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Current Status Data: Review, Recent
Developments and Open Problems

Nicholas P. Jewell and Mark J. van der Laan

Abstract

Researchers working with survival data are by now adept at handling issues as-
sociated with incomplete data, particular those associated with various forms of
censoring. An extreme form of interval censoring, known as current status ob-
servation, refers to situations where the only available information on a survival
random variable T is whether or not T exceeds a random independent monitoring
time C. This article contains a brief review of the extensive literature on the analy-
sis of current status data, discussing the implications of response-based sampling
on these methods. The majority of the paper introduces some recent extensions
of these ideas to more complex forms of survival data including, competing risks,
multivariate survival data, and general counting processes. Our comments are
largely focused on nonparametric techniques where the form of the distribution
function, or survival curve, associated with T, is left unspecified. Modern theory
of efficient estimation in semiparametric models has allowed substantial progress
on many questions regarding estimation based on current status data in these ex-
tended formats; we also highlight remaining open questions of interest.



1 Introduction

In some survival analysis applications, observation of the lifetime random variable T is

restricted to knowledge of whether or not T exceeds a random monitoring time C. This

structure is widely known as current status data, and sometimes referred to as interval

censoring, case I (Groeneboom & Wellner, 1992). Section 2 brie
y notes several generic

examples where current status data is encountered frequently.

Let T have a distribution function F , with associated survival distribution S = 1� F .

We assume that interest focuses on estimation and inference on F , but recognize throughout

that, in most applications, the goal will be estimation of a variety of functionals of F . In

many cases, the regression relationship between T and a set of covariates Z will be of

primary concern. In some situations, parametric forms of F may be useful, although we

pay most attention to the nonparametric problem where the form of F is unspeci�ed. In

the regression model, semiparametric models for the conditional distribution of T , given Z,

are appealing and heavily used.

The monitoring time C is often taken to be random, following a distribution function

G, almost always assumed independent of T . However, most techniques are based on the

conditional distribution of T , given C, and so work equally well for �xed non-random C. In

the random case, we assume, for the most part, that the data arise from a simple random

sample from the joint distribution of T and C; in the non-random case, we assume that

simple random samples, often of size 1, are selected for each �xed choice of C. When C is

random, the data can thus be represented by n observations from the joint distribution of

(T;C); however, only f(Yi; Ci : i = 1; : : : ; ng is observed where Y = I(T � C). In Section
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6, we make some brief remarks about the intriguing possibility of dependence between C

and T , particularly when such dependence is introduced by design.

In Section 4.1, we discuss an important variant to simple random sampling, namely

the analysis of case-control samples. Here, two separate random samples are obtained, the

�rst an i.i.d. random sample of size n0 from those for whom T > C (controls), the second

an i.i.d. random sample of size n1 from individuals for whom T � C (cases). Section

4.2 covers the situation where observation of the origin of T is also subject to censoring,

thereby yielding doubly censored current status data.

Section 5 extends the notion of current status observation to more complex forms

of survival data. These include competing risks, multivariate survival variables T =

(T1; : : : ;Tp), and special cases of the latter, for example, when Tp � Tp�1 � � � � � T1.

This leads naturally to consideration of the scenario, in Section 5.4, where observation at

time C is on a general counting process, rather than the case of a single jump from count

`0' to `1' as occurs with a simple survival random variable.

2 Motivating Examples

Before discussing estimation techniques designed for current status data, it will be helpful

to have some motivating examples at the back of our minds as we proceed. Early examples

arose in demographic applications, with a common version occurring in studies of the

distribution of the age at weaning in various settings (Diamond, McDonald & Shah, 1986;

Diamond & McDonald, 1991; Grummer-Strawn, 1993). Here, T represents the age of a

child at weaning and C the age at observation. Inaccuracy and bias surrounding exact
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measurement of T , even when T < C, led to use of solely current status data on T at C

for the purpose of understanding F .

Another kind of example arises naturally in the study of infectious diseases, particularly

when infection is an unobserved event, that is, one with often no or few clinical indications.

The prototypical example is infection with the Human Immunode�ciency Virus (HIV), in

particular, partner studies of HIV infection (Jewell and Shiboski, 1990; Shiboski, 1998a).

The most straightforward partner study occurs when HIV infection data is collected on

both partners in a long-term sexual relationship. These partnerships are assumed to in-

clude a primary infected individual (index case) who has been infected via some external

source, and a susceptible partner who has no other means of infection other than contact

with the index case. Suppose T denotes the time (or number of infectious contacts) from

infection of the index case to infection of the susceptible partner, and that the partnership

is evaluated at a single time C after infection of the index case; then, the infection status

of the susceptible partner provides current status data on T at time C. Since partnerships

are often recruited retrospectively so that the event of the susceptible partner's infection

has occurred (or not) at the time of recruitment, some form of case-control design may be

used; in this case the methods of Section 4.1 are appropriate.

Our next area of application is in carcinogenecity testing when a tumor under investi-

gation is occult (see Gart et al, 1986). In this example, for each experimental animal, T

is the time from exposure to a potential carcinogen until occurrence of the tumor, and C

is the time, on the same scale, of sacri�ce. Upon sacri�ce, the presence or absence of the

occult tumor can be determined providing current status information on T .

Finally, a common source of current status data is estimation of the distribution of age
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at incidence of a non-fatal human disease for which the exact incidence time is usually

unknown although accurate diagnostic tests for prevalent disease are available. If a cross-

sectional sample of a given population receives such a diagnostic test, then the presence or

absence of disease in an individual of age C yields current status information on the age,

T , at disease incidence. Keiding (1991) describes the nonparametric maximum likelihood

estimator of the distribution of the age at incidence of Hepatitis A infection, based on

cross-sectional data obtained by K. Dietz. A case study of the application of current

status techniques to estimation of age-speci�c immunization rates is given in Keiding et

al (1996). For rare diseases, this approach to age incidence is only viable if a case-control

sampling scheme is used. For example, with Alzheimer's disease, it is feasible to obtain

a random sample of prevalent Alzheimer's patients, measuring their age at sampling, and

then subsequently sample population controls. However the data are obtained, modi�cation

to current status methods are required if presence of the disease substantially modi�es the

risk of death, thereby reducing the probability of being sampled. This is an issue that

deserves further study.

Note that, in econometrics, there is a parallel terminology and literature that has de-

veloped on similar topics to those discussed below.

3 Simple Current Status Data

Recall that the binary random variable Y is de�ned to be 1 if T � C and 0 if T > C. Thus,

E(Y jC = c) = P (T � CjC = c) = F (c), and so estimation of F can be viewed in terms

of estimation of the conditional expectation of Y for all c, with a monotonicity constraint

imposed on the regression function.

5
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Now, suppose an i.i.d. random sample of the population is obtained with observed data

thereby given by f(yi; ci) : i = 1; : : : ; ng. The likelihood of this data is thus given by

L =
nY
i=0

F (ci)
yi(1� F (ci))

1�yidG(ci): (1)

Assuming that the monitoring time C is independent of survival, estimation of F can then

be based on the conditional likelihood of Y , given C, namely,

CL =

nY
i=0

F (ci)
yi(1� F (ci))

1�yi : (2)

This conditional likelihood is immediately applicable also in the case of �xed non-random

selection of the monitoring times, assuming that such selection is again independent of T .

If F belongs to a �nite-dimensional parametric family, fF = F� : � 2 �g, then es-

timation and inference regarding � and thus F�, can be obtained by standard maximum

likelihood techniques based on (2). On the other hand, nonparametric maximum likelihood

estimation of F requires maximization of (2) over the space of all distribution functions.

This nonparametric maximization problem has been much studied|Ayer et al. (1955)

provided a fast and e�ective approach, the ubiquitous pool-adjacent-violators algorithm,

to compute the nonparametric maximum likelihood estimator, F̂ . The connection to con-

vex minorants is extensively discussed in Barlow et al. (1972) and Groeneboom & Wellner

(1992). The estimator F̂ converges to F as n tends to in�nity, but at rate n�1=3, unlike the

empirical ditribution function, or the Kaplan-Meier estimator, both of which converge at

the more familiar n�1=2 rate. The limiting distribution of F̂ is not Gaussian, but a more

complex distribution associated with two-sided Brownian motion (Groenboom & Wellner,

1992). The estimator F̂ is a step function, jumping only at a subset of the observed moni-

toring times c1; : : : ; cn. In fact, the data only identi�es the value of F at c1; : : : ; cn and at
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no other value of t. Identi�cation of the entire distriburion function F as n tends to in�nity

depends therefore on the support of F being contained within the support of G. Finally,

a smoothing technique can be incorporated into the pool-adjacent-violators algorithm to

produce smoother estimates of F across the ci's|see Mammen (1991) and Mukerjee (1988).

Despite the unusual and slow rate of convergence of F̂ to F , Huang & Wellner (1995)

show that estimates of smooth fuctionals of F , based on F̂ , converge at rate n�1=2 and are

asymptotically e�cient at many data generating distributions. These authors also supply

the in
uence curve for such smooth functional estimators, thereby facilitating straightfor-

ward calculations for (asymptotic) con�dence intervals.

3.1 Epidemiological Applications{Calculation of the Relative Risk

In some simple epidemiological studies, interest focuses on the calculation and comparison

of the cumulative incidence rate for a speci�c disease over a pre-determined period of

risk and for di�ering levels of exposure to some risk factor. In many investigations, the

risk interval is common to all individuals under study, and calculation of the cumulative

risk thereby corresponds to current status estimation of F at a single monitoring time

corresponding to the length of the interval,C. Of course, standard `survival' follow-up of the

study participants yields exact incidence times, albeit right censored at C. If risk intervals

vary in length across individuals the nonparametric maximum likelihood estimator, F̂ ,

discussed above provides an estimate of the cumulative risk, at any observed value of C,

that is based only on whether incident disease occurs in the observed risk interval or not.

Again, estimates of cumulative risk can again be computed from follow-up data using the

Kaplan-Meier estimator for right censored data.
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Typically, follow-up measurement of the exact time of disease incidence is considerably

more expensive than mere (current status) assessment of incidence at some point during

the risk interval. If F is parametrically speci�ed, the e�ciency of current status estimates

of cumulative incidence, as compared to use of more complete incidence times arising from

full follow-up, can be calculated directly. The simpler current status measurements are

often surprisingly e�cient, except in situations where the monitoring tiomes are all either

very small or very large in terms of the location of the support of F . Of more relevance,

similar e�ciency comparisons can be made when the parameter of interest is a comparative

measure of the cumulative incidence rates across exposure groups, often leading to similar

conclusions regarding the e�ectiveness of current status observations. In a study design,

the relative costs of continuous follow-up versus a single current status assessment must be

fully considered, and, of course, the latter allows investigation of more complex incidence

properties. Consideration of the role of more complex measurements of exposures and other

factors associated with incidence lead naturally to the development of regression models

and their estimation from current status data.

3.2 Regression Models

In Section 3.1, we touched on the two-group situation where the di�erence in survival

properties across exposure groups is of fundamental concern rather than the shape of the

underlying survival distributions. Clearly, many applications include more general and

higher dimensional covariates in situations where the relationships between the latter and

survival time are key. A substantial literature has developed for regression models of this

kind for survival outcomes, potentially subject to right censoring. Much recent work has

extended the application of these models to current status data.

8
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There is an immediate and valuable correspondence between the regression models

that link T , the survival random variable, and Y , the current status version of T , to

a k-dimensional covariate vector Z. Doksum & Gasko (1990) had previously considered

this association between survival and binary regression models in the context of censored

survival data. This is extremely useful since estimates of parameters in the regression model

for the observed Y can then be interpreted in terms of the parameters in the regression

model for the unobserved T . For example, suppose that survival times follow a proportional

hazards model (Cox, 1972)

S(tjZ = z) = [S0(t)]
e�z (3)

where S0 is an arbitrary survival function for the sub-population for whom Z = 0, and �

is a k-dimensional vector of regression coe�cients. Each component of � gives the relative

hazard associated with a unit increase in the corresponding component of Z, holding all

other components �xed. Then, if we write p(zjc) = E(Y jC = c;Z = z), the current status

random variable Y is related to Z through

log� log(1 � p(zjc)) = log� log[S0(c)] + �z: (4)

This is a particular case of a generalized linear model for Y with complementary log-log link

and o�set given by an arbitrary increasing function of the observed `covariate' C (that is,

log� log[S0(C)]). The regression coe�cients, �, here are thus exactly the relative hazards

from the regression model for T .

As another example, suppose T follows the proportional odds regression model (Ben-

nett, 1983) de�ned by

1 � S(tjZ = z) =
1

1 + e��(t)��z
;
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where S0(t) =
1

1+e�(t)
. Here, Y is associated with Z via the logit link:

log
p(zjc)

(1� p(zjc))
= �(c) + �z: (5)

Again, the `intercept' term, �(C) = log (1�S0(C))
S0(C)

is an increasing function of C.

If the baseline survival function S0 is assumed to follow a particular parametric form,

the corresponding binary regression model will often simplify to a familiar generalized

linear model, so that standard software can be used to estimate both S0 and the regression

parameters �. As an example, suppose that S0 is assumed to be a Weibull distribution with

hazard function eabtb�1 , and that the proportional hazards model (3) holds for T . Then,

the binary regression model for Y , given by (4) simpli�es to a straightforward generalized

linear model with complementary log-log link:

log� log(1 � p(z; c)) = a+ b log(c) + �z:

On the other hand, if S0 is left arbitrary, semiparametric methods can be used to tackle

inference on �, treating S0 as a nuisance parameter. Shiboski (1998b) provides an excellent

review of these methods for current status data, discussing versions of a back�tting algo-

rithm to compute estimates of � while fully acknowledging the monotonicity constraints in

the intercept terms of the kind illustrated in (4) and (5). In the semiparametric regression

model, dependence between C and the covariates Z can introduce some bias in estimation

of �. Shiboski (1998b) also describes some simulations that compare the relative perfor-

mance of coe�cient estimates based on parametric or nonparametric assumptions on S0.

Asymptotic results regarding coe�cient estimates within a semiparametric model (S0 left

unspeci�ed), necessary for inference, are discussed in Rabinowitz, Tsiatis & Aragon (1995),

Huang (1996) and Rossini & Tsiatis (1996) for the accelerated failure time, proportional
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hazards and proportional odds regession models, respectively, for T . Andrews, van der

Laan & Robins (2002) give locally e�cient estimates for regression coe�cient estimates in

a broad class of models that (i) includes the accelerated failure time model, and (ii) allows

for time-dependent covariates.

4 Di�erent Sampling Schemes

In Section 3, and in the construction of (1) and (2) in particular, we have assumed that an

i.i.d. random sample of observations of (Y;C) are available, noting that, with the assump-

tion of independence between T and C, the use of (2) allows the methods to apply directly

to designs where the monitoring times are pre-determined. Often, the failures of interest

are rare in the population so that such random samples provide very few observations where

failure has occurred at the observed monitoring time, whether the latter is random or �xed.

In these contexts, it is natural to consider a case-control strategy where separate samples of

individuals to whom an event has already occurred (cases), and those for whom the event

has not yet occurred (controls), are obtained. Section 4.1 brie
y discusses the extension of

the results of Section 3 to case-control designs.

In some applications, the survival time, T , refers to the time between two events in

chronological time, for example, the time between infection with HIV and the moment

when an infected individual becomes infectious through a speci�ed mechanism (see Jew-

ell, Malani & Vittingho�, 1994). Current status monitoring of an individual at a single

point in chronological time then yields current status observation of T with the random

variable C being de�ned by the di�erence in chronological time between the `origin' of T

and the monitoring time. Measurement of C assumes that the chronological time of this

11

http://biostats.bepress.com/ucbbiostat/paper113



origin is known for all sampled individuals. Situations where this is not known leads to

doubly censored current status data which is brie
y described in Section 4.2. Some other

modi�cations to standard current status data have also been studied; for example, Shiboski

& Jewell (1992) allow for the possibility of a form of staggered entry in an observational

study setting.

4.1 Case-Control Sampling

As noted above, it is often useful to consider a case-control sampling scheme. Here, cases

refer to a random sample of n1 observations on C from the sub-population where T � C,

and controls to a random sample of n0 observations from the sub-population where T > C.

Even when the support of T is contained within the support of C, there is an additional

identi�ability problem that arises in nonparametric estimation of F from case-control sam-

ples. Jewell & van der Laan (2002) show that case-control data only identify the odds

function associated with F , namely log
h

F (t)
1�F (t)

i
, up to a constant. While this may be suf-

�cient to identify F in an assumed parametric family, it is insu�cient nonparametrically.

However, additional data regarding the population distribution of cases and controls can

be used to identify a speci�c F with a given odds function that is compatible with the

population information.

In particular, suppose that N individuals are sampled from the joint distribution of

(Y;C), and that only the numbers of individuals for whom Y = i; (i = 0; 1), say N0 and

N1, respectively, are observed. Subsequently, case-control data comprised of �xed samples

of size n0(� N0) and n1(� N0) are selected, by simple random sampling, seperately from

the two groups, with Y = 0 and Y = 1, in the original sample of N . The random variable
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C is then measured for each of the n0 + n1 sampled individuals at this stage. In practice,

the sampling rates, at this second stage, that is (n0=N0) and (n1=N1) will usually be quite

di�erent.

The supplemented data is thus f(yij; cij) : i = 0; 1; j = 0; : : : ; ni;N0; N1g. Assuming

that the sample sizes, n0 and n1, are non-informative, a simple consistent nonparametric

estimator of F is immediately available by weighting observations inversely proportional

to their probability of selection, and using the estimator for standard current status data

(Section 3) on this weighted data. Speci�cally, the weights are (N0=n0) for controls and

(N1=n1) for cases. Jewell & van der Laan (2002) show that this simple estimator is, in fact,

the nonparametric maximum likelihood estimator based on case-control data supplemented

by knowledge of N0 and N1.

This nonparametric estimator assumes knowledge of the population totals N0 and N1 (in

fact only the ratio N1=N0 need be known). Without such information, we can hypothesize

a value for N1=N0, compute the nonparametric maximum likelihood estimator, and then

vary the assumed N1=N0 as a sensitivity parameter over a range of plausible values. If

N1=N0 is allowed to take on all values the corresponding nonparametric maximumlikelihood

estimators trace out the population odds family associated with any particular choice of

N1=N0.

For parametric models for F , the situation is not as straightforward, even with knowl-

edge of the supplementary population totals N0 and N1, as the weighted and maximum

likelihood estimators need not coincide. However, Scott & Wild (1997) provide an elegant

iterative algorithm to compute the maximum likelihood estimator of F using data on N0

and N1. Their approach is based on the regression model induced for Pr(Y = 1jC = c),
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and the proposed algorithm is particularly simple when this regression model can be easily

�t for randomly sampled (i.e. prospective) data. For example, if F is assumed to follow a

Weibull distribution , with hazard eabtb�1, then log� log[Pr(Y = 1jC = c)] = a+ b log(c),

as noted in Section 3.2, that is, a standard generalized linear model with complementary

log-log link; the iterative steps in �tting a Weibull distribution to case-control current sta-

tus data are therefore straightforward since there is standard software that accomodates

this form of prospective generalized linear model.

4.2 Doubly Censored Current Status Data

Suppose that the survival variable T measures the length of time between two successive

events in chronological time. We refer to these as the initiating and subsequent events, and

assume that their occurrence times are given by the random variables I and J , respectively,

so that T = J�I. We assume that T is independent of I. Now, consider a single monitoring

occasion whose chronological time is given by B, independent of I and J , at which point

current status information is available on the subsequent event J ; that is, we observe

whether J � B or not. For a random sample of individuals for whom I � B, such an

observation scheme yields current status observations of T , assuming that the random

variable I is known for all observations. In particular, we observe the random variable Y

which takes the value 1 if T � B�I, and 0, otherwise. In this case, the induced monitoring

time for T is C = B � I, so that its distribution is determined by that of I.

An additional complication is introduced when the random variable I is unknown or

unobserved. Now, at chronological time B, we merely observe whether either or both of

the initiating and subsequent events have occurred by time B, but not the times of either

14
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event. Without loss of information on F , we assume that only individuals for whom I � B

are included in the sample. The observed data is thus reduced to Y � where Y � = 1 if

I � J � B and Y � = 0 if I � B < J .

In order for F to be identi�able from such data, we assume that the conditional dis-

tribution of I, given that I � B, is known (Jewell, Malani & Vittingho�, 1994), although

it is allowable that this distribution varies from individual to individual. For convenience,

for the ith sampled individual, suppose that the known conditional distribution of I, given

that I � B, is labeled by Hi, and has �nite support on some interval (Ai; Bi). Then, we

have

Pi = Pr(Yi
� = 1) =

Z Ci

0

Hi(Bi � T )dF (T ); (6)

where now Ci = Bi �Ai. Further, the conditional likelihood of n observations of this kind

is then

CL =
nY
i=1

Pi
Yi

�

(1� Pi)
(1�Yi

�): (7)

This data is referred to as doubly censored current status data by Rabinowitz & Jewell

(1996) since it is a special case of doubly censored survival data as described by DeGrut-

tola & Lagakos (1989). Two applications to data on HIV are given in Jewell, Malani

& Vittingho� (1994). Parametric estimation of F , based on the likelihood (7) is again

straightforward in principal.

Nonparametric maximum likelihood estimation of F can be approached by viewing

the model as a nonparametric mixture estimation problem (Jewell, Malani & Vittingho�,

1994). An important special case occurs when Hi is assumed to be Uniform on [Ai; Bi] in

15
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which case (6) reduces to

Pi � P (Ci) =
1

Ci

Z Ci

0

F (T )dT: (8)

Here, P is a distribution function that only depends on Ci and so doubly censored current

status data in this case is a sub-model of current status data. Estimation of F , with

this assumption on each Hi, is examined in Jewell, Malani & Vittingho� (1994), van der

Laan, Bickel & Jewell (1997), and van der Laan & Jewell (2001). The latter paper shows

that the nonparametric maximum likelihood estimator of F is uniformly consistent, and

further that the distribution function P (C), de�ned by (8), is nonparametrically estimated

a rate n�2=5, indicating the value of the additional structure given in (8) as compared to

standard current status data. On the other hand, it is conjectured that F itself can only

be estimated at rate n�1=5 (see van der Laan, Bickel & Jewell, 1997), although this result

and the limiting distribution of the nonparametric maximum likelihood estimator of F

remain to be established. Despite the very slow rate of convergence of the nonparametric

maximum likelihood estimator, many smooth functionals can still be e�ciently estimated,

at rate n�1=2, using the appropriate functionals of the nonparametric maximum likelihood

estimator. An alternative iterative weighted pool-adjacent-violators algorithm is also given

for computation of the nonparametric maximum likelihood estimator.

Rabinowitz & Jewell (1996) extend the results of Rabinowitz, Tsiatis & Aragon (1995),

for estimation of regression parameters in the accelerated failure time model for T , to

doubly censored current status data assuming each Hi to be Uniform. See also van der

Laan, Bickel & Jewell (1997).

van der Laan & Andrews (2000) replace the assumption of a Uniform distribution for

Hi by a mixture of a point mass and a Uniform, a generalization that arises naturally in
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partner studies. The presence of a point mass now permits the nonparametric maximum

likelihood estimator to converge to F at rate n�1=3, as for standard current status data;

again smooth functionals can be e�ciently estimated based on the nonparametric maximum

likelihood estimator at rate n�1=2. Some speculation is given there regarding the situation

for other forms of Hi.

5 Complex Outcome Processes

It is well-known that the survival random varaible T can be alterrnatively viewed as the

time to the `jump' of a simple 0-1 counting process X(t). In this context, a current status

monitoring scheme corresponds with a single cross-sectional observation of the stochastic

process X(t). Considering cross-sectional observation of more complex monotone stochastic

processes leads to various extensions of simple current status data structures. In particular,

current status competing risk data, discussed in Section 5.1, arise when X still only jumps

once in each sample path, but now jumps are marked by a discrete set of outcomes, usually

the cause of the jump or failure. Section 5.2 investigates the situation where X is now

de�ned by a bivariate pair of binary counting process, (X1;X2). In Section 5.3, we return

to a univariate X, but now allow for the possibility of two successive jumps|from 0 to 1,

and then from 1 to 2. Finally, we brie
y examine the case where is X is a general counting

process in Section 5.4. For some brief remarks for the case where X(t) is a renewal process,

see Jewell & van der Laan (1997).
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5.1 Competing Risk Outcomes

In Section 3, we introduced simple current status data in terms of a single survival random

varaible T with an assumed single de�nition of failure. In some scenarios, failure may be

associated with more than one `cause', leading to the extensive literature on competing

risks. For simplicity here, we assume but two competing risks, although all the material

readily extends to an arbitrary number of risks.

If J is the random variable that indicates the cause of failure at time T , the two sub-

distribution functions of interest are

Fj(t) = pr(T � t; J = j);

with the overall survival function given by

S(t) = 1 � F1(t)� F2(t):

Jewell, van der Laan & Henneman (2003) consider nonparametric estimation of F1, F2

and F = F1 + F2, when only current status information on survival is available at the

monitoring time C, but cause of failure is known whenever failure is seen to have occurred

before C. Here, observed data can thus be represented as Y = (�;�) and C, where � = 1

if T � C with J = 1, and � = 1 if T � C with J = 2. This is a special case of competing

risk survival data subject to general interval censoring as studied in Hudgens, Satten &

Longini (2001). We again assume that C is independent of (T; J), with the implication

that we still focus on the conditional likelihood of the data, given C. This is easily seen to

be given by

CL =

nY
i=1

fF1(ci)g
�i fF2(ci)g

�i fS(ci)g
1��i��i : (9)
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Ideas for estimation of parametric competing risk models, based on the likelihood (9), apply

here much as they do for standard current status data (Jewell, van der Laan & Henneman,

2003).

Since, by de�nition, E(�jC) = F1(C) and E(�jC) = F2(C), simple nonparametric

estimators of F1 and F2 can be constructed via separate current status estimators based

on (�i; ci : i = 1; : : : ; n) and (�i; ci : i = 1; : : : ; n), respectively, using the methods of

Section 3. A disadvantage of this naive approach is that there is no guarantee that F̂1+ F̂2

is a distribution function, so that the derived estimator of the overall survival function

Ŝ(t) = 1 � F̂1(t)� F̂2(t) may be negative for large t.

An alternative ad hoc approach is developed by Jewell, van der Laan & Henneman

(2003) as follows. First, reparameterise F1 and F2 in terms of F and F1. An immediate

estimator of F is available from the data (
i; ci), where 
i = �i+�i; since E(� = �+�jC) =

F (C), we can again use the current status methods of Section 3 to produce F̂ as an estimator

of F . Now, restrict attention to the data where �+� = 1, and de�ne a constructed variable

Z by:

Z = F (C)�:

Note that E(ZjC;� + � = 1) = F (C) � Pr(� = 1jC;� + � = 1) = F1(C). This

suggests an isotonic regression estimator of the constructed data, F̂ �i, against ci, using only

observations where �i+�i = 1, yielding an estimator F̂1p. Similarly, the isotonic regression

of F̂ �i against ci, will provide the analogous estimator F̂2p for F2. Again, F̂1p(t) + F̂2p(t)

may exceed one for large t, although this may be less likely than for the naive approach

since the isotonic regressions are here based on F̂ (�)� and F̂ (�)�, both smaller than the

respective dependent variables, � and �, for the previous estimators.

19

http://biostats.bepress.com/ucbbiostat/paper113



Neither of these approaches yields the nonparametric maximum likelihood estimator

in general. The di�erence between the second approach and the nonparametric maximum

likelihood estimators, say F1n and F2n, hinges on variation in the support of F1n and F2n;

that is, the nonparametric maximum likelihood estimator uses the fact that F2n may be

non-constant between support points of F1n. However, Jewell, van der Laan & Henneman

(2003) show that smooth functionals of either F1 or F2 are e�ciently estimated using the

appropriate functionals of either of the two simpler estimators of F1 and F2, respectively.

Simulations show that the naive current status estimator (which ignores cause of failure

data) and the full NPMLE of F have very similar performances in general; this is to be

expected as there can be no value in knowing the cause of failure if one is solely interested

in estimating the overall survival distribution.

The general EM algorithm can be used to compute the nonparametric maximum like-

lihood estimators of F1 and F2. However, Jewell & Kalb
eisch (2002) provide a much

faster algorithm that generalizes pool-adjacent-violators. Their approach can most easily

be described by restating the problem as follows: let (Ai; Bi;Di) be a trinomial variate

with index ni and probabilities pi, qi, 1� pi � qi, independently for i = 1; :::; k. We wish to

maximize the log likelihood function

`(p;q) =

kX
i=1

fai log pi + bi log qi + di log[1� pi � qi]g; (10)

where p = (p1; :::; pk) and q = (q1; :::; qk). The parameter space,

� = f(p;q) : 0 � p1 � ::: � pk; 0 � q1 � ::: � qk;1� p� q � 0g;

is a compact convex set in R2k. Equivalence to maximization of the conditional likelihood

given in (9) is easily seen by ordering and grouping observations according to the size of the
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cis; then, for each distinct ci, let Ai be the number of observations with monitoring time ci

for which �i = 1, with a similar de�nition for Bi and Di; in previous notation, pi = F1(ci)

snd qi = F2(ci).

An iterative algorithm to �nd the estimator of (p;q) that maximizes (10) is given in

Jewell & Kalb
eisch (2002) using the strategy of maximizing over the vector p, holding

q �xed, and vice-versa. These maximizations are achieved using a variation on the pool-

adjacent-violators algorithm where pooling now involves solution of a polynomial equation

rather than simple averaging. Care is needed with regard to estimates of the vectors p;q

for both the �rst and last set of entries. Further work is required to establish the limiting

distribution of the nonparametric maximum likelihood estimator or other techniques that

may be used to provide con�dence limits for speci�c values of F1 or F2; one approach is to

approximate such `parameters' by smooth functionals of F1 and F2.

Jewell, van der Laan & Henneman (2003) and Jewell & Kalb
eisch (2002) illustrate

the application of the nonparametric estimators discussed in this section to an example

on womens' age at menopause, where the outcome of interest (menopause) is associated

with two competing causes, natural and operative menopause. Jewell, van der Laan &

Henneman (2003) also consider the situation where failure times for one risk are observed

exactly whenever failure due to that cause occurs prior to the monitoring time.

5.2 Bivariate Current Status Data

Consider a study in which interest focuses on the bivariate distribution F of two random

survival variables (T1; T2), neither of which can be directly measured. Rather, for each

individual, we observe, at a random monitoring time, C, whether Tj exceeds C or not for
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each j = 1; 2. That is, on each subject, we observe:

(Y1 � I(T1 � C); Y2 � I(T2 � C); C):

Again, C is assumed independent of (T1; T2). Wang and Ding (2000) refer to this data

structure as bivariate current status data. Conditional on the observed values of C, the

likelihood of a set of n independent observations of this kind is given by

CL =

nY
i=1

F3(ci)
y1y2(1+F3�F1�F2)(ci)

(1�y1)(1�y2)(F1�F3)(ci)
y1(1�y2)(F2�F3)

(1�y1)y2 ; (11)

where F1(t) = P (T1 � t), F2(t) = P (T2 � t) and F3(t) = P (T1 � t; T2 � t) are marginal

distributions of F along the two axes and the diagonal, respectively. It follows that only

these three univariate cdf's F1; F2 and F3 are identi�ed from the data. In particular, the

complete bivariate distribution, F , is not identi�able; however, the dependence measure

F3 � F1F2 is identi�able from the data, so that some assessment of independence of T1

and T2 is possible. Wang & Ding (2000) considered a semiparametric copula model for

F , parametrized by the marginals, F1 and F2, and a single real valued parameter � which

represents a measure of dependence between T1 and T2.

Note that `marginal' nonparametric current status estimators of Fj, j = 1; 2; 3, are

available. With Y3 = Y1Y2, Fj(t) can be represented in terms of a monotonic regression of

Yj on C since Fj(t) = E(Yj j C = t), for j = 1; 2; 3; we can thus use the current status

estimator based on (Yj ; C) to estimate Fj. This estimator is, of course, the nonparamet-

ric maximum likelihood estimator based on the reduced data (Yj ; C). From the results of

Section 3, it follows that these reduced data nonparametric maximum likelihood estima-

tors are consistent and converge, under appropriate conditions, at rate n�1=3, to known

asymptotic distributions. In spite of the simplicity of these three reduced data nonpara-

metric maximum likelihood estimators relative to the full nonparametric nonparametric

22

Hosted by The Berkeley Electronic Press



maximum likelihood estimator based on (11), van der Laan & Jewell (2002b) show that, at

most data generating distributions, the reduced data nonparametric maximum likelihood

estimators yield e�cient estimators of smooth functionals of (F1; F2; F3). If interest focuses

on the possible dependence of T1 and T2, then estimates of appropriately chosen function-

als of F3 � F1F2 may be examined based on these reduced data nonparametric maximum

likelihood estimators.

We can restate the problem on nonparametric maximization of the likelihood (11) in

terms of a multinomial random variable as follows: let (Ai; Bi;Di; Ei) be a four-state multi-

nomial variate with index ni and probabilities pi, qi; ri, 1 � pi � qi � ri, independently for

i = 1; :::; k. Having ordered the observations according to the cis, maximizing the likelihood

(11) is equivalent to maximization of the log likelihood function

`(p;q; r) =

kX
i=1

fai log pi + bi log(qi � pi) + di log(ri � pi) + ei log(1 + pi � qi � ri)g; (12)

where p = (p1; :::; pk), q = (q1; :::; qk) and r = (r1; :::; rk) with the parameter space de�ned

by � = f(p;q; r) : 0 � p1 � ::: � pk; 0 � q1 � ::: � qk; 0 � r1 � ::: � rk;q � p �

0; ; r�p � 0;1�p�q� r � 0g. Note that � is again a compact convex set in R3k. This

formulation is obtained by setting, for each distinct ci, Ai to be the number of observations

with monitoring time ci for which y3 = 1, Bi the number of observations with monitoring

time ci for which y1 = 1�y2 = 1 and Di the number of observations with monitoring time ci

for which 1� y1 = y2 = 1. With regard to the parameters, we have pi = F3(ci); qi = F1(ci)

and ri = F2(ci). With this respeci�cation of the problem, it would be of considerable value

to derive an iterative algorithm akin to the Jewell & Kalb
eisch (2002) approach of Section

5.1; the main issue here is the appropriate handling of the `edge' e�ects of the constraints

linking p;q and r.

23

http://biostats.bepress.com/ucbbiostat/paper113



We have assumed that the monitoring time C is the same for both T1 and T2. In some

applications, the monitoring times may di�er so that current status information on Ti is

obtained at time Ci; i = 1; 2, where the random or �xed C1 is not the same as C2. This is

a substantially more complex problem than the case considered here, and, to date, there is

little work that has addressed this version of bivariate current status data.

5.3 Outcomes with Intermediate Stage

A special form of bivariate survival data arises from observations on the time to failure

where all individuals pass through an intermediate stage prior to failure. In this situation,

let T1 represent the time from the origin until the intermediate event occurs, with T2 being

the time to failure, Here, necessarily, T2 � T1. Current status observation of this process

at a monitoring time C reveals whether an individual has failed by time C or not, and in

the latter case, whether the intermediate event has occurred by time C or not. As a result,

the observed data is then given by the random variable

(Y1 � I(T1 � C); Y2 � I(T2 � C); C):

Unlike arbitrary bivariate current status data, there are only three possible outcomes for

Y � (Y1; Y2), namely (0; 0); ((1; 0); and ((1; 1). Once more, C is assumed independent

of (T1; T2). A variant of this data structure where exact information is available on T2

whenever T2 � C, is studied in van der Laan, Jewell & Petersen (1997).

Conditional on the observed values of C, the likelihood of a set of n independent ob-

servations of this kind is given by

CL =

nY
i=1

F2(ci)
y1y2(1 � F1)(ci)

(1�y1)(1�y2)(F1 � F2)(ci)
y1(1�y2); (13)
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where F1(t) = P (T1 � t), F2(t) = P (T2 � t) are the marginal distributions of T1 and

T2, respectively. It follows that just the two marginal cdf's F1 and F2 are identi�ed.

As for bivariate current status data, the complete bivariate distribution of (T1; T2) is not

identi�able; an unfortunate consequence of this is that the data contains no information on

the possibility of dependence between T1 and T2�T1, the recurrence times of the �irst and

second event, respectively. Thus, the relationship between recurrence times can only be

investigated via a prior model assumption whose dependence structure cannot be veri�ed

nonparametrically from the data.

This data structure is a special case of current status observation on a counting process

which we discuss in more detail in Section 5.4. Here, we point out that, as in Sections 5.1

and 5.2, we can restate the problem on nonparametric maximization of the likelihood (13),

now in terms of a trinomial random variable. Let (Ai; Bi;Di) be a trinomial variate with

index ni and probabilities pi, qi, 1 � pi � qi, independently for i = 1; :::; k. Nonparametric

maximization of (13) is equivalent to maximization of the log likelihood function

`(p;q) =

kX
i=1

fai log pi + bi log qi + di log[1� pi � qi]g; (14)

where p = (p1; :::; pk) and q = (q1; :::; qk), with the parameter space de�ned by � =

f(p;q) : 0 � p1 � ::: � pk; 0 � q1 � ::: � qk;1�p� q � 0g; a compact convex set in R2k.

This equivalence is achieved as before by setting Ai to be the number of observations with

y1 = (1 � y2) = 1 and monitoring time a distinct ci from amongst the ordered monitoring

times; similarly, Bi is the number of observations with y1 = y2 = 1 and monitoring time ci.

The parameters pi = F2(ci) and qi = F1(ci). With this formulation at hand, it would be

of interest to describe an appropriate version of the Jewell & Kalb
eisch (2002) iterative

algorithm, with again the edge e�ects being important.
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5.4 Counting Processes

We now consider current status monitoring of a counting process X(t) =
Pk

j=1 I(Tj � t),

where, for j = 1; : : : ; k, Tj is the random variable which measures the time at which X

jumps from j � 1 to j. Necessarily T1 � T2 � � � � � Tk. Now assume that data arises from

a sample of n current status observations of the process X, where the monitoring times are

described by the random variable C, assumed independent of X. Note this corresponds

to simple cross-sectional observation of X. Jewell & van der Laan (1995) describe several

possible applications where this data structure arises naturally. Note that allowing the

marginal distributions, Fj of Tj, j = 1; : : : ; k, to each have a possible point mass at in�nity

accommodates data structures where individuals may "stop" after one jump, or two, etc.

Further, individuals are not therfore required all to pass through the exace same number

of stages or jumps. Further, choosing the �nite number of states to be large enough

accommodates any practical application, so that the case of an in�nite number of states is

only of theoretical import.

The data is thus a sample of indepependent and identically distributed observations

on the random variable (X(C); C). As we have seen in previous sections, particularly

Section 5.3, it is easy to see that, nonparametrically, the likelihood only depends on the

marginal distributions Fj. An unfortunate consequence of this is again that, absent some

additional model assumptions, the data tells us nothing about the interesting possibility

of dependence among the recurrence times T1; T2 � T1; : : : ; Tj � Tj�1; : : :. Nonparametric

maximum likelihood estimation of F1; : : : ; Fk requires some form of iterative algorithm|

see Section 5.3. However, as we observed in Section 5.1 and 5.2, direct estimation of

any single Fj is possible using the standard current status observations, (Y = I(Tj �
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C); C), and estimates of smooth functionals of Fj can be based on this simple estimator,

enjoying all the asymptotic properties outlined in Section 3. Note that this estimator

ignores apparently useful information given in X(C) beyond the simple fact of whether

X(C) � j or not. Nevertheless, van der Laan & Jewell (2002a) show that, at many data

generating distributions, the simple standard current status estimators of Fj yield e�cient

estimators of smooth functionals. These simple current status estimators are not the full

nonparametric maximum likelihood estimators, and van der Laan & Jewell (2002a) discuss

in detail the di�erences between the two approaches, thereby giving insight into why the

nonparametric maximum likelihood estimatorshows no asymptotic gain for such functional

estimation.

In the above, we have focused on estimation of Fj, the marginal distribution of Tj, for

j = 1; : : : ; k. In some applications, particularly when the number of states, k, is large

there may be little interest in each individual marginal distribution. In such cases, a simple

function of the marginal distributions, namely the so-called mean function, �(t) = E(X(t)),

may however be of considerable importance. It is easy to see that

�(t) =
X

Fj(t); (15)

a description that is applicable even if the number of jumps can be arbitrarily large so that

the above sum has an in�nite number of terms. The mean function may be particularly

useful as a method to summarize the e�ects of covariates on X(t). Sun & Kalb
eisch (1993)

consider estimation of �, discuss regression models that allow this mean function to vary

across covariate groups, and consider application of the ideas to multiple tumor data from

a tumorgenicity experiment. Note that, for current status observation on X(t) at random

monitoring times C with no covariates, the mean function is isotonic in the observed Cs, so
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that many of the ideas of Section 3 can be immediately applied to estimation of � including

the pool-adjacent-violators algorithm.

6 Conclusion

This paper has reviewed recent advances in the understanding of nonparametric estimation

based on various forms of current status data. Throughout a key assumption has been

independence between the monitoring time variable C and the survival random variable,

T , or counting process, X, of interest. An important future area of study with current

status data concerns the relaxation of this assumption. For example, suppose, for a sur-

vival random variable T and random monitoring time C, we observe the data structure

Y = (I(T � C); C; �L(C)) that includes observation of covariate processes L up to time

C. The assumption of independence between T and C can now be assumed conditional

on the observed �L(C). This therefore allows dependence between the monitoring time C

and T that arises solely through �L(C). To illustrate the importance of this extension,

consider an animal tumorgenicity experiment designed to estimate the distribution of time

to development of an occult tumor. Suppose that L(u) includes the weight of the exper-

imental animal at time u, and that Y = (I(T � C); C; �L(C)) is observed. A reasonable

alternative to choosing monitoring times completely at random is to increase the `hazard'

of monitoring shortly after an animal begins to lose weight as re
ected in measurements

of L; this is likely to improve e�ciency in estimation if the monitoring time is thereby

closer to the time of tumor onset (i.e. T ). This monitoring scheme introduces dependence

between C and T , and estimators, discussed in Section 3, that ignore this dependence will

be biased. For the extended current status data structure Y = (I(T � C); C; �L(C)), van
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der Laan & Robins (1998) develop locally e�cient estimators for smooth functionals of F ,

the distribution function of T . An important open problem of interest involves the use of

these results in choosing optimal, or close to optimal, designs for the dynamic selection of

monitoring times C that depend on concurrent observation of key covariates within L.

Finally, since current status data corresponds with taking a single cross-sectional ob-

servation on individual survival processes. it is natural to consider similar questions where

multiple cross-sectional observations are availble at di�ering monitoring times for each in-

dividual. Data of this kind are often referred to as panel data. In the context of the single

survival random variable T of Section 3, this monitoring scheme leads to interval-censored

data, case II (Groenboom & Wellner, 1992). There is a parallel extensive literature on es-

timation problems of the kind considered here, based on this more informative and general

form of interval censored data, that deserves a similar review article of recent advances.

For helpful introductions, see Sun (1998) and Huang & Wellner (1997). Panel data has also

been considered in the context of counting processes as in Section 5.4 by Sun & Kalb
eisch

(1995), Wellner & Zhang (2000) and others.
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