplotics

Martingale theory has been useful in developing asymptotic theory for the inference proce-
dures of the Cox proportional hazards models (Andersen & Gill, 1982). However, martingales
are concerned with future events conditioning on the entire history up to the time points at
which risksets are constructed. Within the current framework, however, the usual martingale
theory is not able to be used in straightforward terms and alternative techniques are applied
in developing asymptotic properties in this article. In the following development, without
loss of generality, we further assume that 3 is a scaler. It should not be difficult to extend
all the results to the multivariate situation.

The following regularity conditions are assumed:

(1) Thereexistan [ € {1,2,.. n} and enough big constant Cy > 0 such that foco Koi(s)ds <
oo. In addition, Pr{}Z ;) dijx > 0} = 1.

(3,7,k)

(2) There exists a finite M > 0 for a neighborhood Uy at 3y such that

sup [F{Zjexp(3'Zi;)}] < M.
(¢,5),8€lo

(3) There exist ¥(f) and positive-definite D(3y) such that

|£080) - 2(80)

and

| D(50) — D(A0)

bl
respectively, where
n

s 4 1 Sijk exp(BZix)(Zij — Zik) ”
X(B) = n z { z]‘ Yk 0ijk z]: zk: exp(87:;) + exp(8Z:x) }

=1

and

] bijr exp(BZs; 6XP(522AK221——22k)®2
N 22: > Ek dijk Z Z Zi;) + exp(BZy)}? '

{exp(

T

Here, v®° =1, v® = v and v® = vov', and || - || defines the Euclidean norm.

As shown in §3.3, the estimating function g(ﬁ) is unbiased. According to the conditions
in Foutz (1977) and later used in Pepe & Cai (1993), if the following conditions are satisfied:

11
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Condition F.1. the partial derivatives of g(ﬁ) with respect to [ exist and are continuous;

Condition F.2. the matrix n_l(a/aﬁ){g(ﬁo)} is non-singular with probability converging
to 1l as n — oo;

Condition F.3. and the matrix n~"(0 /@ﬁ){g(ﬁ)} converges in probability to the function
A(B) = im0 E[n1(0/08){S(8)}] uniformly in 3,

then there exists a neighborhood such that a unique consistent solution to g(ﬁ) = 0 exist
with probability converging to 1. It is straightforward to verify conditions F.2 and F.3
implied by regularity conditions 2 and 3 in §3.3, respectively. And since F.1 is an obvious
fact, the consistency and uniqueness are then established.

By the Taylor series expansion, we know that in the neighborhood of (3

39 - 8100 = Z00 (5o + 3 Lo 3

where (3* lies between 3 and B Straightforward algebraic manipulation shows that

W2 — o) = {n ) e LI %)} A5} )

a3 2 o

By regularity condition 2 in §3.3, n 1{(02/@ﬁ )S ( )} is uniformly bounded in the neighbor-
hood of 3y. Therefore, n 1{(@2/@5 )S(B*)H B — Bo) converges to 0 in probability.

Because of the way of constructing 5’(5), n‘l(@/@ﬁ)g(ﬁo) is an average of n iid random
variables with finite variance. Therefore, by the Weak Law of Large Numbers (WLLN),
it converges in probability to D(8y) = E{(0/08)5:(50)}, i = 1,2,...,n. In addition, all
the Si(3)’s are iid zero-mean random variables, so by the central limit theorem, n='/25(3)
converges in distribution to a normal with mean zero and variance of (). Because of the
positive-definity of D(fp), it is straightforward to establish the asymptotic normality ofB as
specified in Theorem 1. Using the result in Andersen & Gill (1982) and the consistency of
B, the consistency of the variance estimators in Theorem 1 is also implied.
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Table 1: Symmary of Simulation Studies

)

noptoc (0,0) Loy " 10y 4, Got (1,1) 20
2 . 3.2 /801 ﬁo
Bl Doz Do* =Y
100 10.8  Bias® 0.01180.0062 0.0079  0.0095  -0.0102 0.0046 0.00440.0018
Cov. Pr.d  0.95340.9509 0.9506  0.94930.9515  0.9502 0.94780.9457
1.0 Bias 0.0052 -0.0045  0.0004 0.0053  -0.0038 0.0039 0.00410.0045
Cov. Pr. 0.9517  0.9491 0.9517  0.95210.9422  0.9479 0.9507  0.9527
95  Bias -0.00850020  -0.0004 -0.0117  -0.0051 -0.0057  0.0147 0.0014

Cov. Pr. 0.94880.9502 0.9493  0.94680.9461  0.9479 0.9519.9460
.0010.0006  -0.0158 -0.0033  -0.0017 0.0033 0.0090.0034
17 0.9494  0.9519.9471  0.9546 0.95860.9531
54 0.01630.0133  -0.0028  0.0067 -0.0051
80.9527  0.9501 0.9500551
66 0.009%  0.0119.0027
0.950513
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©® is mean censoring time. ¢’ is the shape parameter of the baseline hazard function.

Bias® is the average B’s minus 3. Cov. Pr.4is the coverage probability of the 95% confidence
intervals. All the entries are computed from 10,000 simulations.
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Figure 1: Illustrative example of two members in the reduced riskset of ¢;;
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