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Abstract

This paper examines group testing procedures where units within a group (or
pool) may be correlated. The expected number of tests per unit (i.e., efficiency)
of hierarchical and matrix based procedures is derived based on a class of mod-
els of exchangeable binary random variables. The effect of the arrangement of
correlated units within pools on efficiency is then examined. In general, when
correlated units are arranged in the same pool, the expected number of tests per
unit decreases, sometimes substantially, relative to arrangements which ignore in-
formation about correlation.
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1 Introduction

Group testing is a method used to reduce the average number of tests needed to identify cases
of a disease in a population. The first use of group testing was proposed by Dorfman (1943).
Dorfman proposed pooling blood samples of groups of men inducted into the military, and
testing the combined samples for antigens to identify the presence of syphilis. If the combined
samples tested negative for the antigens, the men were declared syphilis free with only one
test. Otherwise, samples from each man were tested individually. Specimen pooling or
group testing has been applied to screening for various infectious diseases and has also found
broader application in genetics, the pharmaceutical and blood bank industries, entomology,
and many other areas (Lancaster and Keller-McNulty, 1998; Kim et al., 2007). Group testing
can also be used to reduce the average number of tests needed to estimate the prevalence of
a disease (Hughes-Oliver and Rosenberger, 2000; Tebbs and Swallow, 2003), but this paper
focuses on case identification.

Dorfman’s two stage procedure has been generalized to three or more stages. If the initial
(or “master”) pool tests positive, the specimens may be pooled into smaller non-overlapping
subpools. If a subpool tests positive, individuals can be tested, or subpools can be divided
further into smaller non-overlapping subpools nested within the previous subpool. This is
known as a hierarchical procedure (Finucan, 1964; Johnson et al., 1991). Another common
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group testing algorithm entails an array based procedure (Phatarfod and Sudbury, 1994;
Berger et al., 2000; Kim and Hudgens, 2009). In the simplest scenario, a group of n2 units
is arranged into an n× n matrix, and pools of size n are constructed from units in each row
or column. The 2n row and column pools are then tested, and positive units are identified
by testing the units at the intersections of positive row and column pools.

Prior research regarding group testing procedures typically assumes that all individual
units are independent. This assumption may not be reasonable in certain situations. For
example, in the infectious disease setting, responses to a screening test may be positively
correlated for individuals from the same geographical area or the same household. A sec-
ond example arises in human immunodeficiency virus (HIV) vaccine development, where
group testing methods are used to detect T-cell responses to specific epitopes induced by
a candidate vaccine (Malhotra et al., 2007a,b; Yan et al., 2007). T-cell responses to one
or more peptides are identified by using ELISpot, intracellular cytokine staining, or other
assays. Li et al. (2006) developed a potential T-cell epitope peptide set designed to contain
epitopes found in commonly circulating strains of HIV. The peptide set is made of 15-mer
peptides, some of which overlap by 10 or more amino acids. It is reasonable to expect that
T-cell responses from the same individual are likely to be correlated for overlapping pep-
tides. Indeed, Malhotra et al. (2007a) observed that T-cells of HIV infected individuals can
recognize multiple peptides containing variants of the same epitope. Roederer and Koup
(2003) evaluated possible group testing procedures to be used in this setting using Monte
Carlo simulation, but did not consider that T-cell responses may be correlated. Below we
show that accounting for this correlation when using group testing for case identification
can reduce the average number of tests needed to identify all peptides that elicit a T-cell
response.

2 Preliminaries

Suppose that a unit has either a positive or negative response to some classification. For
example, the unit could represent an individual classified by a disease screening test, or a
peptide classified according to a particular assay. Assume the probability of an incorrect
classification is zero. Similarly suppose if the units are pooled together, the pool will be
classified as positive if and only if at least one unit in the pool is positive. The efficiency
of a group testing procedure is defined as the expected number of tests per unit required to
classify all units as either positive or negative. In order to evaluate the efficiency, the prob-
abilities that pools of units do not have any positive responses need to be calculated. These
calculations require knowledge about correlation among units within each pool. Suppose
there are n units total which can be partitioned into l clusters of size m and the following
assumption holds:

Assumption 1 Units in different clusters are independent, and the joint distribution of
units in the same cluster is the same for all clusters.

Without loss of generality, let X̃ = (X1, . . . , Xm) be a vector of binary random variables
representing the responses for a particular cluster, where Xi = 1 if the ith unit in that cluster
is positive, and Xi = 0 otherwise for i = 1, . . . , m. Let Ẋ =

∑m
i=1Xi, let x̃ be a possible
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realization of X̃ , and let ẋ be the sum of the values of x̃. Let X̃ ′ = (X ′

1, . . . , X
′

m′) be a

subset of any m′ elements from X̃ where m′ ∈ {1, . . . , m} and Ẋ ′ =
∑m′

i=1X
′

i. Deriving the
efficiency of a group testing procedure requires assumptions about the distribution of X̃ . A
class of models for X̃ is defined by Assumptions 2 and 3 below by factoring the probability
mass function for X̃ as pr(X̃ = x̃) = pr(Ẋ = ẋ)pr(X̃ = x̃ | Ẋ = ẋ).

Assumption 2 Units within a cluster are exchangeable in the sense that

pr(X̃ = x̃ | Ẋ = ẋ) =

(

m

ẋ

)

−1

.

Assumption 3 The distribution of Ẋ is a mixture of binomial distributions such that

pr(Ẋ = ẋ) = Eπ

{(

m

ẋ

)

πẋ(1− π)m−ẋ

}

(1)

where Eπ{g(ẋ, π)} =
∫ 1

0
g(ẋ, π)dF (π) for any function g, and π is a random variable with

support [0, 1] and cumulative distribution function F .

Note there are connections between Assumption 3 and de Finetti’s Theorem. In par-
ticular, if the cluster X̃ can be viewed as a subset of an infinite sequence of exchangeable
binary random variables, then Assumption 3 and Lemma 2, below, follow immediately from
de Finetti’s Theorem (de Finetti, 1975). However, in settings motivating this work, such as
epitope mapping studies, the focus is on clusters of finite size, in which case (1) does not
hold in general (Diaconis, 1977).

Let E(Xi) = p be the probability that any unit i tests positive and let cor(Xi, Xj) = σ be
the pairwise correlation between any two units i and j for i 6= j. The lemmas below establish
certain properties about the class of models under Assumptions 2 and 3 that are needed for
evaluating the efficiencies of group testing procedures in Sections 3 and 4. Lemma 1 shows
that any distribution of exchangeable binary random variables approaches a known limiting
distribution as σ approaches one. Lemma 2 shows that the distribution of a subset of units
from a cluster with the properties defined in Assumptions 2 and 3 is of the same form
as the distribution of the units in the cluster. By specifying a distribution for π where
the first and second moments are p and σp(1 − p) + p2, respectively, the distribution of a
vector of exchangeable binary random variables with specified marginal means and pairwise
correlations is defined by Lemma 3. Proofs of the lemmas are given in the appendix.

Lemma 1 Under the conditions in Assumption 2, as σ approaches 1 the distribution of Ẋ
converges to a two-point distribution where pr(Ẋ = 0) → 1− p and pr(Ẋ = m) → p.

Lemma 2 Under the conditions in Assumptions 2 and 3, the distribution of Ẋ ′ is a mixture
of binomial distributions of the same form as Ẋ, such that

pr(Ẋ ′ = ẋ′) = Eπ

{(

m′

ẋ′

)

πẋ′

(1− π)m
′
−ẋ′

}

(2)

for ẋ′ = 1, . . . , m′.
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Lemma 3 Under the conditions in Assumptions 2 and 3, if E(π) = p and E(π2) = σp(1−
p) + p2, then E(Xi) = p for all i and cor(Xi, Xj) = σ for all i 6= j.

In the sequel, three models are considered to examine how the efficiencies of group testing
procedures are affected by correlated responses. The first is a beta-binomial model (Skellam,
1948), where π has a beta distribution with mean p and variance σp(1− p). Madsen (1993)
described multiple distributions that can be used to model exchangeable binary data. One
of those models can be constructed by letting π = p with probability 1 − σ, π = 0 with
probability σ(1 − p), and π = 1 with probability σp; this will be referred to as a Madsen
model. A third model, described in Morel and Neerchal (1997) can be constructed by letting
π = p(1−√

σ) +
√
σ with probability p and p(1−√

σ) with probability 1− p.
The efficiency derivations in Sections 3 and 4 below rely on the following additional

notation. Let q0 = 1 and qm′ = pr(Ẋ ′ = 0) denote the probability m′ units from the same
cluster are negative for m′ ∈ {1, . . . , m}. For the three models above q1 = 1 − p and qm′ is
given by (2) for ẋ′ = 0. Finally let T denote the number of tests required by a particular
group testing procedure to classify n units as positive or negative.

3 Hierarchical procedures

3.1 Notation and general hierarchical procedures

Consider a hierarchical procedure where n1 = n units are combined to form a master pool.
In the first stage, the master pool is tested, and if it is positive, w2 non-overlapping pools of
n2 units are each tested in the second stage. In a two stage procedure, n2 = 1 and each unit
in a positive master pool is tested individually. In a general h stage procedure, for each pool
that tests positive in stage s−1, ns−1/ns non-overlapping pools of ns units are tested. There
are a total of ws = n1/ns pools that could be tested at stage s if all of the pools in stage s−1
test positive. At the hth stage each pool is made up of individual units, so nh = 1. The total
number of tests T = T1 + . . . + Th, where Ts is a random variable representing the number
of tests at stage s. The efficiency of a hierarchical procedure is E(T )/n1 =

∑h
s=1E(Ts)/n1.

The master pool is always tested, so E(T1) is always one.
In this section, let Ysij be 1 if the jth unit in the ith pool of the sth stage is positive,

and 0 otherwise. Let Vsi = max(Ysi1, . . . , Ysins
). If the ith pool in the sth stage is tested,

then Vsi is the observed response. For a particular arrangement of clusters, let msik be
the number of units from cluster k in pool i of stage s where k = 1, . . . , l. For s > 1,
E(Ts) = ws/ws−1 ×

∑ws−1

i=1 pr(V(s−1)i = 1), where

pr(V(s−1)i = 1) = 1−
l

∏

k=1

qm(s−1)ik
(3)

is the probability that pool i in stage s − 1 tests positive. To determine the efficiency of a
particular hierarchical procedure, (3) is evaluated based on how the clusters are arranged.
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3.2 Nested hierarchical arrangement

Suppose clusters of size m are arranged such that for some h′ ∈ {2, 3, . . . , h} all units from
the same cluster are in the same pool for stages 1, 2, . . . , h′−1, and units in the same pool are
from the same cluster at each stage for stages h′, . . . , h. That is, msik = m or 0 for s < h′ and
msik = ns or 0 for s ≥ h′. Call this a nested hierarchical arrangement. By (3), if 1 < s ≤ h′

then pr(V(s−1)i = 1) = 1− q
ns−1/m
m for all i, and if h′ < s ≤ h then pr(V(s−1)i = 1) = 1− qns−1

for all i. Therefore

E(Ts) =

{

ws(1− q
ns−1/m
m ) (1 < s ≤ h′),

ws(1− qns−1) (h′ < s ≤ h).
(4)

If σ = 0 then q
ns−1/m
m = qns−1 = q

ns−1

1 so E (Ts) = ws(1 − q
ns−1

1 ). Johnson et al. (1991)
derive the efficiency for a hierarchical procedure when incorrect classifications are possible. If
σ = 0, E(T )/n1 =

∑h
s=1E(Ts)/n1 is equivalent to their equation (6.19) when the probability

of an incorrect classification equals zero.

3.3 Random hierarchical arrangement

Consider the case where units are arranged in a way that is unrelated to their cluster mem-
bership. Let M̃si· be the random vector of length l of the number of units from each cluster
1, . . . , l in pool i in stage s. Let each possible arrangement of the n1 units have the same
probability, so M̃si· has a multivariate hypergeometric distribution such that

pr(M̃si· = m̃si·t) =

(

n1

ns

)

−1 l
∏

k=1

(

m

msikt

)

(5)

where m̃si·t = (msi1t, . . . , msilt) is the tth possible value of M̃si· for t = 1, . . . ,
(

n1

ns

)

. Then

pr(V(s−1)i = 0 | M̃(s−1)i· = m̃(s−1)i·t) =

l
∏

k=1

qm(s−1)ikt
, (6)

and therefore

pr(V(s−1)i = 1) = 1−
(

n1

ns−1

)

−1
( n1
ns−1

)
∑

t=1

{

l
∏

k=1

qm(s−1)ikt

(

m

m(s−1)ikt

)

}

. (7)

When n1 is large, the number of possible arrangements
(

n1

ns

)

becomes very large, and the
exact calculation for (7) is computationally difficult. Monte Carlo simulation can be used to
approximate (7). First values of M̃(s−1)i· are repeatedly sampled from a multivariate hyper-
geometric distribution according to (5). Then the conditional probability (6) is evaluated
for each sample. Finally, one minus the sample mean of the conditional probabilities will
approximate (7).
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Figure 1: Efficiencies for a two stage hierarchical procedure where n1 = 256 and p = 0.001
by cluster size m, pairwise correlation σ, and model

3.4 Comparison of hierarchical arrangements

For a two stage hierarchical procedure with a nested arrangement, the expected number of
tests is E(T ) = 1 + E(T2) where E(T2) = w2(1 − q

n1/m
m ) by (4). If σ = 0 then qm = qm1

and the efficiency for all models equals E(T )/n1 = n−1
1 + 1 − qn1

1 as in Dorfman (1943).
Figure 1 illustrates the efficiency of a two stage hierarchical procedure for the three models
and different values of σ as a function of m. For large clusters the expected tests per unit
is reduced substantially as σ increases. When σ = 0.99, the efficiencies for all three models
are almost identical, which is consistent with Lemma 1.

For a three stage hierarchical procedure with a nested arrangement where all units from
the same cluster fit into the same pool in stages 1 and 2 (i.e., h′ = 3), the expected number
of tests for stage 2 has the same form as in the two stage procedure above. Similarly,
the expected number of tests for the third stage is E(T3) = w3(1 − q

n2/m
m ) so E(T ) =

1+w2(1−q
n1/m
m )+w3(1−q

n2/m
m ). Figure 2 compares the efficiencies of three stage hierarchical

nested and random arrangements by stage two pool size, n2, as a function of σ. Efficiencies for
the random arrangements were obtained by Monte Carlo simulation. In all cases in Fig. 2
the nested arrangements have better efficiency than random arrangements for σ ∈ (0, 1).
As σ approaches 1, the efficiencies for the three models converge for each arrangement as
indicated by Lemma 1.
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Figure 2: Efficiencies for three stage hierarchical procedures where n1 = 256, p = 0.01, and
m = 32 by pairwise correlation σ, stage two pool size n2, arrangement, and model

4 Matrix procedures

4.1 Notation and general matrix procedures

Consider a matrix based procedure where n = rc units are arranged in a matrix with r rows
and c columns. First, r row pools and c column pools are tested. If any rows and columns
test positive, then units at the intersections of positive rows and columns are tested. In this
section, let Yij be 1 if the unit in the ith row and the jth column is positive and 0 otherwise,
for i = 1, . . . , r and j = 1, . . . , c. Let Ri = max(Yi1, . . . , Yic) and Cj = max(Y1j , . . . , Yrj).
The random variables Ri and Cj represent the observed responses for the tests corresponding
to the ith row and the jth column, respectively. In general, for an r×c matrix, the expected
number of tests equals

E(T ) = r + c+

r
∑

i=1

c
∑

j=1

pr(Ri = Cj = 1) (8)

where
pr(Ri = Cj = 1) = 1− {pr(Ri = 0) + pr(Cj = 0)− pr(Ri = Cj = 0)}. (9)

For each row i, let mi·k be the number of units from cluster k in row i, and for each
column j and let m·jk be the number of units from cluster k in column j. Let mijk be the
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number of units from cluster k in either row i or column j. Then

pr(Ri = 0) =

l
∏

k=1

qmi·k
, (10)

pr(Cj = 0) =

l
∏

k=1

qm·jk
,

and

pr(Ri = Cj = 0) =
l

∏

k=1

qmijk
.

Let m̃i·· = (mi·1, . . . , mi·l), let m̃·j· = (m·j1, . . . , m·jl), and let m̃ij· = (mij1, . . . , mijl).
If the ordered values of m̃i·· and m̃i′·· are equal, the ordered values of m̃·j· and m̃·j′· are
equal, and the ordered values of m̃ij· and m̃i′j′· are equal for all i 6= i′ and j 6= j′, then
pr(Ri = Cj = 1) is the same for all i and j, and (8) reduces to

E(T ) = r + c + rcpr(Ri = Cj = 1). (11)

For a matrix procedure where all units are independent, σ = 0 and the expected tests
per unit is E(T )/n = c−1+ r−1+1− (qc1 + qr1 − qr+c−1

1 ) by (9) and (11), as in Phatarfod and
Sudbury (1994).

4.2 Rectangular arrangement

In a rectangular arrangement, clusters of m units are arranged in sub-matrices of dimension
r′ × c′ so m = r′c′. These sub-matrices are arranged in a matrix of dimensions r × c.
The number of rows r is assumed to be divisible by r′ and the number of columns c is
assumed to be be divisible by c′. In a rectangular arrangement, clusters are arranged in a

way that (11) holds. Since pr(Ri = 0) = q
c/c′

c′ , pr(Cj = 0) = q
r/r′

r′ , and pr(Ri = Cj = 0) =

q(c′+r′−1)q
c/c′−1
c′ q

r/r′−1
r′ , by (9) and (11)

E(T ) = r + c+ rc{1− (q
c/c′

c′ + q
r/r′

r′ − q(c′+r′−1)q
c/c′−1
c′ q

r/r′−1
r′ )}.

4.3 Diagonal arrangement

In a diagonal arrangement, assume r = c = m. Clusters of size m are arranged on diagonals
of a matrix such that each row and each column has one and only one unit from each
cluster. More precisely, for any i ∈ {1, . . . , r−1} and j ∈ {1, . . . , c−1}, the responses Yij and
Y(i+1)(j+1) will correspond to units from the same cluster in a diagonal arrangement. Clusters
can wrap such that the last unit in a row of the matrix is a member of the same cluster as
the first unit in the next row of the matrix. In this arrangement, clusters are arranged in a
way that (11) holds. Since pr(Ri = 0) = qr1, pr(Cj = 0) = qr1, and pr(Ri = Cj = 0) = q1q

r−1
2 ,

by (9) and (11)
E(T ) = 2r + r2

{

1−
(

2qr1 − q1q
r−1
2

)}

.

8

http://biostats.bepress.com/uncbiostat/art16



4.4 Random arrangement

Now consider the case where units are arranged in a matrix randomly in a way that is
unrelated to their clusters. Let M̃i·· be the random vector of the number of units from each
cluster 1, . . . , l in row i, let M̃·j· be the random vector of the number of units from each
cluster 1, . . . , l in column j, and let M̃ij· be the random vector of the number of units from
each cluster 1, . . . , l in either row i or column j. Each possible arrangement of n units has
the same probability, so M̃i·· has a multivariate hypergeometric distribution such that

pr(M̃i·· = m̃i··t) =

(

n

c

)

−1 l
∏

k=1

(

m

mi·kt

)

,

where m̃i··t = (mi·1t, . . . , mi·lt) is the tth possible vector of values of m̃i··t, t = 1, . . . ,
(

n
c

)

.
By (10),

pr(Ri = 0 | M̃i··t = m̃i··t) =
l

∏

k=1

qmi·kt
,

so

pr(Ri = 0) =

(

n

c

)

−1 (
n

c)
∑

t=1

{

l
∏

k=1

qmi·kt

(

m

mi·kt

)

}

.

Additionally, pr(Cj = 0) and pr(Ri = Cj = 0) can be calculated in an analogous way. Simi-
larly to pr(V(s−1)i = 1) in a randomly arranged hierarchical procedure, calculating pr(Ri = 0),
pr(Cj = 0), and pr(Ri = Cj = 0) becomes computationally infeasible as n increases, and
Monte Carlo simulation can be used to approximate each of them. The efficiency, E(T )/n,
can then be calculated by (9) and (11).

4.5 Comparison of matrix arrangements

Figure 3 shows the expected tests per unit for a square matrix of size 16× 16 with clusters
of size 16 for different rectangular arrangements, a diagonal arrangement, and a random
arrangement. Efficiencies for the random arrangement were obtained by Monte Carlo simu-
lation. For rectangular arrangements, the expected number of tests per unit decreases as σ
increases. For the beta-binomial model, the expected tests per unit is lowest when clusters
are arranged in a row, and the expected tests per unit increases as the arrangement of clus-
ters moves from a single row to a 4×4 square. For the Madsen and Morel–Neerchal models,
the rectangular arrangements perform about the same. Intuitively, a diagonal arrangement
will perform worse than a rectangular arrangement, because positive responses in the same
cluster will be in different rows and columns, and therefore more individual testing will be
required. This intuition is supported by Fig. 3, where the diagonal arrangement performs
much worse than the other arrangements as σ increases. In the diagonal arrangement, the
most units from the same cluster that are tested together is two. The joint distribution
for a cluster of size two is fully specified by the first and second moments, so the efficiency
for the diagonal arrangement is the same for all three models. The efficiency for the ran-
domly arrangement is worse than the rectangular arrangements, but better than the diagonal
arrangement in this case.
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Figure 3: Efficiencies for a 16× 16 matrix procedure where p = 0.05 and clusters are of size
m = 16 by arrangement, pairwise correlation σ, and model

5 Application

Malhotra et al. (2007a) used a 9 × 10 matrix procedure to evaluate T-cell responses to 90
peptides. The matrix algorithm was used to test for peptide responses for each of 23 subjects
in the study, so there were a total of 2030 T-cell responses to classify. The peptides were
made up of 15 amino acids, with some pairs of peptides overlapping by 10 or more amino
acids. To illustrate the potential gain in efficiency when clusters are arranged strategically
for group testing, we consider the efficiency of the 9 x 10 matrix procedure for different
possible peptide arrangements. Assume the 90 peptides can be partitioned into groups of
size 5 or 10 such that T-cell responses to each group of peptides form an exchangeable cluster
with positive pairwise correlations. From Fig. 2A of Malhotra et al. (2007a), there were a
total of 151 positive responses to the set of 90 peptides for all subjects. Therefore suppose
for this illustration the probability of a positive T-cell responses is 0.07 (i.e., approximately
151/2030).

Figure 4 shows the efficiency of the 9×10 matrix procedure if the clusters are in a rectan-
gular arrangement compared to a random arrangement. For the rectangular arrangements,
the clusters of size 5 are arranged in sub-matrices of size 1 × 5 and the clusters of size 10
are arranged in sub-matrices of size 1 × 10. The efficiencies for the random arrangements
are obtained by Monte Carlo simulation. For both of these cluster sizes, the rectangular ar-
rangements have a substantial gain in efficiency over the random arrangements for all three
model choices. At σ = 0.4 for m = 5, the efficiency for the rectangular arrangement is 0.39
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Figure 4: Efficiencies for a 9 × 10 matrix procedure where p = 0.07 by pairwise correlation
σ, cluster size m, arrangement, and model.

versus 0.48 for the random arrangement from the beta-binomial model, resulting in 0.09
fewer tests per peptide on average. For each of the 23 subjects, 90 peptides are evaluated,
so there is a potential savings of about 186 tests by strategically arranging peptides within
a matrix. Malhotra et al. (2007a) also tested an additional 49 peptides, for which similar
savings may be possible. This study only examines peptides associated with the Nef gene,
but other studies evaluate a much larger number of peptides across the HIV genome (Russell
et al., 2003; Koup et al., 2010). For such large scale studies, the savings from a strategic
arrangement of peptides can be substantial.

6 Discussion

This paper considers group testing where units may be correlated. For the models consid-
ered, the efficiencies for hierarchical and matrix based procedures are expressed in closed
form. These results allow investigation into the effect of the arrangement of clusters on a
procedure’s efficiency. In general, if units from the same cluster can be tested together, then
the efficiency of a particular procedure can be improved, sometimes substantially, relative to
random arrangements which ignore information about cluster membership. The results in
this paper can be easily generalized to handle different cluster sizes, different arrangements
of clusters for both hierarchical and matrix based procedures, and different prevalences be-
tween clusters, but not within a cluster. In future research, other correlation structures
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could be considered, such as an autoregressive structure. Kim et al. (2007) examined the
operating characteristics of both hierarchical and matrix based procedures in the presence
of test error, and this could be explored further by relaxing the assumption of independence
between units. Also, methods to identify optimal group testing procedures when units are
correlated could be developed.
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A

A.1 Technical Details

Proof of Lemma 1. For n = 1, 2, . . ., let {σn} be a sequence of real numbers with {0 ≤ σ < 1}
for all n such that σn converges to 1, i.e. limn→∞ σn = 1. For n = 1, 2, . . ., let Ẋn be the sum
of m exchangeable binary random variables, each with mean p and with pairwise correlation
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σn. Let Zn = Ẋn/m so E(Zn) = p, var(Zn) = m−2var(Ẋn) = m−1p(1− p){1 + (m− 1)σn},
and limn→∞ var(Zn) = p− p2, implying limn→∞E(Z2

n) = p.
Let An = {0 < Zn < 1}, pr(An) = αn, pr(Zn = 1) = βn, E(Zn | An) = µn and

E(Z2
n | An) = νn. For all n, E(Zn) = E(Zn | An)pr(An) + pr(Zn = 1) = µnαn + βn = p. For

all n,

µn − νn =
m−1
∑

i=1

[{

i(m− i)

m2

}

pr(Zn = i/m | An)

]

≥ m− 1

m2
,

so νn ≤ µn − (m− 1)/m2. Let c = (m− 1)/m2. This implies E(Z2
n) = E(Z2

n | An)pr(An) +
pr(Zn = 1) = νnαn+βn ≤ (µn−c)αn+βn = µnαn+βn−cαn = p−cαn. Because c is a positive
constant and limn→∞E(Z2

n) = p, limn→∞ αn = 0. Therefore, limn→∞ pr(0 < Ẋn < m) = 0.
For all n, µn ≤ (m − 1)/m < 1 so limn→∞ µnαn = 0. Since µnαn + βn = p, it follows

limn→∞ βn = p. This implies limn→∞ pr(Zn = 0) = 1− p, so limn→∞ pr(Ẋn = 0) = 1− p and
limn→∞ pr(Ẋn = m) = p. �

Proof of Lemma 2.

pr(Ẋ ′ = ẋ′) =

m−(m′
−ẋ′)

∑

ẋ=ẋ′

pr(Ẋ ′ = ẋ′, Ẋ = ẋ)

=

m−(m′
−ẋ′)

∑

ẋ=ẋ′

pr(Ẋ = ẋ)pr(Ẋ ′ = ẋ′ | Ẋ = ẋ)

=

m−(m′
−ẋ′)

∑

ẋ=ẋ′

Eπ

{(

m

ẋ

)

πẋ(1− π)m−ẋ

}

(

m′

ẋ′

)(

m−m′

ẋ−ẋ′

)

(

m
ẋ

)

=Eπ

{

(

m′

ẋ′

)

πẋ′

(1− π)m
′
−ẋ′ ×

m−(m′
−ẋ′)

∑

ẋ=ẋ′

((

m−m′

ẋ− ẋ′

)

πẋ−ẋ′

(1− π)m−m′
−(ẋ−ẋ′)

)

}

=Eπ

{

(

m′

ẋ′

)

πẋ′

(1− π)m
′
−ẋ′ ×

m−m′

∑

ẋ=0

((

m−m′

ẋ

)

πẋ(1− π)m−m′
−ẋ

)

}

=Eπ

{(

m′

ẋ′

)

πẋ′

(1− π)m
′
−ẋ′

}

�

Proof of Lemma 3. Suppose m′ = 1, so E(π) = pr(Ẋ ′ = 1) = p. When m′ = 1,
pr(Ẋ ′ = 1) = pr(Xi = 1) = E(Xi) for all i, so E(Xi) = p by Lemma 2. Suppose m′ = 2,
so E(π2) = pr(Ẋ ′ = 2) = σp(1 − p) + p2. For all i 6= j, E(XiXj) = pr(Xi = 1, Xj = 1) =
pr(Ẋ ′ = 2) and

cor(Xi, Xj) =
E(XiXj)−E(Xi)E(Xj)

√

var(Xi)var(Xj)

=
σp(1− p) + p2 − p2

p(1− p)
= σ �
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