
University of Pennsylvania
UPenn Biostatistics Working Papers

Year  Paper 

Conditional Likelihood Methods for
Haplotype-based Association Analysis Using

Matched Case-Control Data

Jinbo Chen∗ Carmen Rodriguez†

∗

†

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/upennbiostat/art14

Copyright c©2006 by the authors.



Conditional Likelihood Methods for
Haplotype-based Association Analysis Using

Matched Case-Control Data

Jinbo Chen and Carmen Rodriguez

Abstract

Genetic epidemiologists routinely assess disease susceptibility in relation to hap-
lotypes, i.e., combinations of alleles on a single chromosome. We study statis-
tical methods for inferring haplotype-related disease risk using SNP genotype
data from matched case-control studies, where controls are individually matched
to cases on some selected factors. Assuming a logistic regression model for
haplotype-disease association, we propose two conditional likelihood approaches
that address the issue that haplotypes cannot be inferred with certainty from SNP
genotype data (phase ambiquity). One approach is based on the likelihood of dis-
ease status conditioned on the total number of cases, genotypes, and other covari-
ates within each matching stratum, and the other is based on the joint likelihood
of disease status and genotypes conditioned only on the total number of cases
and other covariates. The joint-liklihood approach is generally more efficient,
particularly for assessing haplotype-environment interactions. Simulation studies
demonstrated that the first approach was more robust to model assumptions on the
the diplotype distribution conditioned on environmental risk variables and match-
ing factors in the control population. We applied the two methods to analyze a
matched case-control study of prostate cancer.
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SUMMARY. Genetic epidemiologists routinely assess disease susceptibility in relation to

haplotypes, i.e., combinations of alleles on a single chromosome. We study statistical methods

for inferring haplotype-related disease risk using SNP genotype data from matched case-control

studies, where controls are individually matched to cases on some selected factors. Assuming

a logistic regression model for haplotype-disease association, we propose two conditional likeli-

hood approaches that address the issue that haplotypes cannot be inferred with certainty from

SNP genotype data (phase ambiguity). One approach is based on the likelihood of disease

status conditioned on the total number of cases, genotypes, and other covariates within each

matching stratum, and the other is based on the joint likelihood of disease status and genotypes

conditioned only on the total number of cases and other covariates. The joint-likelihood ap-

proach is generally more efficient, particularly for assessing haplotype-environment interactions.

Simulation studies demonstrated that the first approach was more robust to model assumptions

on the diplotype distribution conditioned on environmental risk variables and matching factors

keywords: conditional likelihood; logistic regression; matched case-control study; phase ambiguity; unphased

genotype data.
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in the control population. We applied the two methods to analyze a matched case-control study

of prostate cancer.

1. Introduction

To assess the association between a disease outcome and a candidate gene using genotype data

for single nucleotide polymorphisms (SNPs), it has been generally agreed that the disease risk

in relation to the set of alleles on each chromosome (haplotype), should be examined (Risch

and Merikangas, 1996; Botstein and Risch, 2003; Schaid, 2004). Haplotype-based association

analysis has been proven to be useful when alleles on the same chromosome interact with each

other (cis interaction) or for fine mapping of disease causing loci (Schaid, 2004). When studies

involve unrelated individuals, however, the haplotypes may not be inferred with certainty from

the multi-locus SNP genotype data. This phenomenon is usually referred to as phase ambi-

guity. To address this issue, various statistical methods have been developed for estimating

haplotype-related odds ratio (OR) parameters from retrospective case-control studies (Schaid

et al., 2002; Epstein and Satten, 2003; Stram et al., 2003; Lin and Zeng, 2005; Spinka, Car-

roll, and Chatterjee, 2005), and for estimating haplotype-related relative-hazard parameters

from cohort studies (Lin, 2004; Chen and Chatterjee, 2006) or from individually matched case-

control studies nested within a cohort (Chen et al., 2004; Chen and Chatterjee, 2006). In this

article, we consider a similar problem for the analysis of matched case-control studies: we study

methods for estimating haplotype-related OR parameters accounting for phase ambiguity and

the case-control matching.

The matched case-control design is often adopted for epidemiologic studies to efficiently con-

trol for variables that confound environmental factors. Because genetic epidemiology studies

investigate joint gene-environment effects or gene-environment interactions as the norm rather

than the exception, matched case-control design is also very useful for many genetic epidemi-

ologic investigation. To implement this design, the population under study is classified into
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strata by disease status and values of some confounding factors chosen a priori. Then n cases

and m controls are randomly sampled from each stratum, and n and m are allowed to vary

across different strata. The analysis model of choice for this design is usually the logistic re-

gression model, and the OR parameters are estimated by maximizing the standard conditional

likelihood. For estimating haplotype-related ORs using genotype data, novel statistical meth-

ods are needed to address phase ambiguity. When n and m are large, methods for unmatched

case-control studies could yield approximately valid results when stratum-specific intercept pa-

rameters are included in the logistic regression model (Breslow and Day, 1982). When n and

m are small or the number of matching strata is large, the conditional analysis would be pre-

ferred. In fact, whenever possible, it would always be preferred to perform conditional analysis

(Breslow and Day, 1982). Kraft et al. (2005) compared several ad hoc approaches, including a

standard conditional likelihood approach but replacing haplotype-specific covariates with their

expected values conditioned on the genotype data. Because the expected values are usually not

the same as the true values, this approach usually yields biased OR estimates.

In this article, we propose two novel conditional likelihood methods for consistent estimation

of haplotype and haplotype-environment interaction effects using unphased genotype data from

matched case-control studies. We introduce the notation and model in Section 2. In Section 3,

we present the two approaches and show how they are used for assessing SNP-disease associa-

tion. In Section 4, we apply the proposed methods to the analysis of data from a collaborative

study between the National Cancer Institute (NCI) and American Cancer Society (ACS) on

the genetic susceptibility of prostate cancer. In a scenario similar to this real study, we perform

simulation studies to assess the consistency and efficiency of the two methods, to examine the

consistency of their asymptotic variance estimators, and to evaluate the robustness of the two

methods to critical assumptions. Details of these simulation studies are given in Section 5. We

make some final remarks in Section 6.
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2. Notation and Model Specification

We use H = {. . . , ha, . . . , hb, . . .} to denote the set of all possible haplotypes within a suitable

chromosome segment (e.g., haplotype block) chosen a priori. Let H = (ha, hb) denote the hap-

lotype pair that an individual carries in his/her pair of homologous chromosomes (diplotype).

The diplotype data H is usually not directly observable. Instead, the multi-locus genotype data

G, which record the pair of alleles a subject carries on the pair of homologous chromosomes

at each locus, are observed. To discern H from G, one needs to know the arrangement of

alleles, i.e., the phase information, along each individual chromosome, but such information

is not contained in G. Consequently, the same genotype data G could be compatible with

multiple diplotypes. We denote HG to be the set of all possible diplotypes consistent with the

genotype data G. Let D denote the binary case-control status, S indicate the sampling stratum

defined by matching factors, and Z be a vector of covariates. We assume that the disease risk

(penetrance) given H, Z, and S is described by the logistic regression model

p(D = 1|H, Z, S) =
[
1 + exp {−αs − βhX

H − βzZ − γk(Z,H)}]−1
, (1)

where {eαs , s = 2, . . . , S} are stratum-specific OR parameters in reference to a baseline stratum,

eβh is a vector of haplotype-specific OR parameters in reference to a chosen baseline haplotype,

and k(Z,H) is an interaction term between Z and H. Let δij be a function taking value

one if i = j and zero otherwise. Depending on the numerical coding of XH , one can fit

for a haplotype h∗ a multiplicative model (XH = δhah∗ + δhbh∗), a dominant model (XH =

δhah∗ + δhbh∗ − δhah∗δhbh∗), or a recessive model (XH = δhah∗δhbh∗) (e.g., Wallenstein, Hodge,

and Weston, 1998). If, for example, four haplotypes (h1, h2, h3, h4) are present in the study

population, then to fit a dominant model, one could construct XH = Xh2 where Xh2 indicates

whether a subject has a copy of haplotype h2 or not (0 or 1).

Let Ds = (Ds1, . . . , DsJs) be the vector of disease indicators for subjects j = 1, . . . , Js in
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the sth matched set, and D∗
s be a permutation of Ds. We similarly define Zs, Gs, and Hs.

Let n1s be the number of cases within the sth stratum. If the diplotype H were observed for

all subjects, then β ≡ (βh, βz, γ) could be estimated by maximizing the standard conditional

likelihood Lf =
∏

s p(Ds|n1s,Hs,Zs):

Lf =
S∏

s=1

∏
j:Dsj=1 eβhXHsj +βzZsj+γk(Zsj ,Hsj)

∑
D∗

s

∏
l:D∗sl=1 eβhXHsl+βzZsl+γk(Zsl,Hsl)

.

An attractive feature of this likelihood is that nuisance parameters αs fall out because the

likelihood is conditioned on their sufficient statistic {n1s}. Consequently, parameters {αs, s =

2, . . . , S} are not involved in the inference of β.

3. Semiparametric Approaches for the Estimation of OR Parameters

In this section, we present two novel conditional likelihood approaches for the estimation of β.

In the absence of phase information, we consider a novel conditional likelihood based on the

observed genotype data G,
∏

s p(Ds,Gs|n1s,Zs, S), which is a function of β and the conditional

diplotype distribution p(H|D,Z, S). We factorize this likelihood as

{∏
s

p (Gs|Ds,Zs, S)

}{∏
s

p (Ds|n1s,Zs, S)

}
. (2)

The first method we propose is based only on the first part
∏

s p (Gs|Ds,Zs, S), and the sec-

ond approach utilize both parts. Both methods involve the unknown nuisance distribution

p(H|D, Z, S), which is non-identifiable from SNP genotype data without any model assump-

tions (Epstein and Satten, 2003). We thus impose two restrictions to the distribution of H

in the control population. The first one is that the haplotype distribution varies only with

a summary variable of Z and S, AZS, that takes a small fixed number of values. This as-

sumption can be formally expressed as p(ha|D = 0, Z, S) = p(ha|D = 0, AZS) ≡ f 0
a (AZS)

and p(H|D = 0, Z, S) = p(H|D = 0, AZS) ≡ p0(H|AZS). We use subscript “ZS” to indi-

cate that A could be a function of both Z and S. For example, if cases and controls are
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matched on ethnicity and family history is included in Z as a risk factor, then AZS could

indicate strata defined jointly by ethnicity and family history. We assume that these control

population substrata are defined before applying the proposed methods, possibly by exam-

ining differences in haplotype frequency estimates among different candidate substrata. The

second restriction we impose is that the distribution of diplotype H follows Hardy-Weinberg

equilibrium in each control sub-population defined by AZS. That is, within each control

sub-group defined by AZS, we have p0{H = (ha, hb)|AZS} = f 0
a (AZS)f 0

b (AZS) if a = b and

p0{H = (ha, hb)|AZS} = 2f 0
a (AZS)f 0

b (AZS) if a 6= b. Let f0(AZS) be the vector of haplotype

frequencies within stratum AZS and f0 be the pool of vectors f0(AZS).

Under the two assumptions above, the full conditional likelihood (2) is a function of unknown

parameters β and f0. A useful result owing to the first assumption is that haplotype frequencies

for cases are free of αs and depend on S only through AZS, following a similar result in Epstein

and Satten (2003):

p(H|D = 1, Z, S) =
eβhXH+γk(Z,H)p0(H|AZS)∑

G

∑
H∈HG

eβhXH+γk(Z,H)p0(H|AZS)
≡ p(H|D = 1, Z, AZS).

Here we also make a natural assumption that the support of genotype G is the collection of all

unique genotypes observed in cases and controls.

3.1 Method I: an Estimated Conditional Likelihood Approach

The first part of the factorization in (2),
∏

s p(Ds|Gs, n1s,Zs, S), which we denote as

LI(β, f0), is an appropriate conditional likelihood. We propose to estimate β parameters based

on LI . The disease odds associated with (G,Z, S), similar as a result in Epstein and Satten

(2003), is

θ̃(G,Z, S) =
p(Y = 1|G,Z, S)

p(Y = 0|G,Z, S)
= eαs+βzZ

∑
H∈HG

eβhXH+γk(Z,H)p(H|D = 0, G, AZS).
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The corresponding conditional likelihood LI is then

LI{β, f0} =
S∏

s=1

∏
j:Dsj=1 eβzZsj

∑
H∈HGsj

eβhXH+γk(Zsj ,H)p(H|D = 0, Gsj, AZsjs)
∑

D∗
s

∏
l:D∗sl=1 eβzZsl

∑
H∈HGsl

eβhXH+γk(Zsl,H)p(H|D = 0, Gsl, AZsls)
, (3)

which has a similar form as standard conditional likelihood Lf but with eβXH+γk(Z,H) replaced

by its expectation with respect to the distribution p0(H|G,AZS). We note that the stratum-

specific intercept αs falls out of LI , as in the standard conditional likelihood analysis. The

conditional likelihood LI involves haplotype frequencies in controls, f0, but it does not contain

information for making inference on f0. This is because the genotype data G, which contain

the information for inferring haplotype frequencies, are conditioned out. This is analogous to

the fact that the conditional likelihood function Lf cannot be used for inferring parameters of

the covariate distribution. We propose to estimate f0 by applying the EM algorithm (Excoffier

and Slatkin, 1995) to the genotype data for controls within each substrata AZS. We then

estimate β by maximizing LI with respect to β with p0(H|AZS) fixed at its estimate. That is,

the resultant β̂ maximizes the “estimated” likelihood LI{β, f̂0}. When there is only one case

in each matched set indexed by s1 and the haplotype distribution in controls is independent of

Z and S, the conditional likelihood (3) reduces to

LI1 =
S∏

s=1

eβzZs1
∑

H∈HGs1
eβhXH+γK(Zs1,H)p(H|D = 0, Gs1)∑

l=0,1 eβzZsl
∑

H∈HGsl
eβhXH+γK(Zsl,H)p(H|D = 0, Gsl)

.

This reduced likelihood LI1 takes the same form as the partial likelihood function proposed

in Chen and Chatterjee (2006), where they studied methods for haplotype analysis of nested

case-control studies assuming a Cox proportional hazards model for disease penetrance. The

asymptotic distribution of β̂ is derived in Appendix (A3). The asymptotic variance-covariance

matrix, not surprisingly, takes a similar form as that in Chen and Chatterjee (2006). Specifically,

under the null hypothesis that the disease risk is not related to any diplotype H ∈ H, one can

perform the score test using the approach of Chen et al. (2004).

3.2 Method II: a Full Conditional Likelihood Approach

7
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We denote the full conditional likelihood (2) as LII , which we show is free of the stratum-

specific odds ratio parameter αs and only involves β and f0. Because subjects within each stra-

tum defined by (D,S) are independent,
∏

s p (Gs|Ds,Zs, S) can be factorized as
∏

l:Dsl=0 p(Gsl|Dsl =

0, AZsls)
∏

r:Dsr=1 p(Gsr|Dsr = 1, Zsr, AZsrs). Thus,

∏
s

p (Gs|Ds,Zs, S) =





∏

l:Dsl=0

∑
H∈HGsl

p0(H|AZsls)









∏
r:Dsr=1

∑
H∈HGsr

p(H|Dsr = 1, Zsr, AZsrs)



 ,

which is free of αs and depends only on β and f0. Furthermore, as is shown in Appendix (A1),

p (Ds|n1s,Zs, S) =

∏
j:Dsj=1 θ(Zsj, AZsjs)∑

D∗
s

∏
l:D∗sl=1 θ(Zsl, AZsls)

where θ(Z,AZS) = eβzZ
∑

G

∑
H∈HG

eβhXH+γk(Z,H)p0(H|AZS). Thus, LII(β, f0) is free of αs and

is a function only of OR parameters β and haplotype frequencies f0 in controls. Estimates of

(β, f0) can be obtained by maximizing log LII(β, f0).

When there is no interaction effect between Z and H (γ = 0) and the haplotype distribution

in controls is independent of Z and S (p{H|D = 0, Z, S} = p{H|D = 0}), careful examination

of LII(β, f0) reveals that the information for βz is fully contained in p(Ds|n1s,Zs, S), which

reduces to an ordinary conditional likelihood for the effect of Z as if H were not associated

with the disease risk:

p(Ds|n1s, Zs, S) =
S∏

s=1

∏
j:Dsj=1 eβzZsj

∑
D∗

s

∏
l:D∗sl=1 eβzZsl

.

Information for βh and f0 is then fully contained in the part of the likelihood p(Gs|Ds,Zs, S),

which takes the same form as the retrospective likelihood (Epstein and Satten, 2003) for an

“unmatched” case-control study. The implication for this observation is that one could perform

“unconditional case-control analysis” if he/she is only interested in assessing main haplotype

effects and willing to entertain the assumption that haplotype frequencies do not vary with

environmental risk factors and matching variables. This result can be intuitively explained as

follows. If no Z were involved, this assumption simply states that the stratum factor S is not
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related to haplotype frequencies in cases or controls. Consequently, the most efficient analysis

would be the unconditional analysis breaking the matching. When variables Z and H are

independent in controls and do not interact with each other for determining the disease risk,

any difference in haplotype frequencies between cases and controls is not informative of the

difference in the distributions of Z between cases and controls. Consequently, the odds ratio

for Z could be estimated as if no genetic effects were present. The “conditional” analysis using,

for example, one of our proposed methods to explicitly account for matching is necessary when

it is of interest to assess haplotype-environment interaction or when the haplotype distribution

in controls depends on Z or S.

To compute the estimates of {β, f0} and obtain the asymptotic variance-covariance matrix,

one can adopt the Newton-Raphson algorithm. Because we observed that the Newton-Raphson

algorithm may fail to converge in the presence of rare haplotypes, we propose to use a one-step

approximation to the Newton-Raphson solution (one-step estimator). This one-step estimation

method leads to estimates with the same asymptotic property as the Newton-Raphson estimates

(Bickel et al., 1993). Following Epstein and Satten (2003), we re-parametrize fa(AZS) using

parameters αa(AZS) with fa = eαa/{1 +
∑J−1

j=1 eαj}, where J is the total number of haplotypes

in the AZS stratum. Let α be the collection of all αa(AZS). We denote the score functions for

β and α, {∂ log LII(β, α)/∂β, ∂ log LII(β, α)/∂α}, as {l̇II
β (β, α), l̇II

α (β, α)}. The corresponding

information matrix I(β, α) is composed of sub-matrices Iββ = −∂l̇II
β /∂β, Iβα = −∂l̇II

β /∂α, and

Iαα = −∂l̇II
α /∂α. Denote estimates from method I as (β̂I , α̂I). The one-step estimates, denoted

as (β̂II , α̂II), are obtained as




β̂II

α̂II


 ≈




β̂I

α̂I


 + I−1

(
β̂I , α̂I

)




l̇II
β

(
β̂I , α̂I

)

l̇II
α

(
β̂I , α̂I

)





.

We could obtain β̂II and α̂II separately to avoid the difficulty in inverting the full information

matrix I(β̂I , α̂I). Define Îββ = Iββ(β̂I , α̂I) and define Îβα and Îαα similarly. Then β̂II and α̂II
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can be obtained as

β̂II = β̂I +
(
Îββ − ÎβαÎ−1

αα Îαβ

)−1 (
ˆ̇lII
β − ÎβαÎ−1

αα
˙̂lII
α

)

and

α̂II = α̂I +
(
Îαα − Îαβ Î−1

ββ Îβα

)−1 (
ˆ̇lII
α − Îαβ Î−1

ββ
ˆ̇lII
β

)
,

respectively. The key to the implementation of the one-step estimator is the availability of the

consistent initial estimates (β̂I , α̂I), which are plugged into (l̇II
β , l̇II

α ) and I(β, α) to obtain their

consistent estimates. In the Appendix (A4), for the one-one matched case, we give analytical

formulas for score functions and the information matrix, which turn out to be remarkably

simple.

3.3 Application of Method II to Single SNP Analysis

The two conditional likelihood approaches presented above can be applied to the analysis

involving only one-locus genotype, where each allele is a “single-locus haplotype.” Of course no

phase ambiguity is involved in this scenario. Let a and A indicate the two alleles, and ρ be the

frequency of minor allele a. Under the HWE assumption and gene-environment independence

ρ = p(a|Z, S), the frequencies of genotypes AA, Aa, and aa in controls are (1 − ρ)2, ρ(1 − ρ),

and ρ2, respectively. Let G indicate genotype AA, Aa, or aa, and let XG indicate the presence

or absence of minor allele a in G. That is, XG takes value one if G = Aa or G = aa and

zero otherwise. Certainly XG could use other numerical codings as well. It is easy to see

that method I reduces to the ordinary conditional likelihood analysis. For method II, the log

likelihood log LII for the one-one matched design can be simplified as

log LII =
S∑

s=1

∑
i=0,1

Dsi{βzZsi + βhX
Gsi + γk(Zsi, Gsi)}

+{2(n00 + n10) + (n01 + n11)} log(1− ρ) + {2(n02 + n12) + (n01 + n11)}logρ

−
S∑

s=1

log

[∑
i=0,1

eβzZsi
{
(1− ρ)2 + eβh+γZsi(2ρ− ρ2)

}
]

,

10

http://biostats.bepress.com/upennbiostat/art14



where (n00, n01, n02) and (n10, n11, n12) are counts of genotype AA, Aa, and aa in controls and

cases, respectively. Parameter estimates can then be obtained by maximizing log LII jointly

over (βz, βh, γ, ρ) or by applying the one-step approximation.

4. Analysis of Data from a Prostate Cancer Study

Researchers at the National Cancer Institute (NCI) and the American Cancer Society (ACS)

are collaborating to investigate the role of insulin resistance and chronic inflammation in the

development of prostate cancer using the ACS Cancer Prevention Study-II nutrition cohort

(Calle, 2002). A nested case-control study of 1, 209 prostate cancer cases and an equal number

of controls has been undertaken to evaluate the relationship between prostate cancer risk and a

number of key genes involved in the insulin signaling and chronic inflammation pathways. One

control was matched to a case on ethnicity, age within 6 months, and date of blood collection.

Because 97.0% of the study subjects were Caucasians, and because we did not have convenient

access to the ethnicity status due to data security concerns, we included the small number of

non-Caucasians in the current analysis.

We assessed whether the gene coding for tumor necrosis factor α (TNF-α) was associated

with prostate cancer risk. The current analysis focused on demonstrating the proposed methods,

and scientific results on genetic epidemiology of prostate cancer in relation to this gene will be

presented in future manuscripts. TNF-α is a protein produced by macrophages in the presence

of an endotoxin, and it has been shown to contribute to the progression of several cancers

and thus may play a role in prostate cancer progression. In this collaborative study, 5 SNPs

were genotyped in the TNF-α gene. First, we assessed the association between each SNP and

prostate cancer risk by examining the OR associated with the presence of a variant allele, using

both the standard conditional likelihood method (method I) and method II. The two methods

yielded similar ORs and confidence intervals. In particular, the presence of a minor allele at

one locus, which we named as TNF1, appeared to be significantly associated with lower risk

11

Hosted by The Berkeley Electronic Press



(OR[95% CI]: 0.776[0.616, 0.980] and 0.761[0.609, 0.950] by methods I and II, respectively).

In addition, the estimates of minor allele frequencies from method II were also very similar to

those obtained by simply calculating the proportion of minor alleles in controls.

We then investigated the joint effect of SNP TNF1 and haplotypes formed by the other four

SNPs (Table 1). In particular, let Xh indicate the presence (Xh = 1) or absence (Xh = 0) of

haplotype h, and let X1 indicate the presence (X1 = 1) or absence (X1 = 0) of a minor allele

at locus TNF1. We applied methods I and II to fit the following model:

p(D = 1|Xh, X1, S) =
[
1 + exp {−αs − βhX

h − βzX
1 − γXh ×X1)}]−1

.

We note that this analysis is appropriate when TNF1 is outside of the chromosome region

spanned by the other four SNPs. Because TNF1 was in linkage disequilibrium with the other

four SNPs (correlation coefficients in controls were -0.21, -0.09, -0.14, and -0.18, respectively),

we estimated haplotype frequencies in controls for those with X1 = 0 and X1 = 1 separately.

Following the notations in Section 3, Z = X1 and AZS = X1. In this analysis, we chose to

ignore haplotypes with estimated frequencies below 0.025%, so that the expected number of each

haplotype in the study sample was at least one in the absence of association. Nine haplotypes for

controls with Xh = 0 and 6 for controls with Xh = 1 were included in the analysis. We chose to

present results for haplotype 1122. Neither the main effect of haplotype 1122 nor its interaction

with TNF1 was significant by either method, suggesting a lack of evidence that the genomic

region spanned by the four TNF SNPs other than TNF1 may contain loci related to prostate

cancer risk. As in the single SNP analysis, the two methods yielded similar OR estimates,

although the confidence intervals by method II were slightly shorter. Because the number of

subjects with both Xh = 1 and haplotype 1122 was small (less than 4.0% in controls), the

confidence intervals (CIs) of γ̂ by both methods were large. The haplotype frequency estimates

by the two methods were also very close, and the CIs by method II were slightly shorter. In
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unreported analysis, we also examined the multiplicative effect of haplotype 1122 (Xh = 0, 1, or

2 according to the number of haplotype 1122 that a subject had). The results were essentially

the same with those in Table 1.

For the purpose of comparison, we also performed an analysis similar to that in Table

1 but assumed that the haplotype distribution was the same for controls with Xh = 0 or

Xh = 1. The respective OR estimates and 95% CIs for βh, βz and γ were −0.03(−0.26, 0.21),

−0.17(−0.43, 0.06), and−0.52(−1.18, 0.15) by method I and 0.05(−0.16, 0.26), −0.03(−0.28, 0.22),

and −1.09(−1.53,−0.66) by method II. We observed that method I yielded essentially the same

results as those in Table 1, but method II yielded dramatically different results. This indicated

that method II is much more sensitive to the assumption p(H|D = 0, Z, S) = p(H|D = 0).

In unreported analysis, we also evaluated the effect of haplotypes formed by all five TNF

SNPs. Haplotype 21111 appeared to be significantly associated with prostate cancer risk

(OR[95% CI] is 0.773[0.610, 0.978] by method I and 0.761[0.608, 0.953] by method II). However,

it appeared that this association was mainly due to the presence of a minor allele at the first

locus (TNF1), which in itself was shown to be significant with a similar OR.

5. Simulation Studies

We performed simulation studies to assess the proposed methods in the following aspects:

(i) the consistency of methods I and II; (ii) the relative efficiency of the two approaches; (iii)

the consistency of the asymptotic variance estimators: the asymptotic variance formula for

method I (Appendix A3), and the inverse of the information matrix as a variance-covariance

estimator for method II; and (iv) the robustness of the methods with respect to the two critical

assumptions: p(H|D, Z, S) = p(H|D,AZS) and HWE in controls with the same value for AZS.

5.1 Basic study design

We generated data for 500 one-one matched case-control pairs sampled from 500 distinct

13

Hosted by The Berkeley Electronic Press



strata. We first generated p(Z = 1|D = 0, S) by sampling S numbers from a normal distribution

with mean minus one and variance one and then transforming them by the logistic function

exp(·)/{1 + exp(·)}. These 500 values were kept fixed in all simulations. For each simulation

study, we then generated Z for controls in each of the S strata from a Bernoulli distribution

with success probability p(Z = 1|D = 0, S). The prevalence of exposure Z was approximately

0.3 in the sampled controls. We considered the estimation of OR parameters for the main

effect of one haplotype and the interaction between this haplotype covariate and variable Z.

We considered three models for the haplotype effect: the multiplicative model, the dominant

model, and the recessive model.

To generate SNP genotype data for controls, we used 8 common haplotypes estimated from

the genotype data for all 5 SNPs in the NCI-ACS study: 11111, 21111, 11122, 11211, 12112,

11112, 11121, and 21121. Their estimated frequencies were 0.285, 0.144, 0.138, 0.111, 0.095,

0.085, 0.076, and 0.066, respectively. For each control, we generated a haplotype pair under

the assumption of HWE and then deleted phase information to obtain the SNP genotype data.

In this simulation study, we focused on assessing the main effect of haplotype “21111” and its

interaction with Z.

We generated Z for cases from the distribution

p(Z = 1|D = 1, S) =
p(Z = 1|D = 0, S)eβzZ

∑
G

∑
H∈HG

eβhXH+γk(Z,H)p0(H)∑1
i=0 p(Z = i|D = 0, S)eβzZi

∑
G

∑
H∈HG

eβhXH+γk(Zi,H)p0(H)
.

We noted that this distribution was compatible with the penetrance function (1). This could

be shown in a way similar to that of deriving p(H|D = 1, Z, AZS). The genotype data for cases

were generated using diplotype frequencies p(H|D = 1, Z, AZS). The data were analyzed using

three methods: methods I and II using the unphased genotype data and standard conditional

logistic regression using the simulated diplotype data without phase deletion. The simulation

studies were conducted in software R and repeated 200 times.
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5.2 Results

Table 2 contains results on the consistency of the two methods and their asymptotic variance

estimators. We used 1000 matched pairs for the recessive model to compensate for the fact that

less than 1% of controls had two copies of haplotype “21111” and Z = 1. We used 500 matched

pairs for multiplicative and dominant models to save computing time. Averaged estimates for

β were sufficiently close to the true values, suggesting the consistency of the two methods. For

both methods, the averaged asymptotic standard deviations (SDs) (column SDA) are all close

to the empirical SDs for 200 β estimates (column SDE), and all the 95% confidence intervals

nearly achieve the nominal coverage probability (column “Cover”). Interestingly, comparison

of SDs for standard conditional logistic regression (column “CLREG”) and the two proposed

methods showed that method II led to the smallest SD, and that method I gave the largest SD.

That is, in this simulation study, method II, which did not use phase information, was more

efficient than the standard conditional logistic regression analysis that exploited the diplotype

data. We note, however, that these two methods were not comparable as they adopted different

likelihoods and used different data. The efficiency gain for method II over method I was most

apparent for the estimation of interaction effects and for the recessive model. Such gain,

quantified by the square of the ratio between estimated variances for methods I and II minus

quantity 1, was 103% under the null and 245% with the interaction effect OR being 1.5 (i.e.,

γ = 0.405) when the effect of haplotype “21111” was recessive. For the estimation of the main

effect βh, under multiplicative, dominant, and recessive models, the respective efficiency gain

of method II was around 16%, 27%, and 86% under the null and 21%, 35%, and 96% under

the alternative. Similar efficiency advantage of method II was also observed for the estimation

of f0 (data not shown).

We assessed the sensitivity of the two methods to the HWE assumption by allowing a partic-

ular form of departure from HWE when simulating diplotype data for controls. In particular, we
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assumed that p{H = (ha, hb)} = (1−φ)fafb +φfa, if a = b and p{H = (ha, hb)} = 2(1−φ)fafb

if a 6= b, where φ is the fixation index, with larger absolute value of φ indicating more se-

rious departure from HWE. Positive φ indicates excess homozygous diplotypes, and negative

φ indicates excess heterozygous diplotypes. It appears that both methods were insensitive

to small deviations from HWE (φ=0.05). The test sizes for β were all close to the nominal

level. The estimated coverage probabilities of the 95% confidence intervals for all parameters

were all close to 95%, although under the alternative, the coverage probabilities for βh and

frequency for haplotype “21111” were more noticeably lower than 95% (90.5% and 86.5%, re-

spectively). Nevertheless, the averaged asymptotic SDs were still close to the empirical SDs.

Table 3 displays results corresponding to φ = 0.14, which indicates serious violation of the HWE

assumption. Method I performed satisfactorily in all aspects, although the coverage probabil-

ity for the frequency of haplotype “21111” was slightly lower under the alternative (88.0%).

However, method II became problematic. Under the dominant and recessive models, the bias

in the main effect βh was intolerable. For example, the average of 200 estimates by method II

was 1.419 compared with the true value 0.405. Consequently, the confidence intervals for βh

had very poor coverage probabilities. Under the dominant model, the 95% confidence intervals

for βh and frequency of haplotype “21111” had respective coverage 62.0% and 77.5% under the

null and 52.5% and 51.0% under the alternative. Surprisingly, the averaged estimates of the

interaction effect were close to to the truth (0.405) in all scenarios.

When the assumption p(H|D = 0, Z, S) = p(H|D = 0, AZS) does not hold, we note that

the degree of bias would be similar to that when the HWE assumption is violated. This is

because p(H|D = 0, Z, S) would be the mixture of haplotype distributions in all control strata.

This mixture mostly does not follow HWE if each control stratum is at HWE but haplotype

frequencies differ among strata. Unreported simulation results confirmed this observation and

showed that both the main effect βh and the interaction effect γ could be seriously biased.
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6. Discussion

The two conditional likelihood approaches have different merits. The full conditional like-

lihood approach (method II) could yield a much more precise estimate of the haplotype-

environment interaction effect than the estimated conditional likelihood method (method II).

Method I, on the other hand, appeared to be very robust to parametric model assumptions on

the distribution of diplotypes conditioned on environmental covariates and matching factors

(namely, p(H|D = 0, Z, S) = p(H|D = 0, AZS) and HWE). Certainly these assumptions could

be relaxed to a certain extent, as suggested in the previous literature (eg., Satten and Epstein,

2004; Spinka, Carroll, and Chatterjee, 2005). For example, the HWE assumption could be re-

laxed by incorporating an unknown fixation index to allow excess homozygous or heterozygous

diplotypes (Satten and Epstein, 2004). The assumption p(H|D = 0, Z, S) = p(H|D = 0, AZS

could be partially examined by assessing whether the genotype frequency of each single SNP

varies with Z. In the situation that these assumptions seem doubtful, method I is probably

more assuring to the mind.

The robustness of method I to the two assumptions carries over to the hypothesis testing

using the Wald statistic: the size of the tests is generally close to the nominal level. In particular,

Chen et al. (2004) reported that the score test based on method I maintains the correct size

even when the HWE assumption is violated. They showed that the expectation of the score

functions for OR parameters under the null are zero even if wrong haplotype frequencies are

used. It is interesting to explore similar robust score tests in the setting of method II.

We proposed to implement method II by the one-step estimation method (Bickel et al.,

1993), which essentially yielded identical results as the Newton-Raphson algorithm. But it

does not require iteration, it only involves the inversion of sub-matrices of the full Hessian

matrix, and it saves the computing time. We implemented these methods in software R, and

the program is available upon request to the first author. For fitting a dataset with 500 matched
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pairs, this program takes approximately 1.5 minutes for method I and 30 additional seconds

for method II. The one step method could also be applied to the maximum likelihood method

of haplotype analysis for other study designs, upon the availability of an initial consistent

estimate.

The two novel methods we studied are closely related to the previous literature. The

condition likelihood in method I extends the retrospective likelihood approach in Epstein and

Satten (2003) to the matched case-control setting. In the absence of phase ambiguity, method I

reduces to the ordinary conditional likelihood analysis. In the absence of haplotype-environment

interaction and haplotype-environment dependence in controls, for estimating haplotype-related

disease risk parameters, method II reduces to the unconditional maximum likelihood method

proposed by Epstein and Satten (2003). We observed in the simulation study that method

II is much more efficient than method I for the estimation of interaction effects, particularly

under the non-multiplicative models. This observation is consistent with results in the previous

literature in the setting of unmatched case-control studies (Satten and Epstein, 2004; Spinka,

Carroll, and Chatterjee, 2005).

Methods proposed in this paper are also closely related to the work of Rathouz (2003)

and Satten and Carroll (2000). For matched case-control studies, Rathouz (2003) proposed

semiparametric efficient estimation methods for parameters in generalized linear models with

stratum-specific intercepts and missing covariates. For logistic regression models with covariates

modeled parametrically, their efficient method reduces to that in Satten and Carroll (2000). Our

method II has a similar flavor. It would be interesting to investigate theoretically whether this

full conditional likelihood approach is fully efficient under the HWE and haplotype-environment

independence assumptions and to investigate efficient approaches that make less restrictive

assumptions. Method I takes a similar form as a “suboptimal” conditional likelihood that

Rathouz (2003) studied.
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APPENDIX

To simplify the notation, we present all derivations assuming p(H|D = 0, Z, S) = P (H|D =

0), but all results apply to the situation when the distribution of H in controls depends on

AZS, that is, p(H|D = 0, Z, S) = P (H|D = 0, AZS).

A1 The derivation of p(Ds|n1s,Zs, s)

We take the support of genotype G to be the collection of all unique genotypes in the case-

control sample. Applying a result in Epstein and Satten (2003), we derived

p(D = 1|G,Z, S) = p(D = 0|G,Z, S)eαs+βzZ
∑

H∈HG

eβhXH+γk(Z,H)p(H|D = 0, G).
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Thus, we have

p(D = 1|Z, S) =
∑

G

p(D = 1|G,Z, S)p(G|Z, S)

= eαs+βzZ
∑

G

{
p(D = 0|G,Z, S)p(G|Z, S)

∑
H∈HG

eβhXH+γk(Z,H)p(H|D = 0, G, Z, S)

}

= p(D = 0|Z, S)eαs+βzZ
∑

G

{
p(G|D = 0, Z, S)

∑
H∈HG

eβhXH+γk(Z,H)p(H|D = 0, G, Z, S)

}

= p(D = 0|Z, S)eαs+βzZ
∑

G

∑
H∈HG

eβhXH+γk(Z,H)p(H|D = 0).

This leads to the result

θ(Z, S) =
p(D = 1|Z, S)

p(D = 0|Z, S)
= eαs+βzZ

∑
G

∑
H∈HG

eβhXH+γk(Z,H)p(H|D = 0).

Let θ(Z) = eβzZ
∑

G

∑
H∈HG

eβhXH+γk(Z,H)p(H|D = 0). Then p(Ds|n1s,Zs, S) follows.

A2 The derivation of p(G|Ds,Zs, S)

By the assumption that p(H|D = 0, Z, S) = p(H|D = 0), we have

p(H|D = 1, Z, S) = p(D = 1|H, Z, S)p(H|Z, S)/p(D = 1|Z, S)

= eαs+βzZ+βhXH+γk(Z,H)p(H|D = 0, Z, S)p(D = 0|Z, S)/p(D = 1, Z, S)

=
eβhXH+γk(Z,H)p(H|D = 0)∑

G

∑
H∈HG

eβhXH+γk(Z,H)p(H|D = 0)
.

In particular, when γ = 0, this formula reduces to

p(H|D = 1, Z, S) =
eβhXH

p(H|D = 0)∑
G

∑
H∈HG

eβhXHp(H|D = 0)
≡ p(H|D = 1, Z).

Thus, haplotype frequencies in cases are independent of S when those of controls are indepen-

dent of S. In the absence of haplotype-environment interaction, such frequencies are indepen-

dent of Z as well.

A3 The asymptotic property of method I

The proof largely follows that in Chen and Chatterjee (2006). Let Uβα(β, α̂) = ∂LI(β, α̂)/∂β.

A standard Taylor’s series expansion of U(β̂, α̂) around the true parameter values (β, α) leads
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to

β̂ − β ≈ I−1
ββ U(β, α)− I−1

ββ Iβα(α̂− α),

where Iββ and Iβα are the large-sample limits of −∂U(β, α)/∂β and −∂U(β, α)/∂α, respectively.

Since LI(β, α) is a proper conditional likelihood function, following the standard asymptotic

theory for matched case-control studies, we have cov{U(β, α)} = Iββ, and
√

ncU(β, α) ∼

Normal(0, Iββ). Moreover, from standard parametric maximum likelihood inference theory, we

have
√

nc(α̂− α) ∼ Normal{0, (Ic
αα)−1}, where nc is the total number of matched controls and

Ic
αα is the asymptotic information matrix for α (Excoffier and Slatkin, 1995).

Furthermore, U(β, α) and (α̂ − α) are asymptotically uncorrelated. The results above

show that β̂ follows an asymptotically normal distribution with mean β and variance Σ =

I−1
ββ + I−1

ββ Iβα(Ic
αα)−1IT

βαI−1
ββ . Σ can be estimated as follows. Let Îββ = −∂U(β, α)/∂β|β̂,α̂,

Îβα = −∂U(β, α)/∂α|β̂,α̂, and Îc
αα be the estimated information matrix for α using controls

only. Then Σ can be consistently estimated as

Σ̂ = Î−1
ββ + Î−1

ββ Îβα(Îc
αα)−1ÎT

βαÎ−1
ββ .

Above, Iββ can also be consistently estimated as
∑S

s=1 U s(β̂, α̂)
[
U s(β̂, α̂)

]T

, where U s is Uβα(β̂, α̂)

for the sth matched set.

A4 The score functions and Hessian matrix for method II

We give score functions for (β, f0) only for the one-one matching case. Let X = {XH , Z, k(Z, H)},

let E1
si(·) = E(·|D = 1, Zsi), and let

Wβh,γ(Zsi, H) =
∑

G

∑
H∈HG

eβhXH+γk(Z,H)p(H|D = 0).

Then the score functions for β are

Uβ =
S∑

s=1

[
E(X|D = 1, Gs1, Zs1)−

∑
i=0,1 E(X|D = 1, Zsi)e

βzZsiWβh,γ(Zsi, H)∑
i=0,1 eβZsiWβh,γ(Zsi, H)

]
.
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Let ∆a be the number of counts (0, 1, 2) for haplotype ha. The score functions for f 0
a without

applying the restriction
∑

a f 0
a = 1 are

Uf0
a

=
1

f 0
a

S∑
s=1

[∑
i=0,1

E(∆a|D = 1, Gsi, Zsi)−
∑

i=0,1 E(∆a|D = 1, Zsi)e
βzZsiWβh,γ{Zsi, H}∑

i=0,1 eβZsiWβh,γ{Zsi, H}

]
.

It can be shown that f̂ 0
a can be obtained as f 0

aUf0
a
/2nc, where nc is the total number of controls

in the matched case-control sample. The score function for αa can be easily obtained from Uf0
a
.

The Hessian matrix also has a very simple form.

Iββ = −
S∑

s=1

[∑
i=0,1 E1

si(XX T )eβzZsiWβh,γ(Zsi, H)∑
i=0,1 eβzZsiWβh,γ(Zsi, H)

+ cov(XX T |D = 1, Gs1, Zs1)

−

{∑
i=0,1 E1

si(X )eβzZsiWβh,γ(Zsi, H)
}{∑

i=0,1 E1
si(X )eβzZsiWβh,γ(Zsi, H)

}T

{∑
i=0,1 eβzZsiWβh,γ(Zsi, H)

}2


 ,

Iβf0 = − 1

fa

S∑
s=1

[∑
i=0,1 E1

si(X∆T )eβzZsiWβh,γ(Zsi, H)∑
i=0,1 eβzZsiWβh,γ(Zsi, H)

+ cov(X∆T |D = 1, Gs1, Zs1)

−

{∑
i=0,1 E1

si(X )eβzZsiWβh,γ(Zsi, H)
}{∑

i=0,1 E1
si(∆)eβzZsiWβh,γ(Zsi, H)

}T

{∑
i=0,1 eβzZsiWβh,γ(Zsi, H)

}2


 ,

and

Ifafb
= − 1

fafb

S∑
s=1

[∑
i=0,1 E1

si(∆a∆b)e
βzZsiWβh,γ(Zsi, H)∑

i=0,1 eβzZsiWβh,γ(Zsi, H)
+

∑
i=0,1

cov(∆a∆b|D = i, Gsi, Zsi)

−

{∑
i=0,1 E1

si(∆a)e
βzZsiWβh,γ(Zsi, H)

}{∑
i=0,1 E1

si(∆b)e
βzZsiWβh,γ(Zsi, H)

}T

{∑
i=0,1 eβzZsiWβh,γ(Zsi, H)

}2




−I(a = b)(fa)−2Ufa .

Iβ,f0 and If0,f0 can then be easily transformed to get Iβα and Iαα, the Hessian matrix corre-

sponding to α = {αa, a = 1, . . . , J − 1}.
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Table 1
The ASC Study: Prostate Cancer Risk Associated with the Presence of Haplotype 1122 in Reference
to its absence

Method I Method II
β̂h(95% CI) -0.03(-0.26, 0.21) -0.10(-0.31, 0.12)
β̂z(95% CI) -0.19(-0.45, 0.06) -0.22(-0.47, 0.04)
γ̂(95% CI) -0.50(-1.16, 0.16) -0.34(-1.00, 0.33)

Xh = 0 Xh = 1 Xh = 0 Xh = 1
100× f̂0a

1111(95% CI) 56.15b(53.54, 58.76) 80.66(76.80, 84.52) 56.36c(54.34, 58.38) 80.29(76.94, 83.64)
100× f̂0

2111(95% CI) 17.99(15.97, 20.01) 8.39(5.68, 11.10) 17.39(15.99, 18.79) 8.38(5.67, 11.09)
100× f̂0

1122(95% CI) 16.27(14.35, 18.19) 5.69(3.43, 7.95) 16.57(14.69, 18.44) 6.30(4.45, 8.16)
100× f̂0

1212(95% CI) 5.13(3.96, 6.30) 1.98(0.62, 3.34) 5.63(4.74, 6.53) 2.52(1.24, 3.80)
100× f̂0

1112(95% CI) 2.16(1.40, 2.92) 1.27(0.16, 2.38) 1.79(1.34, 2.23) 0.47(0.16, 0.78)
100× f̂0

1121(95% CI) 1.51(0.78, 2.24) 2.01(0.63, 3.39) 1.62(1.08, 2.16) 2.04(1.00, 3.09)
100× f̂0

2121(95% CI) 0.65(0.12, 1.18) -d 0.58(0.27, 0.89) -
100× f̂0

2221(95% CI) 0.07(0.01, 0.21) - 0.03(0.01, 0.06) -
100× f̂0

1222(95% CI) 0.05(0.01, 0.18) - 0.07(0.01, 0.33) -
a: Subscripts refer to haplotypes, with “1” representing the wild-type allele and “2” the variant allele.
b: Haplotype frequency estimates by applying EM algorithm to controls only.
c: Haplotype frequency estimates using method II.
d: Haplotype frequency estimate was less than 0.0001.
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Table 2
Consistency and Efficiency of Proposed Methods, and Consistency of Asymptotic Variance
Estimators: Simulation Studies Using 500 Matched Case-Control Pairs and 200 Repeated Runs.

CLREG Method I Method II

Model β̂(SDE)a β̂(SDA/SDE)b Coverd β̂(SDA/SDE)c Coverd

Under the Null Hypothesis: βh2 = βz = γ = 0
βh2 -0.001(0.154) 0.003(0.163/0.160) 0.950 -0.005(0.150/0.146) 0.960

Multiplicative βz -0.001(0.162) -0.004(0.172/0.167) 0.965 -0.004(0.161/0.157) 0.955
γ 0.001(0.281) 0.004(0.293/0.297) 0.945 0.001(0.209/0.200) 0.960

βh2 -0.019(0.183) -0.022(0.185/0.188) 0.930 -0.010(0.164/0.163) 0.960
Dominant βz -0.011(0.170) -0.014(0.175/0.175) 0.965 -0.007(0.162/0.155) 0.965

γ 0.014(0.310) 0.024(0.332/0.329) 0.955 -0.004(0.234/0.225) 0.970

βh2 -0.005(0.380) -0.005(0.387/0.380) 0.950 -0.019(0.284/0.281) 0.955
Recessivee βz -0.002(0.110) -0.002(0.108/0.110) 0.940 -0.002(0.107/0.110) 0.930

γ 0.058(0.718) -0.058(0.742/0.718) 0.980 -0.043(0.520/0.509) 0.975

Under the Alternative Hypothesis: βh2 = 0.405, βz = 0.916, γ = 0.405
βh2 0.411(0.161) 0.409(0.170/0.169) 0.965 0.382(0.154/0.157) 0.940

Multiplicative βz 0.928(0.189) 0.930(0.187/0.190) 0.935 0.938(0.174/0.180) 0.940
γ 0.418(0.251) 0.411(0.269/0.254) 0.965 0.388(0.158/0.166) 0.935

βh2 0.413(0.194) 0.405(0.202/0.202) 0.950 0.402(0.174/0.178) 0.955
Dominant βz 0.930(0.188) 0.927(0.189/0.190) 0.940 0.927(0.174/0.177) 0.950

γ 0.413(0.300) 0.418(0.317/0.310) 0.965 0.404(0.195/0.196) 0.950

βh2 0.425(0.419) 0.425(0.386/0.419) 0.940 0.439(0.276/0.277) 0.915
Recessivee βz 0.919(0.116) 0.919(0.109/0.116) 0.930 0.918(0.109/0.113) 0.935

γ 0.464(0.658) 0.464(0.634/0.658) 0.925 0.441(0.341/0.365) 0.935
a: The mean (standard deviation) of β̂ by standard conditional logistic regression using known phase.
b: The mean (averaged estimated asymptotic/empirical standard deviation) using method I.
c: The mean (averaged estimated asymptotic/empirical standard deviation) using method II.
d: 95% coverage probabilities.
e: 1000 matched pairs were used for the recessive model.
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Table 3
Robustness to the Violation of HWE due to Excess Homozygosity (Fixation Index is 0.14): Simulation
Studies Using 500 Matched Case-Control Pairs and 200 Repeated Runs.

CLREG Method I Method II

Model β̂(SDE)a β̂(SDA/SDE)b Coverc β̂(SDA/SDE)d Coverc

Under the Null Hypothesis: βh2 = βz = γ = 0
βh2 0.001(0.105) 0.001(0.128/0.125) 0.955 -0.001(0.092/0.117) 0.860

Multiplicative βz 0.010(0.122) 0.011(0.120/0.123) 0.940 0.011(0.114/0.117) 0.940
γ -0.009(0.190) -0.014(0.188/0.189) 0.955 -0.016(0.136/0.152) 0.930

βh2 0.005(0.124) 0.000(0.132/0.135) 0.955 -0.199(0.115/0.116) 0.620
Dominant βz 0.009(0.123) 0.008(0.122/0.125) 0.940 0.002(0.114/0.120) 0.925

γ -0.016(0.223) -0.014(0.238/0.241) 0.955 0.008(0.169/0.175) 0.940

βh2 -0.006(0.273) -0.006(0.270/0.273) 0.615 1.048(0.284/0.252) 0.035
Recessive βz 0.001(0.099) 0.001(0.108/0.099) 0.925 0.000(0.101/0.097) 0.985

γ -0.033(0.535) -0.033(0.443/0.535) 0.895 0.023(0.502/0.497) 0.945

Under the Alternative Hypothesis: βh2 = 0.405, βz = 0.916, γ = 0.405
βh2 0.416(0.106) 0.417(0.112/0.110) 0.935 0.440(0.088/0.106) 0.945

Multiplicative βz 0.906(0.128) 0.907(0.130/0.130) 0.950 0.877(0.120/0.122) 0.945
γ 0.412(0.182) 0.410(0.171/0.184) 0.945 0.480(0.097/0.120) 0.945

βh2 0.408(0.141) 0.401(0.142/0.148) 0.945 0.165(0.121/0.124) 0.525
Dominant βz 0.928(0.135) 0.929(0.131/0.139) 0.945 0.926(0.122/0.126) 0.945

γ 0.397(0.227) 0.393(0.224/0.241) 0.945 0.404(0.138/0.147) 0.925

βh2 0.390(0.251) 0.390(0.248/0.251) 0.825 1.419(0.272/0.260) 0.040
Recessive βz 0.910(0.110) 0.910(0.111/0.110) 0.950 0.909(0.110/0.109) 0.960

γ 0.461(0.484) 0.461(0.433/0.484) 0.885 0.454(0.338/0.385) 0.925
a: The mean (standard deviation) of β̂ by standard conditional logistic regression.
b: The mean (averaged estimated asymptotic/empirical standard deviation) using Method I.
c: 95% coverage probabilities.
d: The mean (averaged estimated asymptotic/empirical standard deviation) using Method II.
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