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A Functional-Based Distribution Diagnostic
for a Linear Model with Correlated Outcomes:
Technical Report

E. Andres Houseman, Brent Coull, and Louise Ryan

Abstract

Despite the widespread popularity of linear models for correlated outcomes (e.g.
linear mixed modesl and time series models), distribution diagnostic methodol-
ogy remains relatively underdeveloped in this context. In this paper we present
an easy-to-implement approach that lends itself to graphical displays of model fit.
Our approach involves multiplying the estimated marginal residual vector by the
Cholesky decomposition of the inverse of the estimated marginal variance ma-
trix. Linear functions or the resulting “rotated” residuals are used to construct
an empirical cumulative distribution function (ECDF), whose stochastic limit is
characterized. We describe a resampling technique that serves as a computation-
ally efficient parametric bootstrap for generating representatives of the stochastic
limit of the ECDF. Through functionals, such representatives are used to construct
global tests for the hypothesis of normal margional errors. In addition, we demon-
strate that the ECDF of the predicted random effects, as described by Lange and
Ryan (1989), can be formulated as a special case of our approach. Thus, our
method supports both omnibus and directed tests. Our method works well in a
variety of circumstances, including models having independent units of sampling
(clustered data) and models for which all observations are correlated (e.g., a single
time series).
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Abstract

Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed
models and time series models), distribution diagnostic methodology remains relatively underdeveloped
in this context. In this paper we present an easy-to-implement approach that lends itself to graphical
displays of model fit. Our approach involves multiplying the estimated marginal residual vector by the
Cholesky decomposition of the inverse of the estimated marginal variance matrix. Linear functions of
the resulting “rotated” residuals are used to construct an empirical cumulative distribution function
(ECDF), whose stochastic limit is characterized. We describe a resampling technique that serves as
an computationally efficient parametric bootstrap for generating representatives of the stochastic limit
of the ECDF. Through functionals, such representatives are used to construct global tests for the
hypothesis of normal marginal errors. In addition, we demonstrate that the ECDF of the predicted
random effects, as described by Lange and Ryan (1989), can be formulated as a special case of our
approach. Thus, our method supports both omnibus and directed tests. Our method works well in a
variety of circumstances, including models having independent units of sampling (clustered data) and
models for which all observations are correlated (e.g., a single time series).

1 Introduction

Correlated data typically arise in public health, biomedical and environmental
applications, requiring techniques such as linear mixed models and time series re-
gression. Despite the widespread popularity of these methods, diagnostic method-
ology for addressing goodness-of-fit in this context remains relatively underdevel-
oped. Verbeke & Molenberghs (2000) noted that the choice of diagnostic method
for linear mixed models is not obvious (pages 151-152), and Agresti (2002) noted
that research is needed on model checking and diagnostics for mixed models in
general (page 526). Recently, Lin et al. (2002) have proposed graphical tech-

niques for assessing the adequacy of the deterministic portion of a generalized
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linear mixed model, but their methodology does not address the random compo-
nent of model fit. Although the error distribution plays a secondary role in some
applications, it remains an important component of the model when there is an
interest in prediction or in optimizing efficiency.

Limited methodology is available for assessing the distribution of the error
term. Existing work includes Lange & Ryan (1989), who developed methods
using estimated random effects from growth curve models, Fraccaro et al. (2000),
who discussed residual diagnostic plots in time series regression, and Louis (1988),
who discussed an approach similar to the one we describe. Unlike our paper, the
latter two papers present no asymptotic theory. Several authors have recently
proposed goodness-of-fit tests that apply in the mixed model setting (Hodges,
1998; Jiang, 2001), but the approaches are complex and do not lend themselves
well to graphical displays.

For models with subject-specific random effects, Pinheiro & Bates (2000) ad-
vocated the use of the standardized residual formed using predictions of subject-
specific means and an estimate of residual error (page 239). However, comparing
fitted and observed values can be misleading, as these comparisons reflect in-
tended shrinkage of estimates towards overall means. Coull et al. (2001) and
Longford (2001) addressed model fit by simulating data sets from the maximum
likelihood fit of the model and checking to see whether the observed data set
was extreme relative to the reference set. This idea has also been used in spatial
statistics (Ripley, 2001) and is similar to the posterior predictive checking strategy

often used in Bayesian analyses (Gelman et al., 1995).
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Houseman et al. (2003a) presented an approach that involves multiplying the
estimated marginal residual vector by the Cholesky decomposition of the inverse
of the estimated marginal variance matrix. This approach has the advantage
of enabling graphical depictions of goodness-of-fit along the lines of a quantile-
quantile (Q-Q) plot. In this article, we establish the global asymptotic properties
of the ECDF of such residuals and present a graphical goodness-of-fit procedure
using a computationally efficient approximation to a parametric bootstrap. Since
our procedure gives a computationally efficient means of obtaining the stochastic
distribution of the ECDF, it is possible to use it to obtain the distribution of any
test that can be written as a continuous functional of our residuals.

Our methods apply to a larger class of models than those studied by Lange &
Ryan (1989); they apply not only to linear mixed models, but also linear models
for which there are no independent units of sampling (for example, time series
and spatial models). In addition, the approach described in Lange & Ryan (1989)
can be formulated as a special case of our proposed methodology; thus we extend
their work to address global asymptotics. Consequently our proposed method
supports both omnibus tests and tests directed towards assessing a particular
component of the error term.

We have focused on distribution diagnostics, but remark that the cumulative
residual approach of Lin et al. (2002) can be used to check the mean structure,
and graphical displays such as a draftsman’s display (Dawson et al., 1997) and
PRISM (Zimmerman, 2000) are useful for diagnosing the form of the covariance.

Our paper is organized as follows. Section 2 describes the background of our
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proposed methodology, introducing the problem and the heuristics of our solution.
Section 3 presents the technical results needed to justify our proposed methods.
Section 4 reports simulation results. Section 5 provides two examples of our

methods, and Section 6 concludes with general discussion.

2 Rotated Residuals of a Linear Model

In this section we formally describe the context of our proposed methodology
and define the concept of a rotated residual, which is central to the method.
Throughout our exposition, we assume that a linear model has been specified as
follows:

y=Xpbo+e, (1)
where € ~ N, (0, V(79)). Here y € R" consists of n outcomes, possibly correlated.
The marginal mean of y is determined by an n x p design matrix X of covariates
and a p-dimensional parameter vector By € RP. The marginal covariance of y
is determined by the n X n matrix V(7o) having known form depending on an
unknown g¢-dimensional parameter v, € RY.

For example, a special case of (1) is a mixed effects model, where the marginal
variance V' (7) is block-diagonal, each diagonal block having the form o?(vo) I, +
ZpA(v0)ZE, where Z, is a matrix of covariates for cluster h, I, is the identity
matrix of corresponding dimension, o2(7p) is the error variance, and A(7,) is the
variance of the random effects. In the general random effects model, A(yp) is a
matrix having known structure depending upon the parameter vector . Another

example is time series regression, in which the correlation of outcomes observed
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at times s and ¢ depends upon a function of s and ¢, e.g. the first-order autore-
gressive process p/* . Model fitting for (1) is easily achieved using least squares,
maximum likelihood (ML), or restricted maximum likelihood (REML). Our focus
here is on the problem of goodness-of-fit and detection of outliers. Specifically, we
are interested in whether the ECDF of our proposed rotated residuals matches
the cumulative distribution function (CDF) of a normal distribution. To this
end, we define the vector of residuals z(f) as a function of possible parameter
values § = (B7,77)T. Although the residuals y — X3 can be standardized us-
ing the fitted diagonal of V' (7), the resulting residuals are still potentially highly
correlated, even in large samples. Therefore, we propose an n-dimensional linear
transformation (which we informally term a rotation) to yield new ones that are
asymptotically uncorrelated. Let L(y) be the Cholesky decomposition of V' (y)™,

so that V()™ = L(y)L(y)", and define

() = L(7)" (y — XB). (2)
Then 2(6) ~ N,(0, I,), where 6y = (BT, +I)T and I, is the n x n identity matrix.
If 6y were known, a goodness-of-fit procedure for the appropriateness of model
(1) could be established by comparing ®(z), the standard normal CDF evaluated
at x, to the ECDF evaluated at z, for various values of z. The ECDF can be

expressed as Fy(z,6p), where

L

Fo(x,0) = — 2 I(z—mz(0)), (3)
I(u)=1ifu <0, I(u) = 0ifu > 0, and m; is the canonical projection onto the ith
coordinate. Under the null hypothesis that z;(6p) = m;2(6p) ~ N,(0, I,) [equiv-
alent to (1)], a pointwise confidence interval for F, (z,6y) is easily constructed

5
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by noting that the variance of (3), evaluated at 6y, is simply ®(z)(1 — ®(z)). A
global confidence band can be constructed by inverting the Kolmogorov-Smirnov
test for the equality of two distributions.

In any practical situation, fy must be estimated from the data. This compli-
cates the construction of confidence intervals in that the variance of (3) tends to
shrink when the parameters are replaced by estimates based on the data. Lange
& Ryan (1989) described this phenomenon extensively in the context of con-
structing a Q-Q plot of random effects predicted in growth curve models. These
authors derived the adjustment factor needed for the variance of the ECDF for
random effects in growth curve models, while Houseman et al. (2003a) provided a
more general approach involving marginal residuals of a general linear model for
correlated data. Houseman et al. (2003a) demonstrated that in many practical
circumstances, (3) has an asymptotically normal distribution when z is fixed.
The goal of the present paper is to extend this result by proving weak conver-
gence of the stochastic process indexed by x in an arbitrary compact interval,
and to construct a graphical method for examining the global behavior of such
stochastic processes. Thus we present a global test of distributional assump-
tions. Additionally, by generalizing the projection matrix 7; in (3), we address
the global behavior of the ECDF of random effects, thereby extending Lange &

Ryan (1989).

2.1 Omnibus Test

In this section we describe the heuristics of our method, deferring technical details

until Section 3. Let B and 7 be consistent estimators for 3y and ~y, respectively,
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and denote the joint estimator as h = (B, 7), consistent for #y. As shown by
Houseman et al. (2003a), Fn(x,é\) is asymptotically normal for fixed z when

model (1) is correct, subject to regularity conditions that are often met in prac-

1

tice. In particular, n= 2 (Fn(x,é\) - @(x)) ~» N(0,7%), where ~» denotes weak

convergence,r*> = ®(z)(1 — ®(z)) — 6TWéy, W = Var[d], and & is a vector that

~

can be consistently estimated by d,(z, é\, ), where

5u(2,,80) = aoT(

0, 60)

and

Caay_ Ly =m0 X (B
ol 0] = ZQ(\/ﬂz V)TV () L(y)w T>' W

These formulas are sufficient for constructing pointwise confidence bands, but
they do not provide enough information to construct global confidence bands.
To this end, we demonstrate weak convergence of the stochastic process implied
by letting x vary and characterize its asymptotic behavior. In practical settings,
direct application of the result is complicated by the difficulty of tabulating tail
probabilities for quantities of interest, such as the supremum of the difference
between observed and expected values of the ECDF. Therefore, we construct
a global hypothesis test using a resampling technique motivated by Lin et al.
(2002).

Consider the score function for estimating 6y, which may be expressed as a
function U, (6, z) of the rotated residuals (2) simply by substituting L(y) Tz +
L(y)* X B for y in the score functions expressed in terms of y. For example, if U, =
(U,(LB ), U,(f“), o, Ur(ﬂq)) expresses the score function as a vector of components for

estimating # and the ¢ variance component parameters, then for ML estimators,
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the component for estimating [ is
U = X"V (1) y — XB) = XTL(7)=(6),

while the component for estimating v; is

U — %(y - XB)TV(V)I%V(V)I(«U —XB) —tr <V(7)lg—;>
- %z(o)TL(v)Tg—;L(v)Z(ﬁ) —tr (V(v)lg—;g :

Similar expressions exist for REML estimators. When the score is expressed in
this manner, it may be used to simulate realizations from the stochastic limit
of Fn(w,é\n) — ®(z). To see this, let z* ~ N(0,I,). Since the rotated residuals
are independent when evaluated at 6y, U, (6o, 2*) has the same distribution as
Un(0,2(6p)), and the ECDF F}¥(z) of z* has the same stochastic distribution
as F,(z,6p). Through a Taylor’s expansion, letting J,(#) denote the expected
information matrix corresponding to U,(fy, z2(6p)), we demonstrate in the next

section that
FX(z) — ®(z) = F(,8,) — ®(2) + 60(%, 0, 0,) T Jn(6) "Un (B, 2*)  (5)

has (conditional on y) approximately the same stochastic distribution as the un-
conditional distribution of F),(z, §n) —®(z). Thus, the distribution of a functional
applied to F,(z, @\n) may be obtained, via simulation, by tabulating the distribu-
tion of the same functional applied to a large number of simulations ﬁ’,’{(x) For

example, by noting that

sup |Fy (@, 6,) — ®(x)| ~ sup |Ef () — 8()], (6)

zeX zeX

we obtain a test resembling the Kolmogorov-Smirnov test for the equivalence of

two distributions, but correctly adjusted for estimation of #. P-values can be
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estimated as the proportion of simulations for which the statistic represented by
the right hand side of (6) is larger than the corresponding observed value. A
test similar to the Cramér-Von Mises test can be obtained by considering the
functional

TP = [ 1P@) - $@)Pda @), (7
Lin et al. (2002) considered a process similar to (5) for checking the predictive
portion of a model, but their formulation uses the residual in a quite different
manner. We note that (5) is, in essence, an approximation to a parametric
bootstrap. However, its advantage is that it can be computed quickly. The exact
parametric bootstrap would require the solution of a multi-dimensional nonlinear
equation, which is computationally expensive, especially when the complexity of
computing V' (7) is of order O(n?). Expression (5) requires only the computation
of 4,, and J,, which can be obtained once and reused over multiple simulations.
When 9V/0y; has a closed form expression for each element 7y of v, it is easy to
show that §,(z,8,6y) also has a closed form. The form of §,, can be obtained by

applying the chain rule to the derivative of (4) and noting that

oV
= —tr (Do) 2
770) ( Ok

A typical example of computation times involving 1000 resampled values might be

ir (%L@)%@Lm

) Lm)) . ®

10 minutes for our procedure and several hours for the corresponding parametric

bootstrap.
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2.2 Directed Tests

The preceding development corresponds to an omnibus goodness-of-fit test for (1).
In some situations it may be of more interest (and more powerful) to test specific
distributional assumptions. For instance, when one is interested in prediction
of random effects in a mixed model, it is of interest to evaluate the validity of
the normality assumption for the random effects. We can extend our theory
to incorporate such directed tests by generalizing the projection matrix m; used
in (3). In particular, let P, = (Py,..., Pun,) be an array of 1 x n matrices,
orthogonal in the sense that P,;P}; = 0 when i # j and PP, = 1. For such
arrays, { P,iz(0) }i=1,....n, are independent and identically distributed as standard

normal variables. We study the ECDF of residuals of the form

1

Fala, 0iPn) = 3 Z I (z = Pniz(0)), (9)

for which P,, = (my, ..., m,) is clearly a special case. In addition, when (1) expresses
a random effects model in which V' is composed of blocks V}, having the form V}, =
ZyAZF + 6®Ry, (where h = 1,..., N, A and Ry, are positive definite symmetric
matrices, A of size d x d and Ry, of size ky X kp, and Zj is a kj, X d matrix), it is
also possible to express the BLUPs of the random effects as a special case. The

standardized BLUP of the jth random effect component for cluster A is obtained

as (CV T -1200) (6 where

Oi(zj) — ﬁjAZthingTﬂ-; = ﬁjAZ;thﬂ';;a

10
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Vi = LpLY, and 7; : R? — R and 7} : R® — R* are canonical projections. The

array containing the matrices
P}S]') — (Cl(zj)cl(zj)T)ilnci(zj) (10)

is orthogonal in the sense just described. Thus, the ECDF of the standardized
BLUPs discussed by Lange & Ryan (1989) is a special case of (9). Using this
framework, both the pointwise confidence intervals described in Lange & Ryan
(1989) for random effects and the confidence intervals described in Houseman
et al. (2003a) for rotated marginal residuals can be extended to global confidence
bands under the same theory.

For the more complicated choices of P,, equations (4) and (5) hold if each

instance of 7; is replaced by P,;. In particular, equation (4) becomes

= \VPuL()TV (%) L(y) Py
The projections described by (10) depend upon the unknown parameter v and,
in practice, Pffj ) must be estimated from the data. Therefore, the f-derivative
of (11) should consider the dependence of P,; on . However, when P,;(7) is
constrained to have unit length, the dependence of P,; on # has no first-order

effect. That is,

9 q)( z = Pu(1)L(v)" X (8o — B) )
00T\ V/Pus(7) L(YTV (70) L(7) Pus(7)”

0 ( 2 — PuL(7)"X (6o — ) )
06T V/ PuiL(7)TV (v0) L(7) PL
(12)

6=0o 6=0o

where in the right hand side of (12), P,; is the constant P,;(v). This is easily
shown by parameterizing P,;(7) as a vector divided by its norm, as in (10), and
applying the chain rule to (12).

11
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Unfortunately, when non-constant projections such as (10) are used, second-
order terms may affect the performance of our proposed approximation (6), even
in relatively large samples. We discuss this in Section 4. Consequently, we propose
a simple modification of (6) that, in our simulations, performs better in smaller

samples. Instead of using F*(z) = N"* 32N I(z — P(j)z*), which treats P,Eg) as

ni

if it were known, we propose replacing it with F*(z) = N1 Zf\il I(z — P*-(j)z*),

where P;(j) = (C;(j)CZ(j)T)_I/zC;(j) and

acy
67

O =Y + e 1(8,) T Un (B, ).

This replacement simulates the effect on (9) of estimating Pr(j). Note that,

in principle, we could use P,:(j) = éf)('y*), where v* is obtained from 6* =
0+ Jn(é\n)_lUn(an, z*). However, this requires additional computation time; even
worse, with bounded parameterizations of v, first-order approximation may oc-
casionally produce a value of v* that lies outside the boundary of the parameter
space, causing the construction of P,f(j) to fail. Note also that by applying the lin-
() always has unit

ear approximation to C’,(lj ) instead of P\ we guarantee that P,:‘

ne

length. Our simulations demonstrate that our proposed modification produces

good results.

3 Technical Results

In this section we present the technical results needed to justify the proposed
methods, together with their formal proofs. We establish general notation as
follows, restating some of the definitions given in the previous section for the

sake of completeness. We denote the absolute value and vector norm identically

12
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as ||, and reserve || -|| for the £? matrix norm; that is, if A is a k x d matrix, then
|A|| = min{a € R : |Az| < a|z| Vx € R?}. The norm of a row vector is sometimes

equated with the £2 norm of its associated linear transformation. We denote the

column-vector gradient of a possibly vector valued function ¢({) as g—g. When
its transpose is needed, we denote it as %. The derivative of a matrix U with

respect to a scalar ¢ is denoted d¢U. Often, we require boundedness of ||d¢, U|| for
all elements of some multidimensional parameter vector ¢ = ((y,...Cx)". In this
case, we state this condition informally as a boundedness condition on ||d.U]|.
If D is a metric space and f : D — R, then |f|, denotes the uniform norm,
equal to sup,cp |f(z)], and £>°(D) is the space of all f : D — R with bounded
uniform norm. By stochastic process we mean a tight stochastic process as defined
in van der Vaart (1998), and by an asymptotically tight sequence of processes
we mean a sequence that satisfies condition (ii) of Theorem 18.14 in van der
Vaart (1998) [e.g., see (16) below]. We denote weak convergence, whether for
a distribution, random variable, or stochastic process, with the symbol ~». We
donote the minimum of s and ¢ as s At and the maximum as s V t. Finally, we
denote the normal CDF as ®(u) and the normal density as ¢(u).

Let 6y = (B,78)T € © C RP x RY, where © is an open subset. Assume V()
is a (nonsingular) positive definite symmetric matrix of order n, continuously
differentiable in a neighborhood of v, and that L(y)L(y)? = V(y)™!. Note
that L(7), a Cholesky decomposition, is also positive definite and continuously

differentiable in ~y. Let

Yn ~ Nn(XnﬁOa Vn(70))a

13
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where X, is bounded. Fix an array of matrices P, = {P, ..., Py, }, where each
P; is a 1 X n matrix and each row in the array is orthogonal in the sense that
PPl = 0if i # j and P,;P}; = 1. When the context is clear, the subscript n
will be omitted from y,, X,, V,, Pn; and P,.
Let z(0) = L(7)"(y — XB) and z(9) = P,2(0) = PL(y)"(y — XB). Let X be
a compact subinterval of R and define the empirical process F,, : X x © — [0, 1]
as follows:
Nn
Fo(z,0) = N,' > I(x — z(0)). (13)
i=1
For any finite subset {z1, ..., z;} C X, denote as F,(xy, ..., zx; #) the k-dimensional
vector (F,(1,0), ..., Fn(xy, 0))T, denote as ¢(zy, ..., 71 ) the expectation of Fy,(z, ..., Tx; 6o),
equal to (®(x1),...8(z))T, and denote as Wg(xy, ..., ;) the variance of Fy, (1, ..., zx; 6p).
In addition, define
) = N 3 (2,0,
i=1
where [(w) =1 if w > 0 and I(w) =0if w <0,

PN e 1C))
xl( ’9) 82(9) )

mi(0) = PL(y)" X (Bo — B),
and
si(0)” = BL(7)"V(v0)L(7) P

Note that z;(8) ~ N(m;(9), s;(0)?), so

and

http://biostats.bepress.com/harvardbiostat/paper18



Let 7;(y) be the correlation between z;(6) and z;(6p). This is easily shown to be

ri(y) = Corr [2i(0), 2:(60)] = He Zi((eg))L(QO)Pi ' (14)
Finally, define
a;(z;0;0') =I(x — 2(0)) — I (x — 2(0")). (15)

Note that Ela;(z;6;0")] = ® (x;(z,0)) — ® (x;(x,0")), that a;(x;0;6') = 1 when
zi(0) < x < z(#'), that a;(z;0;6') = —1 when 2;(f#') < = < z(0), and that

a;(z;0;6") = 0 otherwise.

In order to establish desired results, it is necessary to consider the combined
limiting behavior both of the parameter estimator and of the residuals. As a
consequence, it is necessary to distinguish a fixed € close to 6y apart from an
estimator é\n which may yield # as a value. Therefore, quantities that converge in
O(|6 —6o]) or O(]0 —6p|*) must be understood to converge uniformly with respect
to n, so that convergence is preserved when we replace 6 by §n In general, when
we write f,(0) = O(g(f)), we mean that there exists an M > 0, independent
of n, such that |f,(8)] < Mg(#) for all n. This notation extends standard O-
notation [e.g., described in Serfling (1980)] to address our uniform convergence
requirements.

Theorem 1 establishes our main result, namely that the ECDF (13) converges

weakly to a Gaussian process. To prove it, we require the following Lemma:

Lemma 1 (Asymptotic Tightness). Let {Y, },—1 2, be an asymptotically tight
sequence of stochastic processes, each having sample paths in £>°[X]. Addition-

ally, let {U,}n=12.. be a sequence of random variables on R? converging in law

yoor

15
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to a random variable U, and let b : X — R¢ be a uniformly continuous function.
Then the sequence of processes {Z, }n=12... defined by Z,(z) = Y,(z) + b(z)TU,

is asymptotically tight.

Proof. Fix € > 0 and > 0. By the continuous mapping theorem, |U,| ~ |U|;
consequently, if ¢ is a continuity point of the distribution of |U| and P{|U| >
q} < n/2, then there is an N such that for all n > N, P{|U,| > ¢} < n/2. By
the uniform continuity of b, there is also a § > 0 such that if |s — ¢| < § then

|b(s) — b(t)| < €/2q. Thus, for any |s —t| < 9,

P{b(s) Un — (&) Us| > ¢/2) < P{Ib(s) — b(1)||Unl| > ¢/2}
= P{UI > [b(s) - b(t)| "e/2}

< P{|Un| > ¢} <n/2.

By Theorem 18.14 in van der Vaart (1998) which characterizes weak convergence
in £>[X] in terms of finite-dimensional distributions and tightness, it is possible

to choose N* > N large enough and §* < ¢ small enough so that for n > N*,
P{ sup |Yu(s) —Yu(t)| >¢€/2 3 <n/2.
[s—t|<d*
Since
sup |Zn(8) -l Zn(t)| < sup |Yn(s) - Yn(t)| + sup |b(s)TUn - b(t)TUn|a
|s—t|<d* |s—t|<d* |s—t|<d*
we have

P{ sup |Zn(8)_Zn(t)|>€} < P{ sup |Yn(s)_Yn(t)|>€/2}

[s—t|<d* |s—t|<d*

+P{ sup |b(s)TU, — b(t)TU,| > 6/2}

|s—t|<d*

< n/2+n/2=n

16
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for any n > N*. This shows that

n—00 [s—t|<d*

lim supP{ sup | Zn(s) — Zu(t)| > 6} <. (16)

Theorem 1 (Stochastic Convergence). Suppose §n is a consistent and asymp-

totically efficient estimator of 6, and that for every finite subset {zy,..., 2} C X,

1 é\n - 90 0 W0 WOF
nz ~ N ,
Fo(zq, ..., x5, 00) — p(21, ..., 1) 0 Wk We(zy, ..., 1)
(17)
Suppose also that
Ry, =n7sup |Fu(z,0,) — pn(@, 0,) — Falx, 60) + ®(2)| 2 0. (18)

TEX
In addition, assume there exists a continuously differentiable function p* : X x
© — R, also continuously twice-differentiable in the second argument, such that
for all n,
pn(2,0) = p*(2,0) + €n(2)" (0 — 6o) + O(16 — 6o %), (19)
where €,(z) is constant with respect to 6, sup,cy €,(z) — 0 as n — oo, and the

boundedness of O(|f — 6y|?) is uniform in z and n. Then

0=

[F(6) — ®(2)] ~ G(12(s, 1)), (20)

n

where G(72) is a Gaussian process having autocovariance function

72(s,8) = B(s At)[L — B(s V £)] — 8(s, B0) T Wed(t, By), (21)
and
5(z,0) = %(x,@). (22)
17
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Proof. Since

M*($790) ,Um z, 90 Z(I)

~ ~

pin(2,00) = (@) = (2, 0n) = 17 (2, 60) + 4 (2,0) = 1" (2, 0) + 1" (2, 60) — B(2)
= (@) (B — 00) + O(18, — 6o*) + 1" (, 8) — 1" (x,69) + 0
— (@, 80) — 1 (2, 00) + en(2)" (B — B0) + OB — 66 %)
= 8(2,600)T (8 — 00) + £n(@)T (B — b0) + O(|8, — 6, *),

where the last equality follows by Taylor expansion. By Slutzky’s Theorem, both

ne |§n — 6o]? and néen(x)T(an — 6p) converge in probability to zero, the latter as

a stochastic process. Consequently,

0 [pn(z,0,) — ®(x)] = n26(z,00)T (@, — 0y) + n2en ()T (Bn — o) + O(n2 |8, — 6p|%)

~

= n28(z,00)7 (0, — 6o) + 0p(1).

pn (2, 8,) + Fr (2, 60) — ®(z) — (z)]
= Ry +ni[uy(z,8,) — ®(2)] + n3[Fy(z, 6p) — &(x)]

= n3[Fu(x,00) — ®(x)] + n26(x, 00)" (6, — 60) + 0p(1).

This result shows that for arbitrary {zq,...,zx} C X,

-~

n2[Fy (21, .., @k, ) —(@1, ..., 21)]T = n3[Fy(a1, ..., 2k, 00)—P(2)]+n2 D(x1, ..., 2, 00) " (B —00) +0p (1

/

(23)
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where D(z1, ..., zy, 0y) denotes the matrix [0(z1,6y), ..., (xg, 0p)]. From (17) it is
clear that (23) converges in law to a normal distribution.

Now F,(z,6y), an ECDF constructed from independent standard normal vari-
ables, weakly converges to a Gaussian process. [See, e.g., Chapter 19 of van der
Vaart (1998).] Therefore, it is an asymptotically tight sequence of stochastic
processes. By Lemma 1, the uniform continuity of §(z,6y)” (which follows from
continuity of d(z,60)” and compactness of X) insures that the non-remainder

portion of
n3[F,(z,0,) — ®(x)] = n?[F,(z,00) — ®(x)] + n26(x, 60)" (6, — 6p) + 0p(1) (24)

is also an asymptotically tight sequence of stochastic processes. Therefore, (24)
weakly converges to a Gaussian process. The form of its autocovariance function
is established in a manner similar to the latter portion of the proof of Theorem

1 in Houseman et al. (2003a). O

Note that (17), (18) and (20) are standardized by n'/2. If P, contains N, <
n elements, then it may be more convenient to standardize these expressions
by Ni? In practical settings, it may be assumed that n !N, — « for some
a < 1, in which case standardizing by Ni/? s equivalent to standardizing by
n'/2. For example, if P, obtains the standardized BLUPs for random effects in
a mixed effects model, n~'NN,, converges to the inverse of the limiting “average
cluster size”. We remark that condition (18) precludes cases where the number
of observations per cluster grows too quickly. In such a case, condition (32) of
Theorem 4 below would not be met; indeed, Theorem 5 requires bounded cluster

sizes.
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2 of the estimator F,,.

Theorem 1 establishes the theoretical autocovariance 7
However, 72 must be estimated if the theorem is to be of practical use. If consis-
tent estimators Wo and 6 of W, and §(z,6,) are available, then 72 is consistently
estimated by substituting W, for W and § for d(z,6p) in (21). Standard methods
for obtaining /WH are available using ML and REML [see, for example, McCul-
loch & Searle (2001) or Diggle et al. (2002)]. To justify a consistent estimator
for §(z,6y), we present Theorem 2, which uses u,(5,7) as an approximation to

(B, 7). Since u,(B,~) implicitly depends on 6y, we must justify the substitution

of §n for 6, as well as the differentiation of p,(3,7).

Theorem 2 (Estimation of 6(x,0)). Let d(x,6y) be defined as in (22) and
suppose condition (19) in Theorem 1 holds. In addition, let fi,(z,6,8y) denote
pin (2, 0) considered as a function of both the estimate # and the true parameter 6.

Assume fi,(z,0,0y) is continuously twice-differentiable in the second argument,

and define
T fi,

5n(3779790) = W’

(25)
where the derivative is taken with respect to the second argument. Finally, sup-

pose that for all n and for all x € X and all 6 sufficiently close to #y, there is an

M > 0 such that
|6n(x7979,) _5n(x79790)| < M|9,_90|' (26)
Then, if §,, = 6, then

sup [6,(z, 6, 0,) — 8(z, 6p)| = 0.

reX
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Proof. Let
Cn(,0) = fin(,0,60) — u*(z,0) = ea(2)" (6 — o) + O(10 — o), (27)

where the second equality is true by condition (19). Then (, is continuously

twice-differentiable in the second parameter and, by Taylor’s Theorem,

9¢n

S| (0—80)+O(19 = 6ol?).

Cn(xv 9) = Cn(xv 90) +

0=6o

Since fin(z, 09, 00) = p*(z, ), this expression, combined with (27), shows that

9Cn
06"

= en(z)7,

6=09

and therefore that

9n

50T = en(z)T 4+ O(|6 — 6y)).

In other words, d,(z,8,0y) — 6(x,0y) = en(x) + O(|0 — 6p|), where convergence of
the latter term is uniform in n and z. Condition (26) implies that 6, (z,6,0') —

dn(z,0,60) = O(|0" — 6y]), uniformly in n and z. Therefore,
6u(, 00, 0,) — 6(2,00) = 0n(x,0n,0,) — 6,(z, By, B0) + 6n(x, O, B0) — 6(65)
= 0(1n — o) + en(z) + O(18 — bol)
= en(@) + 016 — 6ol).

By consistency of §n and uniform convergence in x and n, the supremum of the

last expression converges to 0. U

We focus now on the justification of our proposed resampling technique. Let
z* ~ N(0,1,) and let U,(f, z) be the estimating function for 6, as described in
Section 2. Since the rotated residuals are independent when evaluated at 6,

Un(0, z*) has the same distribution as U, (6o, 2(6y)), and the ECDF F*(z) of 2*
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has the same stochastic distribution as F,(z, 6y). We present Theorem 3 to justify

the combination of F(z) and U, to approximate the behavior of (20).

Theorem 3 (Score Functions). Assume the conditions of Theorems 1 and 2.
Let U, : © — RP' be the score function corresponding to # and J, its cor-
responding derivative matrix. Assume that n-1/ 2Un(90) converges to a normal

distribution and
n2(8, — 0') = n'2J,(6") " 1UL(0") + O,(n/?|6,, — 0'?) (28)

for all @' in a neighborhood of 6. Additionally, assume .J,,(6') is continuous. Then

n'/2[F,(z,6,) — ®(z)] has the same stochastic limit as
nl/z[Fn('Ta 90) - (I)(x) + (5n(l‘, é\na é\n)TJn(é\n)ilUn(QO)] (29)

Proof. Note that n'/2|6, — 6y|2 = 0,(1) by the consistency of 8,. Consequently,
it is clear from (24) that n!/2[F,(z,6,) — ®(z)] has the same stochastic limit as
n2[F,(z,00) — ®(x)+6,(z,00)7 J(6p) U, (8o)], which differs from the right hand
side of (29) only by n'/2[5(z,00)T Jn(66) ™2 — 6, (2, B, 0) T T (8) "1 |Un (Bo) + 0p(1).
By Theorem 2, the consistency of @\n, the continuity of J,, and the asymptotic

normality of U,(6), this difference is of stochastic order o,(1). O

Equating U, (6,) and U, (6, 2(6)), expression (29) can be used to approximate

Fo(x,6,) — ®(z). By Theorem 2 and the Continuous Mapping Theorem,
n'2[Fx(z) — ®(x) + 026, (, O, 00) 7 T (8) " Un (B0, 2)] (30)

is asymptotically equivalent to (29). However, since y is unknown, f,, must be
used as an estimate of # in (30). It is possible to justify such a substitution using,

for example, the methods described in Chapter 23 [“Bootstrap”] of van der Vaart
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(1998). The details are somewhat too lengthy to include in the present exposition.
Letting

Fi(x) = Fu(x,8,) + 64(2, 00, 00)7 Ju(80) "Un (B0, 2*), (31)
it follows that realizations of (31), conditional on y, serve as approximations to
the distribution of (20). Although (31) is an approximation to a parametric boot-
strap, simulation results presented in Section 4 demonstrate that it is adequate
for modest sample sizes.

The asymptotic normality condition (17), along with the corresponding effi-
ciency requirement, can be established for many types of models. For clustered
data, standard methods [e.g. van der Vaart (1998), Chapter 5] may be used
to establish the result. In this context, Searle (1970) describes an explicit form
for Wy,. For autoregressive/moving-average (ARMA) time series models, Durbin
(1960) is a useful reference. With regularity conditions on the form of V(v),
asymptotic normality (with the corresponding convergence rate) can be proven
using a Héjek projection [van der Vaart (1998), Chapter 11|, although this is
beyond the scope of the present work. The joint asymptotic normality can be
derived using the Cramér-Wold device.

Conditions (18), (19), and (26) are difficult to verify directly. We defer a dis-
cussion of (19) and (26) until later in this section, but now present arguments
to establish (18), which justifies the substitution of u, for F, in asymptotic ex-
presssions. [This leads to an asymptotic differentiability condition critical for the
proof of Theorem 1; for a definition see van der Vaart (1998).] Theorem 4 is a

general statement, but condition (32), which applies to the indicator residuals a;
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(not to z;), is also difficult to verify. The condition turns out to hold for a large
class of interesting models, and we discuss some special cases later in this section.
The proof of Theorem 4 follows by combining Chebychev’s inequality with the

definition of convergence in probability.

Theorem 4 (Asymptotic Differentiability). Let 6, be a consistent estima-

tor of 0. If

nt Z |Cov [a;(z,0,0),ar(z,8,00)]| = O (|6 — 6], (32)

ii'=1

where the boundedness of O (|6 — 6|) is uniform in n and for z € &, then

R, = n? sup F,(z, §n) — pn(z, (?n) — F,(z,0y) + ®(2) Zo.

zeX

Proof. Let
R (x,0) = n (F,(z,0) — pa(z,0) — Fu(z,0p) + ®(z)),

so that R,, = sup,cy |R}(z, §n)| For the moment, fix # € ©. Note that

n

Fn(xa 9) - Fn(37a90) = n_l Zai(xaeaeo)

i=1

and
B [Fa(2,0) — Falz,00)] =0~ 3 F[a:(,6,60)] =n(z, 6) — B(2).
i=1
Therefore E[R}(z,6)] = 0. Also, by (32),

Var[R:(z,0)] =n 'Var

> ai(z, 6, 90)] <n 'Y ) |Covai(x,6,6), ai (z,0,60)]|-

i=1 i=1 i'=1

Thus Var[R:(z,0)] = O (|0 — 6y|). Together with the Chebychev inequality, this
implies that there exists an M > 0 (independent of x and n) such that

- Var[R:(x,0)]

M
P(R:(z,0) > ) < < 16— 6.

g2
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Now let II,, be the probability measure for the random variable é\n For 0 > 0, it is
possible to select ng large enough so that IT,, {|6 — 6y > £26/M} = P (|§n — 6] > 625/M> <

0 whenever n > ngy. For such n,

~ ) )
P <Rn S e, | — 60| < ﬁ> - / q {|9 9| < }P (supR;;(x,o) > 5|9> dIL, ()
C]

reX

<|

e26) M
< 110 — 6y < — » — |0 — By|dIL,, (0
< [1{p-ai<T} Fe-alame
M %5 )
e 1410 — 6y < — ;dIlL, (0
< o7 [1{e-ai< 5 e
< 9

and
~ 20 ~ 20
P| R, , |0, — 6 — | <P||0,—0 — ) <4
( > ¢, | 0|>M>_ (| 0|>M>_
Therefore, P(R,, > ¢) can be made arbitrarily small by choosing n large enough.

O

In practice, condition (32) may be difficult to verify directly, but Theorem 4
is still useful for proving that (18) holds in special cases. For example, it is used
to prove Theorem 5, which addresses condition (18) for a large class of block-
diagonal (clustered) designs, and Theorems 6 and 7, which address some specific
models whose marginal covariance is not block-diagonal.

A critical consideration in the proofs of these theorems is a bound for the
variance and covariance of the a; quantities defined in (15); specifically, we require
that

Var|a;(B,v;z,00,2)] = O(|6 — 6o]). (33)

The proof of (33) is complicated by the fact that the variance of a;(z, 6, 6y) is

not differentiable at 6y because its behavior depends upon whether or not v = ~g;
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consequently, standard Taylor’s Theorem arguments do not apply. We outline the
heuristics of an alternative argument that applies generally to models that may
not have block diagonal variance matrices. The variance and covariance of the
a; quantities can be decomposed into probabilities of events involving both z;(6)
and z;(0). For example, a;(z,0, 6y, z) = —1 precisely when z;(6p) < = < z(0).

As 8 — 6y, the correlation r;(f) of z;(8) and z;(6y) approaches 1. This leads
to singularity in the joint distribution of z;(6) and z;(6y), and differentiation of
Var[a;] becomes impossible. However, though the variance and covariance of the
a; quantities lead to expressions that have no derivative at 6y, the derivatives
near #p are bounded, and the maximum of the derivatives as § — 6, from any
direction suffices for the bound implied in (33). To describe conditions under
which the derivatives near #, are bounded, we exploit a geometric interpretation
of 7;(#) as an angle between two vectors, from which a connection between the
conditions on V() and the boundedness of the derivatives is established.

The arguments are organized in Lemmas 2 through 7. Lemma 2 establishes a
bound for the derivative of a vector function that returns the angle between the
argument and a fixed vector; this result has no one-dimensional analog, for in one
dimension the arccosine function is unbounded near 1. Lemma 3 establishes a
geometric interpretation for r;(6) and uses the bound determined by Lemma 2 to
bound r;(#). The geometry and corresponding bound are used in Lemma 4 and
Lemma 5 to bound the probabilities of certain events involving z;(8) and z;(6y).
These probabilities are used in Lemmas 6 and 7 to bound the variance of a; the

covariance of a; and a;.
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Lemma 2. Let e; € R? denote the unit vector in the ith direction, and define

g:R¥—{e;} = Rby

Then |dg/0u| — 1 as u — e;.
Proof. See Houseman et al. (2003b), Lemma 1. O

Lemma 3. Let r;(#) be defined as in (14). If there is a neighborhood of v, over
which [|[V()]| is bounded and bounded away from zero, and over which ||d,L]||
is bounded, then cos™'r;(#) has bounded gradient near v,. Additionally, if the

bounds for V and d,L are uniform in n, then so is the bound for cos™'r;(6).
Proof. See Houseman et al. (2003b), Lemma 2. O

Lemma 4. Let
Ai(x,0) = P (2(6h) <z < 2(0))
and
Bi(z,0) = P (z(0) < < z(b0)),
and suppose the conditions of Lemma 3 are met. Then there is a neighborhood

U of 6y and an M,, > 0 such that for all # € U and for all x € X,
Ai(z,0) < My|0 — 6|
and
B;(z,6) < M,|6 — to|.
Moreover, if the uniformity conditions in Lemma 3 are met, and if the gradient

of m;(#) is uniformly bounded (in n), then there is an M > 0 such that M,, < M

for all n.
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Proof. Let t;(6) = cos™'r;(#) > 0. A straightforward probability calculation,
based on well-known facts about the bivariate normal distribution, produces

Ai(z,8) = A (m, s,t), where

s — 1, and t | 0. For each value of ¢ > 0, there is a neighborhood containing ¢
over which the integrand in (34) is bounded. Therefore, the derivatives of Az(x)
with respect to m, s, and t can be obtained by differentiating the integrand and
integrating the result. AE’U) does not possess a derivative at the point (m,s,t) =
(0,1,0), but it is differentiable for ¢ > 0 and the corresponding derivatives remain
bounded as (m,s,t) — (0,1,0). Furthermore, they are uniformly bounded with
respect to x, as long as « ranges over a compact set. Consequently, for all z € X,
the derivatives are bounded in a convex neighborhood U’ of (0, 1, 0) by a constant

M' > 0. Thus, for any fixed ¢’ > 0 with (0,1,¢) € U’, we have

9AY 9A" AP
A (m, s,t) = AP (0,1,¢)+ T i —1)4 t—t'
i (mys,t) = 470, L)+ —- ™ _*(s )+ =3, H*( ),

where m* is between 0 and m, s* is between 1 and s, and t* is between t’ and

t. [See Serfling (1980), Section 1.12, Theorem B.] From the properties of matrix

oA
(3 _1 _ NT .
( S H*)HKm,s yt=t')7|

Letting ¢' | 0, and using the bound for the derivatives and the convexity of U’,

norms, it follows that

9A®
ot

§=8*

9A®

]

" Os

m=m*

1A (m, s, 6)—AD(0,1,1)| <

)

we have

1AW (m, s, 8)] < M'|(m, s —1,8)7].

T
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Along the hyperplane ¢ = 0, a similar probability calculation produces a bound
that, without loss of generality, can be assumed to be < M’'. (Otherwise, take
M' to be the minimum of the two bounds.)

By Lemma 3, ¢;(#) has bounded gradient near 7. Since

0% = () (P, LW o) L) PE 4+ PL()V (30)(dy, L)Y)

Ve

the gradient of s;(6) is bounded by |si(6)| ™, [ldy, L[|, [[V(70)l, and ||d,, L||. The
latter two quantities are bounded by assumption; being upper-triangular, d,, LT
has the same norm as its transpose; and s;(#) can be made arbitrarily close to 1.

Finally,

3mi

6’7k

— Pz(d'ykLT)X(ﬁ - BO)

and

3mi

05

and X has bounded elements, so the gradient of m;(f) is bounded (although
not necessarily uniformly in n). It follows that there is a neighborhood U of 6
and an M" > 0 such that |m;(8)| < M"|0 — 6|, |si(0) — 1| < M"|6 — 6|, and

1t:(8)] < M"|9 — 6o|. With M, = 3M'M", we have
|Ai(z,8)] < M'|(mi(8), 5:(8) — 1,£,(8)T| < 3M'M"|8 — 85| < M, |0 — 6y).

If ||V ()] is uniformly bounded and bounded away from zero, and if ||d,L|| is
uniformly bounded, then the gradients of s;(f), and ¢;(#) are uniformly bounded.
For t;(), this follows from Lemma 3, and for s;(0)? it follows from the previous
paragraph. If, in addition, m;(#) is uniformly bounded, then 3M M" is a bound

for all n. A similar proof establishes the same result for B;(z,0). O
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Lemma 5. Let
AAyi(z,0) = P (2:(00) < & < 2(0), (80) < 7 < 2(9)),
AByj(z,8) = P (2(60) < © < z(0), %(8) < z < 2(6y)),
BA;(z,0) = P (2(0) <z < z(6y), 2(8y) < x < 2(6)),
and
BBi;(z,0) = P (z(8) < z < z(6), 2;(8) < z < 2(80)) .

Also, let A;(z,6) and B;(x,0) be defined as in Lemma 4, and let

| 0350 - - COU[ZZ(Q),Z](Q)] -
0i;(0) = o1 | = | Coulz(8), zj(0)]
| Tij2 | | Covlzi(6h), 2(0)] |

If the conditions of Lemma 3 are met, then
AAij(x,0) — Ai(x,0)Aj(x, 0) = O(|o3;1),

and similar relationships hold for AB;;(6), BA;;(6), and BB;;(§). The bound
for these quantities is uniform in ¢ and in € X. They are uniform in n if the

bounds for m;(f) and the bounds in Lemma 3 are uniform in n.

Proof. As in the proof of Lemma 4, we use a limiting Taylor’s Theorem argument.
We first express AAE;) = AA;j(x,0) as the integral of the joint density of z;(6),

2i(6o), zj(0), and z;(6p). Defining the covariance and mean of the corresponding
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multivariate normal, let

S? SZ2 COS(ti) 0ij0 Oij1
52 cos(t;) 1 Tiio 0
wy=|" ’ , (35)
0ij0 0ij2 S? 8? COS(tj)
Oij1 0 S? COS(tj) 1
s? s? cos(t;) 0 0
s; cos(t;) 1 0 0
W = ,
2 2
0 0 8 s5 cos(t;)
0 0 55 cos(t;) 1

and &; = (m;,0,m;,0)T, where ¢; and ¢; are defined as in the proof of Lemma 4

and the functional dependence on () has been omitted from the notation. Then

A4 'W”' - [ / exp<——w )W, (w0 — sw))dw

(36)

1/2
AZ(I)AE.I | / / / / exp (——wTW* ! >dw. (37)

Note that Oij1 — 0, Oij2 — 0, 0ij0 — 0, S; — 1, S§; — 1, t; — 0, tj — 0,

and

m; — 0, and m; — 0 as § — 6. We first show that the derivatives of AAE;”)
with respect to oy;1, 0452, and 05 are bounded near 6 = 6. Note that W;; and
Wk are singular at this limit. We compute the derivative using formal matrix

1

differentiation; simplification produces

dp AAY |W”| 1/2/ / / / exp <——wTW w> hi(w)dw,  (38)

where
1 _ _ _
hi(w) = 5 (W™ Wt d Wiy Wi tw — tr (W5 deWij) |
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and dj denotes the matrix derivative with respect to one of the o;; parameters

appearing in (35). It is easily shown that
tI‘(Wi;ldeVU) =0
when 0;1 = 0452 = 0ij0 = 0. After a change of variables to u = Uj;;w, where

UlU,; = Wit

i » (38) produces

e 1
dkAAz(j) = 2(2m)? /Qexp (—EuTu> u (Ui de Wi U Judu, (39)

where 2 C R* represents the appropriately transformed region. It can be shown
that when 0,1 = 052 = 0350 = 0, the integral in (39) can be expressed as the sum

of integrals of the form

ti,t' 0o pa;z—PBius . ajr—PBjuq
C(tir ) 5 7)/ / wiul % p(uq ) p(usy dulduz/ / u3’ S (ug) (ug)dugduy,

where o; = sin(t;)™", B; = cos(t;) sin(t;) ™', a; = sin(t;)™", B; = cos(t;) sin(t;) 7,
d; € {0,1}, d; € {0,1}, and ¢(t;,t;) = O(sin(t;) % sin(t;)~%). Direct compu-
tation of the double integrals shows that the entire integral is bounded. Thus,
(38) remains bounded as # — 6. Since (38) is a continuous function of z, it is
uniformly bounded for x € X.

Now, AAZ(.;”) - Agz)Ag-x) = 0 when 0;j1 = 04j2 = 0450 = 0, whatever the values of

Siy S, ti, t;, m;, and m; may be. With the restriction ¢; > 0 and ¢; > 0, AAZ(;) —

AE“”)A;””) is a continuously differentiable function, so derivatives with respect to

other parameters in (35) are zero at Oij1 = 0Oij2 = 0450 = 0. Consequently,

0AAL

0Uij

AA® 2@ gle)
ij

g J

Uij = D(.T, 9*)T0'ij,
6=0*

where D(z,0)T, the derivative with respect to o0ij, is evaluated near s; = s; = 1,
m; =m; =0, and t; > 0, ¢t; > 0. Since D(z,#) remains bounded as t; — 0 and
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t; — 0, an argument similar to that used in the proof of Lemma 4 shows that

there is an M;; > 0 such that

As in the proof of Lemma 4 the bound M;; is uniform if the bounds for m;(6)

and the bounds in Lemma 3 are uniform. The proofs for AB;;, BA;; and BB;;

ij

are identical, except that the ranges of integration in (36) and (37) differ. O

Lemma 6. Let a;(z,0,0') be defined as in (15). If the conditions of Lemma 3 are
met, then there is a neighborhood of y and an M,, > 0 such that Var[a;(z, 0, 6y)] <
M,|0 — 0y for all x € X. If the gradients of m;(6), s;(#), and cos™' r;(#) are uni-

formly bounded in n, then there is a uniform bound M = M,, > 0 for all n.

Proof. Let A;(x,0) and B;(z,0) be as in Lemma 4, and assume for the moment
that x and @ are fixed. Write a; = a;(z,0,6y), A; = A;(x,0), and B; = B;(z,0).
Note that A; and B; are probabilities of mutually exclusive events, and that

a? = 1 when either event holds. Computing the variance directly,

Varla;] = Elai] — Ela;]?
= (A + B) — (A — By)?
= A;(1-A;)+ B;(1- B;) +2A;B;
< A; + B; +2max(A4;, B;)
< AM,|0 — 6o,
where M, is the bound determined in Lemma 4. If the gradients are uniformly

bounded, as in Lemma 4, the bound for Var[a;] is uniform for all n. O
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Lemma 7. Let a;(6,6") be defined as in (15), and let 0;; be defined as in Lemma
5. There is a neighborhood of 6y and an M,, > 0 such that Cov[a;(z, 0, 0y), a;(z, 0, 6p)] <
M,|oi;| for all z € X. If the gradients of m;(6), si(6), and cos™' r;(6) are uni-

formly bounded in n, then there is a uniform bound M = M,, > 0 for all n.

Proof. Let A;(z,0) and B;(z,0) be as in Lemma 4, and let AA;;(z,0), AB;;(z,6),
BA;j(z,0), and BB;j(z,0) be as in Lemma 5. Assume for the moment that z

and 6 are fixed. Suppressing the functional notation, we compute the covariance

directly:
Covla;,a;] = Ela;a;] — Ela;]Ela;]
= (AA;; — AB;; — BA;; + BB;;) — (A; — B;)(4; — B))
= AA;; — AjA; — AB;; + A;B; — BA;; + B;A; + BB;; — B, B;.
The result now follows from Lemma 5. O

Theorem 5 (Clustered Designs). Let V(y) = (Vi(%),..., Va(v)) have block
diagonal structure, with N blocks having dimension at most £ x k, and for each
hlet Ly(v)Ln(v)T = Vi(y)t. Assume that, near vy, the £2 norm ||V,(v)]| is
uniformly bounded and bounded away from zero, both in block number h and
in sample size n, and that for each j = 1,...,¢, Hd%‘LhH is uniformly bounded
in both h and n. If 8, = 6, then the conditions of Theorem 4 hold and the

conclusion (18) follows.

Proof. For this proof, we employ double subscripting notation. In particular,
let y = (y7,...,y%)T, where Var[y,] = Vi(y) and y, and yu are independent if

h # I, and let dj be the dimension of Vj(vy). Let Pj; : R% — R be projection
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onto the ith component in block h. Define

2ni(0) = PriLn(7)" (yn — Xu8),

which is consistent with the corresponding definition above; define an;(6; ', 7'),
and all other quantities analogously (with double subscript notation).

The block-diagonal structure of V(7) insures that, locally, V() is uniformly
bounded in n, for the norm of V() can be no more than maxy, ||V, (y)||. Similarly,
near 7y, V(7) is uniformly bounded away from zero. It follows that L(v) is also
uniformly bounded and bounded away from zero. Similar considerations apply
to d,L. Since

[0mns /0B8] < [|Zn(v)" || X

and
|0 /O] < [ldy Ly 1| Xnll|Bo — B,
a uniform bound is obtained for my;() using the bounds for ||L(y)”|| and
|ldy, Ln|| and the fact that X}, has bounded elements and dimensions. Thus the
uniformity conditions of Lemma 6 are met.
Writing ap; = api(x,0,6y), it follows from Lemma 6 that there is an M > 0
such Varfap;] < M|0 — 6y|. Consequently, Cov]ap;, api] < Varlap] < M| — 6|

if h = h' and Cov|ap;, ap#] = 0 if h # h'. Thus,

n~t Z |Covlans, apw]] = n! Z Var[ap) +n~" Z |Covlap;, apy]|
hyi ! i h=h i=i" h#h! Uit

= nt Z Var[ap] +n ' Z |Cov|ani, ap ]|
h=h i=i h=h'ii!

< nton- MG — 6| +nt - NE2- MO — 6|

IN

M0 — 6| + k> M |0 — 6]
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= (14 kM0 — 6.

The bound M is uniform for all x € X and for all n, so this establishes condition

(32) in Theorem 4. O

Classical mixed effects models (Laird & Ware, 1982) fall into the class of mod-
els described by Theorem 5, as long as the design matrix Z,, corresponding to
the random effects is uniformly bounded and bounded away from zero, and the
covariance matrix A of the random effects satisfies requirements similar to those
required by V(v) in the statement of the theorem. Corollary 1 describes the

formal result.

Corollary 1 (Longitudinal Mixed Effects Models). Let V(vy) = (Vi(v), ..., Va(7))

have block diagonal structure, where for each h, V},(7y) has dimension dj < k,

Va(y) = 1l + ZA(y2y o ¥g) Z1

and Zp, is a dj, x (¢ — 1) matrix that is bounded and bounded away from zero.
Furthermore, assume that v; > 0, that A(7s, ...,7,) has bounded norm near -,
and that d,A is bounded in a neighborhood of 7. If 8, L By, then the conditions

of Theorem 4 hold and the conclusion (18) follows.
Proof. Follows directly from Theorem 5. O

Condition (18) also applies in models that do not have block diagonal variance.
However, (33) is not a sufficient condition in the general case. The covariance
Covla;, a;] for i # j must also be bounded. The following theorem, which estab-
lishes (18) for linear model with ARMA errors, is a typical example of the utility

of our method for unclustered designs:
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Theorem 6 (ARMA Errors). Let () = y— X3 be a time-series vector from

an autoregressive moving-average process of order (p, G). Thus, for ¢ > max(p, §),
B(y)éi(B) = A(v)z(8,7), (40)

where gz(ﬁ) - (82',15(5), "'7€i(6))T7 2@(/877) = (Ziid(ﬁ,’}/), "';Zi(/viy))T? and A(’Y)
and B(7y) are conformable matrices, depending on 7, such that A;(y) # 0,
Azii(y) =1, Bi(y) # 0, and Bsqi(y) = —1. If 0, = 6y, then the conditions

of Theorem 4 hold and the conclusion (18) follows.

Proof. We first demonstrate that the conditions of Lemma 6 and Lemma 7 are
met. Because the covariance terms of V(7) die off exponentially for widely sep-
arated observations [see Davidson (1994), page 215], the £? norm of V(y) is
uniformly bounded in n. In addition, the variance of ¢;(3) is a positive value
(and constant after finitely many observations), so ||V (y)|| is bounded away from
zero and ||L(7)|| is bounded. The matrix L(y) must produce residuals that sat-
isfy (40), so that A(v)E[z(8,7)] = B(y)X:i(Be — B), where X; is an appropriate
submatrix of X. It follows that m;(3,~) is uniformly bounded in n. Therefore

the lemmas apply. Equation (40) implies that for ¢, > max(p, ),
Covli(8,7), z(B',7")] = B(v)Covl&i(B),&+(8))B(+')"

Since B(v) and B(') are bounded near o and Cov[e;(8),e:(B")] = Covlei(Bo), i (5o)]
approaches zero exponentially as i —i' — oo (after finitely many terms), it follows
that Cov[zi(83,7), 2#(8',7")] = O(pl*=¥1) for some nonnegative p < 1 that depends

Only on - Lemmas 6 and 7 1mp1y that |COU[CL2'(5, s ﬁOa 70)7 aj (57 s ﬁOa/YO)” =
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O(p"7116 — o), thus

n_l Z |Cov[ai(5a7750770)7(11"(677750770)” = n_l Z O(P‘Z_Z"w - 90|)

ii'=1 §,i'=1

= O(I6 - 6) (1 'Y O(plii’l)>

i
= O(|f — b))

The last equality follows from that fact that

D p =23 " p < d(n - 1) Zp =4(n—1)p(1—p)~*

il i<i!

Therefore condition (32) of Theorem 4 is satisfied. O

In practical situations involving more complicated models, it may be difficult
to verify (32) algebraically. However, (33) is true under mild conditions, so that
if a plausible qualitative argument that Corr[a;, a;] = O(ri=71) for some r can be
made, Theorem 4 can be used to justify (18). For example, it may be desirable to
apply our methods to higher order ARMA models. The following theorem justifies
the method for models whose correlation is based on the Kronecker product of
correlations from different components, although (41) can still be challenging to
verify.
Theorem 7 (Products). Let V;i(y) be a k x k covariance matrix (fixed with
respect to n) and let V2(7y) be a covariance matrix whose norm is bounded and
bounded away from zero. Let L;(y) and Ly(7y) be the corresponding Cholesky
matrices, and assume that the norm of Ly(y) has bounded gradient. Finally,

assume that ||Ly(v)T X|| is bounded and that there is an M > 0 such that

ZCOU z(0), z;(0")] < M|6 — 6], (41)
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where 8 =6 or §' = 6y. If V() = Vi(v) ® Va(7), then the conditions of Theorem

4 apply to V() and the conclusion (18) follows.

Proof. Note that the Cholesky matrix of Vi(y) ® V() is L1(y) ® La(y). Since
V1(7) has fixed dimension, it is easy to show that V;(v) ® Va(7y) has a norm that is
bounded and bounded away from zero. A proof similar to that used for Theorem

5 can be used to establish condition (32) of Theorem 4. O

Theorems 4, 5, 6, and 7 address condition (18) in Theorem 1. However, con-
dition (19) is also difficult to verify in practice. Theorem 8, proven by Taylor

expansion, gives plausible conditions that insure (19).

Theorem 8. In a neighborhood of 6y, let ||V, ()] be uniformly bounded and
uniformly bounded away from zero. Assume, in addition, that L,(y) is con-
tinuously twice-differentiable, and that for each j,j' = 1,...,q, ||d,,L,(v)|| and
|dy;dy, Ln(v)|| are uniformly bounded near 6. Finally, suppose that there is a

constant vector ¢y such that

_ " [z 0s?
nlo(@)) (5 967

=1

3mz~

_|_
o—g, 00T

) — co(z)T (42)

6=09

uniformly for z € X as n — co. Then condition (19) of Theorem 1 is satisfied.

Proof. The proof is identical to the proof of Theorem 7 in Houseman et al.
(2003b). Uniform convergence of ¢, (z) follows directly from the uniform con-

vergence of (42). O

Condition (42) is difficult to verify for arbitrary sequences, but is plausible

when there is some uniformity to the model sequence. For example, if there are

39

Hosted by The Berkeley Electronic Press



exchangeable units of sampling, then (42) will be true. Note that dm;/98 =

P,L(v)TX, 8s7 /98 =0,

22 = R, W o) L) + OV o) LT,
and
Omi _ pla, 7 x
oy~ Dl L X (B = B).

Evaluated at 6y, Om;/08 = P;L(v)" X and dm;/dy = 0. Thus, (42) reduces to
plausible regularity in the covariate matrix X and in the correlation structure
implied by V(7).

Similar considerations apply to condition (26) of Theorem 2. We refrain from
stating another theorem, but remark that conditions identical to those described
for V() and L(7) in Theorem 8, together with a condition similar to (42), lead
to the desired conclusion (26). The result is proven by differentiating 4, (6, 6)
with respect to the second argument and showing that the resulting expression

is bounded.

It is easy to lose sight of the basic methodology among the many technical
conditions such as (18), (19), (26), and (42). We have proven results for longi-
tudinal mixed effects models, for AR-1 time series regression, and for Kronecker
products. In practice, our proposed methods work well for mixed effects models

and time-series regression, as we demonstrate in the following section.

4 Simulations

Houseman et al. (2003b) reported simulations demonstrating that for many types
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of correlation models, pointwise standard errors and Wald confidence intervals
based on 72(z,z), as defined in (21), behave adequately. Simulations were pre-
sented for clustered AR-1 models, equicorrelated clusters (equivalent to random-
intercept models), AR-1 time series regression, and more complicated correlation
structures for which (18) could not be verified. In each of these cases, analyt-
ical standard errors matched the corresponding simulation standard errors and
coverage probabilities of Wald confidence intervals matched their nominal levels.
Additionally, when non-normal errors were supplied, the ECDF estimates were
biased and coverage probabilities less than their nominal level, demonstrating
that the method is sensitive to non-normal errors for the marginal distribution of
(1). In this section we present simulations that demonstrate the behavior of the
global tests formed using the resampling technique suggested by (5), (6) and (7).

Our first set of simulations investigated the performance of our proposed ro-
tated marginal residuals, formed with P, = ;. For each of three time series
cases, 1000 simulated analyses were conducted. The cases included an AR-1 time
series model with normal errors, skewed (standardized x2) errors, and heavy-
tailed (standardized t3) errors. In addition, six random slope/intercept models
were examined: random effects having normal, skewed, heavy-tailed, and binary
(standardized binomial with success probability equal to 0.5) distributions, each
with normal conditional errors; and random effects having normal distribution
with conditional errors having skewed and heavy-tailed distributions. For each
of these cases 500 simulated analyses were conducted. For each AR-1 case, the

covariate matrix X consisted of rows of the form (1,u), where u was a uniform
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variable, and the corresponding regression parameter was 8 = (10,.5)7. For
each random effects case, the covariate matrix X consisted of rows of the form
(1, u, 0bs), where u was a uniform variable, obs was the observation number (1
through 5), and the corresponding fixed effect parameter was 8 = (10,.5,0)7. In
the AR-1 time series case, n = 250 and v = (¢%,p) = (1,.5). In the random
slope/intercept model, N = 50 clusters, each having 5 observations, for a total of
n = 250; additionally, A = diag(4,.25) and Z consisted of rows having the form
(1,0bs). For each simulated analysis, we computed the sup functional described
in (6) and the Cramer-Von-Mises functional described (7), with X = (—2.5,2.5),
for the observed data and for 1000 resampled processes as described by (5). For
convenience we denote this functional as 7. Quantiles and rejection probabilities
from the omnibus test for normality are presented in the Tables 1 through 3.
When the error (and random effect) was normal, rejection probabilities matched
their nominal level and the resampled functionals had quantiles that matched the
quantiles of the observed values. For non-normal errors, rejection probabilities
were larger than nominal and the observed quantiles were larger than their resam-
pled counterparts. Using the Kolmogorov-Smirnov type functional (6), the power
was reasonable for AR-1 time-series models at n = 250 and at o = 0.05, with
about 82% probability of rejecting normality when the errors were skewed and
68% probability of rejecting normality when the errors were heavy-tailed. The
corresponding probabilities using the Cramer-Von-Mises type functional (7) were
better, about 90% and 79%. However, the power to detect non-normal random

effects in the random slope/intercept models was disappointingly small, generally
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below 20% (and sometimes close to 5%) for n = 50 x 5 and o = 0.05. In random
effects models having normal effects but non-normal errors, power was reasonable
(40% to 70% at a = 0.05) but not as large as for the AR-1 models.

To address the lack of power with the marginal residuals in detecting non-
normal random effects, we propose using the resampling technique applied to the
standardized BLUPs recommended by Lange & Ryan (1989). Tables 4 through
7 present simulation results for the same six random slope/intercept models de-
scribed in the previous paragraph using the projections described by (10). In
general, tests were slightly conservative when the random effects were normal.
When the random effects were not normal, the power to detect non-normality
was somewhat better than for the omnibus test presented in Tables 2 and 3. At
a = 0.05, the Kolmogorov-Smirnov test had about 47% power to detect a skewed
intercept, 41% to detect a skewed slope, 24% to detect a heavy-tailed intercept,
and 19% to detect a heavy-tailed slope. At a = 0.05, the Cramer-Von-Mises
test had about 64% power to detect a skewed intercept, 53% power to detect a
skewed slope, 36% to detect a heavy-tailed intercept, and 29% to detect a heavy-
tailed slope. It is interesting to note that the standardized BLUPs had much
greater power than the marginal residuals to detect a binary random effect, over
60% compared with 2% for the Cramer-Von-Mises test at o = 0.05! When the
random effects were normal, but the errors were not normal, the rejection prob-
abilities were close to their nominal values; thus, standardized BLUPs appear to
be effective in distinguishing between non-normal random effects and non-normal

errors. Other authors have raised concerns that the methods of Lange & Ryan
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(1989) or Houseman et al. (2003a) may fail to distinguish between non-normal
random effects and non-normal errors (Verbeke & Molenberghs, 2000; Agresti
et al., 2003), but we have found that their concerns may be unwarranted. How-
ever, we remark that sample sizes much larger than n = 50 x 5 may be required
for adequate power in testing the hypothesis of normal random effects. The lack
of power at modest sample sizes may result from the fact that the random effects
are never observed directly, but rather must be inferred from the appropriate
posterior distribution given y.

As mentioned in Section 2, expression (10) requires knowledge of A and Vj,
which in practice must be estimated using §n We examined the effect of assuming
that expression (10) is a known matrix when the null hyptothesis is true. We
used the six random effects models described previously to simulate the rejection
probabilities for a resampling technique that did not use the correction proposed
in Section 2. As Tables 8 and 9 show, the Kolmogorov-Smirnov test may be
equally conservative whether or not the correction is used. However, the Cramer-
Von-Mises test produces rejection probabilities that are closer to their nominal
values when the correction is used. We also examined whether their was any
improvement in the rejection probabilities when the sample size was doubled.
We conducted a set of simulations using N = 100 instead of N = 50; the results
also appear in Tables 8 and 9. The Kolmogorov-Smirnov tests showed some
very modest improvement, but it is difficult to see this from the tables. The
improvement is easer to see in Figures 1 through 3, which illustrate Q-Q plots

of the simulated P-values against their hypothesized uniform distribution. Each
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plot also depicts a band obtained by simulating 100 Q-Q plots, each obtained
from a sample of 500 uniform variables (since 500 simulated data sets were used
in each case studied). The distribution of simulated P-values is closer to the
band of uniform Q-Q plots for N = 100 than for N = 50. Note that the figures
also show that the marginal residuals and the Cramer-Von-Mises tests (using the
correction) produce uniform P-values when the null hypothesis is true.

Finally, we remark that the Cramer-Von-Mises test performs better than the
Kolmogorov-Smirnov test in every respect. Under the null hypothesis, the Cramer-
Von-Mises P-values are closer to their nominal values, and the Cramer-Von-Mises
test appears to be more powerful under every alternative considered. This is to
be expected, as expression (7) averages differences over the entire range of X
unlike expression (6) which simply selects the largest difference. For this reason,

we recommend the Cramer-Von-Mises test over the Kolmogorov-Smirnov test.

5 Applications

In this section we present two applications of our proposed resampling technique.

5.1 Pig Weights

Diggle et al. (2002) present data on the weights (in kilograms) of 48 pigs measured
in nine successive weeks. The authors motivated a random slope-intercept model

for the data. That is, the weight yp; of pig h at time ¢ can be modeled as

Ynt = Bor + an1 + (Boz + an2) t + e,
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where 531 = (Bot, Bo2), 731 = (701, Y02, Y03, Y04), a%f = (an1, anz), €nt ~ N1(0,704),
ap ~ N2(0,A), and
Yo1  7Yo3
A =
Y03 Vo2
Such a design fits within the class of models described by Theorem 5. Figure 4

displays normal Q-Q plots both for three types of residuals (rotated marginal,
and standardized BLUPs for the random slope and intercept), superimposed upon
resampled processes using (31). The rotated marginal residuals and the random
intercepts appear to be normally distributed, but there is slight evidence that
the random slopes may not be normally distributed. P-values were computed
as the fraction of 1000 resampled processes whose maximum distance from ®(z)
over the interval (—2,2) was greater than the corresponding observed value. For
the rotated marginal residual, the Cramer-Von-Mises P-value was 0.20; for the
random intercept BLUP, the P-value was 0.19, and for the random slope BLUP,
the P-value was 0.13. The Kolmogorov-Smirnov P-values were similar for the
marginal residual and random intercept, but was significant (P = 0.01) for the
random slope. Since the Cramer-Von-Mises test appears to be more reliable in
general, we conclude that the errors and random effects are normally distributed

for the pig weight data.

5.2 Pollen Counts

Stark et al. (1997) and Brumback et al. (2000) described pollen counts associated
with meteorologic data. Between 1991 and 1994, pollen counts were collected
seven days a week during the pollen season in Kalamazoo, MI. While these papers
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present a predictive model based on Poisson regression, we use the 1991 data to
illustrate the behavior of our methods when they are applied to non-normal time
series data.

We present two analyses. Both employ the model described by Theorem 6,
with a design matrix composed of an intercept and six covariates: rain (1 if there
were at least 3 hours of steady rain or brief but intense rain, 0 othersie), day (day
in season), In(day), wind (wind speed in knots), temp trend (a smooth curve fit to
daily temperatures in °F) and temp resid (residuals of temp trend). The choice of
covariates is motivated by Stark et al. (1997). In the first analysis we use the raw
pollen counts as the outcome. In the second analysis, we use the square root of
the pollen counts, since the square root is the variance-stabilizing transformation
for the Poisson distribution.

Figure 5 illustrates the Q-Q plots for each analysis, using the rotated marginal
residuals. It is clear from the graphical displays that failing to transform the
pollen counts results in a residual vector that deviates substantially from nor-
mality. On the other hand, the square root transformation may be adequate
to transform the residuals to normality. Note that the corresponding Cramer-
Von-Mises P-values, computed as described in Section 5.1, were 0.17 for the

transformed counts and less than 0.01 for the untransformed counts.

6 Conclusions

Our proposed methodology makes use of rotated residuals, formed as the prod-

uct of the Cholesky decomposition of the estimated marginal variance with the
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estimated residual vector, to construct an empirical CDF and pointwise standard
errors. It thereby accommodates natural graphical display techniques. Further-
more, we present a resampling technique that provides a global test and renders
a graphical depiction of global fit. The theoretical justification for our proposed
methods involves technical details that are motivated by Lange & Ryan (1989),
and we extend the methodology presented by these authors to address global
stochastic behavior of the ECDF of standardized BLUPs.

The simulations we have conducted suggest that our proposed method enjoys
good properties in a variety of circumstances. It appears to work well for models
having independent units of sampling (clustered data) and for many models in
which all observations are correlated. Additionally, our method displays adequate
sensitivity to non-normal marginal errors. However, when only the random effect
components of a mixed model are non-normal, large sample sizes may be required
for adequate power.

An issue that arises in distribution diagnostics is whether slight deviations from
normality lead to substantially different conclusions. For a large enough sample
size, a test will be able to detect small deviations from normality that have
little impact on the scientific question of interest. At the very least, one might
check the impact of normality assumptions using methods with less stringent
distributional assumptions, such as GEEs or quantile regression, or by considering
transformations of the outcome variable. The graphical methods we propose here
can be useful in suggesting which assumptions should be relaxed, and therefore

which alternative strategies may be preferable. For example, the suggestion of
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a heavy-tailed marginal error might lead one to consider median regression. For
a case study that uses our methods to direct the analysis, see Houseman et al.
(2003c).

Extensions of our theory to the generalized linear mixed model setting would
be be of interest. For example, a graphical method for detection overdispersion
in Poisson models would have great utility. Efforts towards this goal could be
directed in developing generalizations to rotated “working residuals” (McCullagh
& Nelder, 1989), or constructing a stochastic process that serves as a summary

statistic for detecting non-normal random effects.
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Table 1: Simulations for AR-1 Time Series Regression

Kolmogorov-Smirnov Test

Nominal Fraction Rejected? Quantile Comparisons®

Distribution! a | Estimated 95 % CI p-oJ(F)  Elpi_oJ(F*)]
0.50 0.50 (0.473,0.534) 0.036 0.036

Normal 0.10 0.09 (0.073,0.108) 0.050 0.050
0.05 0.05 (0.037,0.064) 0.054 0.055

0.025 0.02 (0.013,0.031) 0.058 0.059

0.50 0.99 (0.986,0.997) 0.067 0.036

Skewed 0.10 0.89 (0.872,0.911) 0.086 0.050
0.05 0.82 (0.795,0.842) 0.093 0.055

0.025 0.73 (0.700,0.755) 0.098 0.059

0.50 0.95 (0.936,0.963) 0.064 0.036

Heavy-Tailed 0.10 0.76 (0.729,0.782) 0.102 0.050
0.05 0.68 (0.649,0.707) 0.125 0.055

0.025 0.59 (0.563,0.624) 0.156 0.059

Cramer-Von-Mises Test
Nominal Fraction Rejected?® Quantile Comparisons®

Distribution® o | Estimated 95 % CI | p1_oJ(F) E[pi—_oJ(F*)]
0.50 051 (0.476,0.537) | 2.085-04 2.045-04

Normal 0.10 0.08 (0.068,0.103) | 3.98E-04 4.15E-04
0.05 0.04 (0.032,0.057) | 4.98E-04 5.05E-04

0.025 0.02 (0.014,0.032) | 5.59E-04 5.95E-04

0.50 100 (0.991,0.999) | 1.07E-03 2.045-04

Skewed 0.10 0.95 (0.932,0.960) 1.80E-03 4.14E-04
0.05 0.90 (0.879,0.916) 2.11E-03 5.04E-04

0.025 0.86 (0.841,0.884) 2.37E-03 5.94E-04

0.50 0.97 (0.959,0.980) 1.00E-03 2.04E-04

Heavy-Tailed 0.10 0.84 (0.820,0.865) 3.32E-03 4.15E-04
0.05 0.79 (0.759,0.810) 5.53E-03 5.04E-04

0.025 0.73 (0.703,0.758) 8.47E-03 5.94E-04

1000 simulated analyses for AR-1 regression models under various error distributions.

For each case,

X = (1,u) where u is a vector of uniform variables, n = 250, 3 = (10,.5)T, and v = (02, p) = (1, .5).

1Skewed variables were standardized x2 and heavy-tailed variables were standardized 3.
2Fraction of simulations where null hypothesis of normality was rejected using p;_oJ(F*) as critical

value.

37 represents the functional described in (6) or (7), with X = (—2.5,2.5) and 1000 resampled values.
E[p1_oJ (F*)] represents the average 1 — o quantile of the right hand side of (6) or (7) over all simulations;
P1—aJ (F') represents the quantile of the left hand side of (6) or (7) estimated over all simulations.
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Table 2: Simulations for Random Slope/Intercept Models: Kolmogorov-Smirnov Test on Marginal Resid-
uals

Nominal Fraction Rejected?® Quantile Comparisons3
Distribution! a | Estimated 95 % CI p-od(F)  Elpi_oJ(F*)]
Normal 0.50 0.51 (0.463,0.551) 0.037 0.037
Random Effects 0.10 0.10 (0.073,0.125) 0.050 0.051
and 0.05 0.05 (0.036,0.075) 0.055 0.055
Normal Errors 0.025 0.03 (0.015,0.044) 0.059 0.060
Skewed 0.50 0.69 (0.652,0.732) 0.042 0.037
Random Effects 0.10 0.26 (0.228,0.305) 0.059 0.051
and 0.05 0.16 (0.131,0.195) 0.065 0.055
Normal Errors 0.025 0.10 (0.079,0.132) 0.069 0.060
Heavy-Tailed 0.50 0.66 (0.623,0.705) 0.041 0.037
Random Effects 0.10 0.21 (0.181,0.253) 0.058 0.051
and 0.05 0.13 (0.100,0.158) 0.064 0.055
Normal Errors 0.025 0.08 (0.059,0.107) 0.071 0.060
Binary 0.50 0.63 (0.592,0.676) 0.040 0.037
Random Effects 0.10 0.11 (0.088,0.143) 0.051 0.051
and 0.05 0.05 (0.038,0.078) 0.055 0.055
Normal Errors 0.025 0.02 (0.014,0.042) 0.060 0.060
Normal 0.50 0.97 (0.958,0.986) 0.058 0.037
Random Effects 0.10 0.72 (0.683,0.761) 0.079 0.051
and 0.05 0.59 (0.549,0.635) 0.085 0.055
Skewed Errors 0.025 0.45 (0.408,0.495) 0.089 0.060
Normal 0.50 0.92 (0.895,0.942) 0.053 0.037
Random Effects 0.10 0.57 (0.525,0.612) 0.078 0.051
and 0.05 0.44 (0.396,0.483) 0.088 0.056
Heavy-Tailed Errors 0.025 0.37 (0.326,0.410) 0.097 0.060

500 simulated analyses for AR-1 regression models under various error distributions. For each case,
X = (1,u,o0bs) where u is a vector of uniform variables and obs is a vector consisting of the obser-
vation numbers within each cluster, n = 250 (50 clusters of 5 observations), 3 = (10,.5,0)T, 0% = 1,
A = diag(4,.25), and Z = (1, obs).

1Skewed variables were standardized x2 and heavy-tailed variables were standardized 3.

2Fraction of simulations where null hypothesis of normality was rejected using p;_oJ(F*) as critical
value.

37 represents the functional described in (6), with X = (—2.5,2.5) and 500 resampled values.
E[p1_oJ(F*)] represents the average 1 — a quantile of the right hand side of (6) over all simulations;
P1—aJ (F') represents the quantile of the left hand side of (6) estimated over all simulations.
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Table 3: Simulations for Random Slope/Intercept Models: Cramer-Von-Mises Test on Marginal Residuals

Nominal Fraction Rejected?® Quantile Comparisons3
Distribution® a | Estimated 95 % CI | p1_oJ(F) E[pi_oJ (F*)]
Normal 0.50 0.50 (0.457,0.545) 2.10E-04 2.09E-04
Random Effects 0.10 0.10 (0.075,0.128) 4.24E-04 4.27E-04
and 0.05 0.05 (0.033,0.071) 4.96E-04 5.20E-04
Normal Errors 0.025 0.03 (0.015,0.044) 6.13E-04 6.13E-04
Skewed 0.50 0.71 (0.672,0.751) 3.06E-04 2.10E-04
Random Effects 0.10 0.28 (0.247,0.326) 6.73E-04 4.28E-04
and 0.05 0.20 (0.164,0.234) 7.97E-04 5.20E-04
Normal Errors 0.025 0.13 (0.105,0.165) 9.59E-04 6.14E-04
Heavy-Tailed 0.50 0.68 (0.643,0.725) 2.80E-04 2.11E-04
Random Effects 0.10 0.25 (0.216,0.292) 6.46E-04 4.29E-04
and 0.05 0.16 (0.134,0.199) 8.25E-04 5.23E-04
Normal Errors 0.025 0.12 (0.091,0.147) 1.03E-03 6.15E-04
Binary 0.50 0.66 (0.621,0.703) 2.59E-04 2.10E-04
Random Effects 0.10 0.13 (0.105,0.165) 4.76E-04 4.26E-04
and 0.05 0.07 (0.048,0.091) 5.39E-04 5.20E-04
Normal Errors 0.025 0.02 (0.014,0.042) 6.01E-04 6.12E-04
Normal 0.50 0.99 (0.974,0.994) 6.92E-04 2.10E-04
Random Effects 0.10 0.81 (0.773,0.842) 1.34E-03 4.27E-04
and 0.05 0.69 (0.649,0.730) 1.61E-03 5.20E-04
Skewed Errors 0.025 0.58 (0.537,0.624) 1.85E-03 6.12E-04
Normal 0.50 0.93 (0.902,0.947) 6.13E-04 2.10E-04
Random Effects 0.10 0.72 (0.678,0.757) 1.68E-03 4.27E-04
and 0.05 0.59 (0.549,0.635) 2.20E-03 5.20E-04
Heavy-Tailed Errors 0.025 0.52 (0.473,0.561) 2.94E-03 6.14E-04

500 simulated analyses for random slope/intercept models under various error distributions. For each
case, X = (1,u,0bs) where u is a vector of uniform variables and obs is a vector consisting of the
observation numbers within each cluster, n = 250 (50 clusters of 5 observations), 8 = (10,.5,0)7, 0 = 1,
A = diag(4,.25), and Z = (1, obs).

1Skewed variables were standardized x% and heavy-tailed variables were standardized 3.

2Fraction of simulations where null hypothesis of normality was rejected using p; oJ(F*) as critical
value.

3J represents the functional described in (7), with & = (-2.5,2.5) and 500 resampled values.
E[p1—oJ(F*)] represents the average 1 — a quantile of the right hand side of (7) over all simulations;
p1—aJ (F') represents the quantile of the left hand side of (7) estimated over all simulations.
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Table 4: Simulations for Random Slope/Intercept Models: Kolmogorov-Smirnov Test on Predicted Random
Intercepts

Nominal Fraction Rejected?® Quantile Comparisons?
Distribution! a | Estimated 95 % CI P1-oJ(F)  Elpi_oJ(F*)]
Normal 0.50 0.38 (0.339,0.424) 0.077 0.083
Random Effects 0.10 0.06 (0.041,0.082) 0.105 0.115
and 0.05 0.03 (0.017,0.047) 0.116 0.126
Normal Errors 0.025 0.01 (0.006,0.026) 0.128 0.136
Skewed 0.50 0.91 (0.884,0.934) 0.124 0.083
Random Effects 0.10 0.60 (0.554,0.639) 0.172 0.116
and 0.05 0.47 (0.424,0.511) 0.186 0.127
Normal Errors 0.025 0.36  (0.320,0.404) 0.199 0.137
Heavy-Tailed 0.50 0.68 (0.637,0.719) 0.099 0.083
Random Effects 0.10 0.34 (0.302,0.385) 0.162 0.116
and 0.05 0.24 (0.205,0.280) 0.202 0.127
Normal Errors 0.025 0.18 (0.153,0.221) 0.235 0.138
Binary 0.50 1.00 (0.994,1.000) 0.146 0.083
Random Effects 0.10 0.92 (0.897,0.944) 0.179 0.115
and 0.05 0.81 (0.775,0.843) 0.191 0.126
Normal Errors 0.025 0.67 (0.627,0.709) 0.202 0.136
Normal 0.50 0.38 (0.343,0.428) 0.077 0.083
Random Effects 0.10 0.06 (0.042,0.085) 0.109 0.115
and 0.05 0.04 (0.026,0.061) 0.119 0.126
Skewed Errors 0.025 0.02 (0.011,0.036) 0.130 0.136
Normal 0.50 0.38 (0.337,0.422) 0.077 0.083
Random Effects 0.10 0.05 (0.031,0.068) 0.106 0.115
and 0.05 0.03 (0.015,0.044) 0.113 0.126
Heavy-Tailed Errors 0.025 0.01 (0.006,0.026) 0.127 0.137

500 simulated analyses for random slope/intercept models under various error distributions. For each
case, X = (1,u,obs) where u is a vector of uniform variables and obs is a vector consisting of the
observation numbers within each cluster, n = 250 (50 clusters of 5 observations), 8 = (10,.5,0)7, 02 =1,
A = diag(4,.25), and Z = (1, obs).

1Skewed variables were standardized x2 and heavy-tailed variables were standardized 3.

2Fraction of simulations where null hypothesis of normality was rejected using p;_oJ(F*) as critical
value.

37 represents the functional described in (6), with X = (—2.5,2.5) and 500 resampled values.
El[p1_oJ(F*)] represents the average 1 — a quantile of the right hand side of (6) over all simulations;
P1—aJ (F') represents the quantile of the left hand side of (6) estimated over all simulations.
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Table 5: Simulations for Random Slope/Intercept Models: Cramer-Von-Mises Test on Predicted Random
Intercepts

Nominal Fraction Rejected?® Quantile Comparisons?
Distribution! a | Estimated 95 % CI P1-oJ(F)  Elpi_oJ(F*)]
Normal 0.50 0.54 (0.497,0.584) 1.13E-03 1.08E-03
Random Effects 0.10 0.11 (0.086,0.141) 2.34E-03 2.28E-03
and 0.05 0.05 (0.034,0.073) 2.71E-03 2.82E-03
Normal Errors 0.025 0.02 (0.011,0.036) 3.17E-03 3.38E-03
Skewed 0.50 0.96 (0.946,0.979) 3.64E-03 1.09E-03
Random Effects 0.10 0.76  (0.722,0.797) 7.21E-03 2.30E-03
and 0.05 0.64 (0.598,0.682) 8.61E-03 2.84E-03
Normal Errors 0.025 0.55 (0.511,0.598) 1.05E-02 3.43E-03
Heavy-Tailed 0.50 0.80 (0.762,0.832) 2.12E-03 1.09E-03
Random Effects 0.10 0.45 (0.404,0.491) 6.62E-03 2.34E-03
and 0.05 0.36  (0.324,0.408) 1.05E-02 2.91E-03
Normal Errors 0.025 0.29 (0.252,0.332) 1.65E-02 3.53E-03
Binary 0.50 1.00 (0.994,1.000) 5.84E-03 1.08E-03
Random Effects 0.10 0.99 (0.983,0.998) 8.72E-03 2.28E-03
and 0.05 0.97 (0.958,0.986) 9.52E-03 2.81E-03
Normal Errors 0.025 0.94 (0.920,0.961) 1.06E-02 3.38E-03
Normal 0.50 0.55 (0.507,0.594) 1.15E-03 1.08E-03
Random Effects 0.10 0.10 (0.080,0.134) 2.27E-03 2.28E-03
and 0.05 0.04 (0.026,0.061) 2.67E-03 2.82E-03
Skewed Errors 0.025 0.02 (0.010,0.034) 3.15E-03 3.39E-03
Normal 0.50 0.56 (0.515,0.602) 1.18E-03 1.08E-03
Random Effects 0.10 0.09 (0.070,0.121) 2.20E-03 2.28E-03
and 0.05 0.04 (0.026,0.061) 2.64E-03 2.82E-03
Heavy-Tailed Errors 0.025 0.02 (0.008,0.031) 3.00E-03 3.40E-03

500 simulated analyses for random slope/intercept models under various error distributions. For each
case, X = (1,u,obs) where u is a vector of uniform variables and obs is a vector consisting of the
observation numbers within each cluster, n = 250 (50 clusters of 5 observations), 8 = (10,.5,0)7, 02 =1,
A = diag(4,.25), and Z = (1, obs).

1Skewed variables were standardized x2 and heavy-tailed variables were standardized 3.

2Fraction of simulations where null hypothesis of normality was rejected using p;_oJ(F*) as critical
value.

37 represents the functional described in (7), with X = (—2.5,2.5) and 500 resampled values.
E[p1_oJ(F*)] represents the average 1 — a quantile of the right hand side of (7) over all simulations;
P1—aJ (F') represents the quantile of the left hand side of (7) estimated over all simulations.
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Table 6: Simulations for Random Slope/Intercept Models: Kolmogorov-Smirnov Test on Predicted Random
Slopes

Nominal Fraction Rejected?® Quantile Comparisons?
Distribution! a | Estimated 95 % CI P1-oJ(F)  Elpi_oJ(F*)]
Normal 0.50 0.40 (0.361,0.446) 0.077 0.083
Random Effects 0.10 0.06 (0.044,0.087) 0.109 0.115
and 0.05 0.02 (0.008,0.031) 0.118 0.126
Normal Errors 0.025 0.01 (0.004,0.023) 0.122 0.137
Skewed 0.50 0.88 (0.850,0.907) 0.119 0.083
Random Effects 0.10 0.54 (0.495,0.582) 0.161 0.116
and 0.05 0.41 (0.370,0.457) 0.174 0.127
Normal Errors 0.025 0.29 (0.251,0.330) 0.192 0.138
Heavy-Tailed 0.50 0.60 (0.556,0.641) 0.091 0.084
Random Effects 0.10 0.26  (0.220,0.297) 0.146 0.117
and 0.05 0.19 (0.162,0.231) 0.167 0.129
Normal Errors 0.025 0.14 (0.111,0.171) 0.186 0.140
Binary 0.50 0.93 (0.902,0.947) 0.118 0.083
Random Effects 0.10 0.53 (0.489,0.576) 0.152 0.115
and 0.05 0.37 (0.331,0.416) 0.163 0.126
Normal Errors 0.025 0.24 (0.207,0.282) 0.172 0.136
Normal 0.50 0.44 (0.402,0.489) 0.080 0.083
Random Effects 0.10 0.08 (0.059,0.107) 0.111 0.116
and 0.05 0.04 (0.028,0.063) 0.124 0.127
Skewed Errors 0.025 0.02 (0.011,0.036) 0.135 0.137
Normal 0.50 0.38 (0.343,0.428) 0.077 0.083
Random Effects 0.10 0.07 (0.049,0.094) 0.105 0.116
and 0.05 0.03 (0.020,0.051) 0.120 0.127
Heavy-Tailed Errors 0.025 0.01 (0.007,0.029) 0.128 0.137

500 simulated analyses for random slope/intercept models under various error distributions. For each
case, X = (1,u,obs) where u is a vector of uniform variables and obs is a vector consisting of the
observation numbers within each cluster, n = 250 (50 clusters of 5 observations), 8 = (10,.5,0)7, 02 =1,
A = diag(4,.25), and Z = (1, obs).

1Skewed variables were standardized x2 and heavy-tailed variables were standardized 3.

2Fraction of simulations where null hypothesis of normality was rejected using p;_oJ(F*) as critical
value.

37 represents the functional described in (6), with X = (—2.5,2.5) and 500 resampled values.
El[p1_oJ(F*)] represents the average 1 — a quantile of the right hand side of (6) over all simulations;
P1—aJ (F') represents the quantile of the left hand side of (6) estimated over all simulations.
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Table 7: Simulations for Random Slope/Intercept Models: Cramer-Von-Mises Test on Predicted Random
Slopes

Nominal Fraction Rejected?® Quantile Comparisons?
Distribution! a | Estimated 95 % CI P1-oJ(F)  Elpi_oJ(F*)]
Normal 0.50 0.56 (0.521,0.608) 1.16E-03 1.08E-03
Random Effects 0.10 0.11 (0.089,0.145) 2.31E-03 2.29E-03
and 0.05 0.05 (0.036,0.075) 2.91E-03 2.84E-03
Normal Errors 0.025 0.02 (0.012,0.039) | 3.28E-03 3.44E-03
Skewed 0.50 0.94 (0.918,0.959) | 3.08E-03 1.09E-03
Random Effects 0.10 0.66 (0.623,0.705) | 6.49E-03 2.32E-03
and 0.05 0.53 (0.485,0.573) 7.49E-03 2.90E-03
Normal Errors 0.025 0.44 (0.398,0.485) | 8.19E-03 3.54E-03
Heavy-Tailed 0.50 0.74 (0.701,0.778) 1.84E-03 1.11E-03
Random Effects 0.10 0.36 (0.318,0.402) 5.31E-03 2.42E-03
and 0.05 0.29 (0.251,0.330) 7.35E-03 3.06E-03
Normal Errors 0.025 0.23 (0.196,0.269) 1.13E-02 3.81E-03
Binary 0.50 0.99 (0.977,0.996) | 3.37E-03 1.08E-03
Random Effects 0.10 0.77 (0.731,0.804) 5.56E-03 2.27E-03
and 0.05 0.64 (0.596,0.680) | 6.35E-03 2.81E-03
Normal Errors 0.025 0.49 (0.451,0.539) 7.20E-03 3.38E-03
Normal 0.50 0.59 (0.545,0.632) 1.22E-03 1.08E-03
Random Effects 0.10 0.11 (0.089,0.145) 2.38E-03 2.29E-03
and 0.05 0.06 (0.041,0.082) | 3.01E-03 2.85E-03
Skewed Errors 0.025 0.04 (0.026,0.061) 3.77E-03 3.44E-03
Normal 0.50 0.56 (0.513,0.600) 1.14E-03 1.08E-03
Random Effects 0.10 0.11 (0.084,0.139) 2.26E-03 2.29E-03
and 0.05 0.05 (0.036,0.075) 2.73E-03 2.85E-03
Heavy-Tailed Errors 0.025 0.02 (0.011,0.036) 3.31E-03 3.45E-03

500 simulated analyses for random slope/intercept models under various error distributions. For each
case, X = (1,u,obs) where u is a vector of uniform variables and obs is a vector consisting of the
observation numbers within each cluster, n = 250 (50 clusters of 5 observations), 8 = (10,.5,0)7, 02 =1,
A = diag(4,.25), and Z = (1, obs).

1Skewed variables were standardized x2 and heavy-tailed variables were standardized t3

2Fraction of simulations where null hypothesis of normality was rejected using p;_oJ(F*) as critical
value.

37 represents the functional described in (7), with X = (—2.5,2.5) and 500 resampled values.
E[p1_oJ(F*)] represents the average 1 — a quantile of the right hand side of (7) over all simulations;
P1—aJ (F') represents the quantile of the left hand side of (7) estimated over all simulations.
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Table 8: Simulations for Random Slope/Intercept Models: Performance of Tests on Random Intercept at
Null Hypothesis

Kolmogorov-Smirnov Test

Nominal Fraction Rejected? Quantile Comparisons®

Description® a | Estimated 95 % CI - (F)  Elpi_oJ(F*)]

Assumed 0.50 0.42 (0.380,0.467) 0.078 0.081

P; Known 0.10 0.06 (0.044,0.087) 0.105 0.112

0.05 0.03 (0.018,0.049) 0.116 0.122

N =50 0.025 0.02 (0.011,0.036) 0.123 0.131

Estimated 0.50 0.38 (0.339,0.424) 0.077 0.083

P; 0.10 0.06 (0.041,0.082) 0.105 0.115

0.05 0.03 (0.017,0.047) 0.116 0.126

N =50 0.025 0.01 (0.006,0.026) 0.128 0.136

Estimated 0.50 0.43 (0.390,0.477) 0.056 0.059

p; 0.10 0.06 (0.042,0.085) 0.077 0.081

0.05 0.03 (0.017,0.047) 0.084 0.089

N =100 0.025 0.02 (0.010,0.034) 0.090 0.095

Cramer-Von-Mises Test
Nominal Fraction Rejected?® Quantile Comparisons®

Description® a | Estimated 95 % CI P—aJ(F) E[pi_oJ(F*)]

Assumed 0.50 0.63 (0.586,0.671) 1.17E-03 1.01E-03

P; Known 0.10 0.14 (0.113,0.174) 2.29E-03 2.08E-03

0.05 0.08 (0.056,0.103) 2.82E-03 2.54E-03

N =50 0.025 0.04 (0.026,0.061) 3.20E-03 3.01E-03

Estimated 0.50 0.54 (0.497,0.584) 1.13E-03 1.08E-03

p; 0.10 0.11 (0.086,0.141) 2.34E-03 2.28E-03

0.05 0.05 (0.034,0.073) 2.71E-03 2.82E-03

N =50 0.025 0.02 (0.011,0.036) 3.17E-03 3.38E-03

Estimated 0.50 0.53 (0.491,0.578) 5.50E-04 5.26E-04

p; 0.10 0.10 (0.080,0.134) 1.10E-03 1.08E-03

0.05 0.04 (0.028,0.063) 1.27E-03 1.32E-03

N =100 0.025 0.02 (0.010,0.034) 1.49E-03 1.56E-03
500 simulated analyses for random slope/intercept models under various error distributions. For each
case, X = (1,u,0bs) where u is a vector of uniform variables and obs is a vector consisting of the
observation numbers within each cluster, n = N x 5 (N clusters of 5 observations), 3 = (10,.5,0)7,

02 =1, A = diag(4,.25), and Z = (1, obs).

!The first case assumed that the projection matrix P; mapping the rotated residual to a random
effect was known and equal to its predicted value. The second two cases account for the estimation of P;
by the method described at the end of Section 2.

Fraction of simulations where null hypothesis of normality was rejected using p; o J(F*) as critical
value.

3J represents the functional described in (7), with & = (-2.5,2.5) and 500 resampled values.
E[p1—oJ(F*)] represents the average 1 — a quantile of the right hand side of (7) over all simulations;
Pi-ad (ﬁ ) represents the quantile of the left hand side of (7) estimated over all simulations.
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Table 9: Simulations for Random Slope/Intercept Models: Performance of Tests on Random Slope at Null
Hypothesis

Kolmogorov-Smirnov Test

Nominal Fraction Rejected? Quantile Comparisons®

Description® a | Estimated 95 % CI - (F)  Elpi_oJ(F*)]

Assumed 0.50 0.40 (0.361,0.446) 0.076 0.081

P; Known 0.10 0.07 (0.051,0.096) 0.105 0.111

0.05 0.03 (0.018,0.049) 0.115 0.122

N =50 0.025 0.01 (0.004,0.023) 0.123 0.131

Estimated 0.50 0.40 (0.361,0.446) 0.077 0.083

P; 0.10 0.06 (0.044,0.087) 0.109 0.115

0.05 0.02 (0.008,0.031) 0.118 0.126

N =50 0.025 0.01 (0.004,0.023) 0.122 0.137

Estimated 0.50 0.41 (0.365,0.451) 0.056 0.059

p; 0.10 0.07 (0.054,0.101) 0.077 0.081

0.05 0.04 (0.026,0.061) 0.084 0.089

N =100 0.025 0.03 (0.018,0.049) 0.097 0.095

Cramer-Von-Mises Test
Nominal Fraction Rejected?® Quantile Comparisons®

Description® a | Estimated 95 % CI P—aJ(F) E[pi_oJ(F*)]

Assumed 0.50 0.59 (0.547,0.633) 1.15E-03 1.01E-03

P; Known 0.10 0.12 (0.095,0.152) 2.22E-03 2.08E-03

0.05 0.06 (0.044,0.087) 2.58E-03 2.54E-03

N =50 0.025 0.03 (0.017,0.047) 3.17E-03 3.00E-03

Estimated 0.50 0.56 (0.521,0.608) 1.16E-03 1.08E-03

p; 0.10 0.11  (0.089,0.145) 2.31E-03 2.29E-03

0.05 0.05 (0.036,0.075) 2.91E-03 2.84E-03

N =50 0.025 0.02 (0.012,0.039) 3.28E-03 3.44E-03

Estimated 0.50 0.53 (0.491,0.578) 5.41E-04 5.24E-04

p; 0.10 0.09 (0.072,0.123) 1.04E-03 1.08E-03

0.05 0.06 (0.039,0.080) 1.38E-03 1.32E-03

N =100 0.025 0.03 (0.017,0.047) 1.63E-03 1.56E-03
500 simulated analyses for random slope/intercept models under various error distributions. For each
case, X = (1,u,0bs) where u is a vector of uniform variables and obs is a vector consisting of the
observation numbers within each cluster, n = N x 5 (N clusters of 5 observations), 3 = (10,.5,0)7,

02 =1, A = diag(4,.25), and Z = (1, obs).

!The first case assumed that the projection matrix P; mapping the rotated residual to a random
effect was known and equal to its predicted value. The second two cases account for the estimation of P;
by the method described at the end of Section 2.

Fraction of simulations where null hypothesis of normality was rejected using p; o J(F*) as critical
value.

3J represents the functional described in (7), with & = (-2.5,2.5) and 500 resampled values.
E[p1—oJ(F*)] represents the average 1 — a quantile of the right hand side of (7) over all simulations;
Pi-ad (ﬁ ) represents the quantile of the left hand side of (7) estimated over all simulations.

61

Hosted by The Berkeley Electronic Press



Figure 1: Q-Q Plots for P-Values Under Null Hypothesis
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Quantile-quantile plots of P-values under a null hypothesis of normal random effects. Each case was
constructed from 500 simulated data sets, and each plot contains a band composed of 100 yellow lines,
each representing the Q-Q plot constructed from 500 uniform variables. Thus the band suggests a region
through which a Q-Q plot of P-values constructed from 500 simulated data sets could pass if the P-values
were truly drawn from a uniform distribution. Each simulation was obtained using the methods described
in Section 2 and data sets described in Section 4. Note that N = 50.
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Figure 2: Q-Q Plots for P-Values Under Null Hypothesis, N = 100
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a) Kolmogorov-Smirnov P-Values b) Cramer-Von-Mises P-Values

Quantile-quantile plots of P-values under a null hypothesis of normal random effects. Each case was
constructed from 500 simulated data sets, and each plot contains a band composed of 100 yellow lines,
each representing the Q-Q plot constructed from 500 uniform variables. Thus the band suggests a region
through which a Q-Q plot of P-values constructed from 500 simulated data sets could pass if the P-values
were truly drawn from a uniform distribution. Each simulation was obtained using the methods described
in Section 2 and data sets described in Section 4. Note that N = 100.
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Figure 3: Q-Q Plots for P-Values Under Null Hypothesis, Without Correcting for Estimation of P;
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Quantile-quantile plots of P-values under a null hypothesis of normal random effects. Each case was
constructed from 500 simulated data sets, and each plot contains a band composed of 100 yellow lines,
each representing the Q-Q plot constructed from 500 uniform variables. Thus the band suggests a region
through which a Q-Q plot of P-values constructed from 500 simulated data sets could pass if the P-values
were truly drawn from a uniform distribution. Each simulation was obtained using the methods described
in Section 2, but without correcting for the estimation of the projection matrix P;, and data sets described
in Section 4. Note that N = 50.
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Figure 4: QQ Plots for Pig Weight Data
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Quantile-quantile plots for a random slope-intercept model applied to the pig weight data from Diggle et al.
(2002). Light blue lines represent realizations from the asymptotic distribution under the null hypothesis of
normality. Corresponding P-values are (a) 0.13 (Kolmogorov-Smirnov) and 0.20 (Cramer-Von-Mises) for
marginal residuals; (b) 0.11 (Kolmogorov-Smirnov) and 0.19 (Cramer-Von-Mises) for random intercepts;
and (c) 0.01 (Kolmogorov-Smirnov) and 0.13 (Cramer-Von-Mises) for random slopes.
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Figure 5:

QQ Plots for Pollen Data
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Quantile-quantile plots for AR-1 time-series regression model applied to the pollen data from Stark et al.
(1997). Light blue lines represent realizations from the asymptotic distribution under the null hypothe-
sis of normality. Corresponding P-values are (a) < 0.01 (Kolmogorov-Smirnov and Cramer-Von-Mises)
for transformed counts; (b) 0.08 (Kolmogorov-Smirnov) and 0.17 (Cramer-Von-Mises) for untransformed

counts.

66

http://biostats.bepress.com/harvardbiostat/paper18



	text.pdf.1098130678.titlepage.pdf.E0pDN
	jasa2003_txrpt.dvi

