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Abstract

Mathematical models and decision analyses based on microsimulations have been

shown to be useful in evaluating relative merits of various screening strategies

in terms of cost and mortality reduction. Most investigations regarding the bal-

ance between mortality reduction and costs have focused on a single modality,

mammography. A systematic evaluation of the relative expenses and projected

benefit of combining clinical breast examination and mammograpphy is not at

present available. The purpose of this report is to provide methodologic details

including assumptions and data used in the process of modeling for complex deci-

sion analyses, when searching for optimal breast cancer screening strategies with

the multiple screening modalities. To systematic evaluate the relative expenses

and projected benefit of screening programmes that combine the two modalities,

we build a simulation model incorporating age-specific incidence of the disease,

age-specific pre-clinical duration of the disease, age-specific sensitivities of the two

screening modalities, and competing causes of mortality. Using decision models, we

can integrate information from different sources into the modeling processes, and

assess the cost-effectiveness of a variety of screening strategies while incorporating

uncertainties.
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1 Introduction

Breast cancer is the most frequently diagnosed cancer among women. Its rate of incidence

in the United States has continued to increase since 1986, (1) while breast cancer mortality

has decreased overall in the United States, Canada and the United Kingdom (2; 3; 1).

Plausible explanations for this decrease in mortality include progress in treatment, as well as

widespread participation in early detection programs that contribute to increased cure rates

and reduced disease-specific mortality. Many studies have indicated that early detection

through screening can lead to more advantageous treatment options, and often leads to an

increase in survival rates and improvement in the quality of life for women who develop

breast cancer (4; 5). The development of new technologies and further improvement of the

existing modalities for disease detection may increasingly make screening for cancer a routine

part of secondary prevention.

The goals of early detection are to reduce breast cancer morbidity and mortality. Optimal

screening strategies are expected to carefully balance these goals against the associated

burden to women and cost to health care systems. Several issues regarding the optimal

choice of breast cancer screening strategies remain open. For example, debate surrounds

the question of whether regular mammographies are beneficial to women in their forties.

Evidence of benefit varies across the relevant randomized clinical trials (6), and there is

controversy on the relevance of the suggested benefits for individual women. Consensus

panels (7; 8) who reviewed the evidence did not find it sufficiently strong to make general

recommendations, emphasizing that “women should be informed of the potential benefits and

risks of screening mammography and assisted in deciding at what age they wish to initiate

he manoeuvre” (8). In addition to the issue of the appropriate age at which screening should

begin, complex open issues include the appropriate frequency of screening examinations;

whether women who are at increased risk of breast cancer would benefit from more frequent

screening; and what would be the impact of combining multiple screening modalities.

Evaluating alternative screening strategies is difficult because the benefits of screening de-

pend on complex interaction among several factors, including the ability of various screening

tests to detect cancer sufficiently early; the time window during which such detection can

take place, and its relation to the interval between screening exams; the relative advantage of

an early detection compared to waiting for symptoms to arise; the age distribution of onset

of pre–symptomatic cancer; competing causes of mortality; and others.

Simulation-based decision models have proved to be an effective way to evaluate health

care interventions whose consequences are complex and depend on the interaction of many
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factors. They can provide a formal structure for supporting optimal choice of screening

strategies, cost–effectiveness analysis of specific interventions, and formal optimization of

utility functions of interest. These models often generate simulated individual histories by

drawing evidence from several sources, including the epidemiology and genetics of risk factors,

relevant clinical trials of secondary prevention and treatment, and studies of tumor growth.

A decision model can also support realistic assessments of uncertainty about the relative

merits of alternative choices, an aspect that is often underappreciated in policy making (9).

The literature on model-baased evaluation of screening strategies is now extensive (10; 11).

In this article we consider the model by Parmgiani (12; 11), and generalize it by incorpo-

rating the possibility of using two breast cancer screening modalities in concert: mammog-

raphy (MM) and clinical breast examination (CBE). We also update the model inputs to

reflect recent contributions to the literature. Existing investigations regarding the balance

between mortality reduction and costs have focused on mammography only, and have paid

less attention to the combined use of periodic mammography with clinical breast examina-

tion. (13; 14; 15; 16; 17; 15; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28). Recent studies

have shown that periodic clinical breast examinations combined with mammograms improve

the overall sensitivity of the screening exam compared with mammography alone, (29; 30;

31; 32), and can be particularly valuable among younger women for whom the sensitivity of

mammography alone is relatively low. Logistically, a regular clinical breast examination is

easy to administer as part of a routine physical examination, and is less expensive compared

to mammography.

To promote more efficient and cost-effective breast cancer early detection programs, we

will explore optimal screening strategies in terms of the costs and the quality-adjusted years

of life saved. The analyses focus on strategies that combine the use of both mammogra-

phy and clinical breast examination. The other factors we investigate include age group

and screening interval. The primary objective of this article are to discuss modeling is-

sues arising in optimization of screening strategies with multiple modalities, and to provide

methodologic justifications for models and sources of data used in the analyses reported Shen

and Parmigiani (33).

The results from our investigation will help in the design of more efficient and near optimal

early detection programs, thereby maximizing the survival benefit for breast cancer patients

while also considering the associated societal costs. This study focuses on breast cancer, but

the methods are also applicable to early detection programs for other types of cancer. The

proposed research will provide a basis to guide health policy makers in designing optimal

and cost-effective screening programs, and in extending such benefits to a large population.

2
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2 Model

2.1 Natural History of Breast Cancer

The basis of our investigation of optimal combinations of screening modalities is a simu-

lation model that can generate individual health histories. It is useful to distinguish the

natural history model, which refers to the health histories of women without early detection

screening, from the intervention model, which refers to the effects of screening. For a patient

with preclinical disease, the natural history model provides a way of simulating age of onset

and preclinical sojourn time, or, equivalently, growth rate. Conditional on these, it then

simulates the age of the woman and the tumor size at the time of diagnosis. These variables

can then be used in turn as covariates in predicting a woman’s survival and quality adjusted

survival. This multi-stage prediction can be repeated for various screening strategies, by

superimposing a history of examinations to the natural history, appropriately simulating

results of screening tests based on assumed sensitivity, and appropriately modyfying age

and size at detection when early detection takes place. Thus, given women’s risk factors, a

decision model using Monte Carlo simulations can be employed to jointly model the disease

histories and screening interventions, and predict the outcomes of interest.

In the natural history model, breast cancer events are simulated according to the age-

specific incidence of preclinical disease and mortality from other causes. For a woman with

breast cancer, the natural history model also provides a way of generating her history of

disease over time. The natural history of the disease over time requires a description of the

transition between different states of the disease. Using the same notation as in Parmigiani

(11), we assume that there are four relevant states: H, women who are either disease-free or

asymptomatic; P , women who have detectable pre-clinical disease; C, women with clinical

manifestation of the disease; and D, women who have died. For women in the cohort who

have breast cancer, we generate their ages at the onset of pre-clinical breast cancer, P , ages

at the onset of clinical breast cancer, C, via tumor growth, and ages at death D according

to corresponding models.

Because the age-specific incidence of pre-clinical disease cannot be directly observed, we

have to estimate such a quantity from the sojourn time distribution and age-specific incidence

of the clinical disease. Specifically, we can derive the incidence of pre-clinical breast cancer

backward from the following deconvolution formula:

Ic(y) =

∫ y

0

whp(t)wpc(y − t|t)dt, (1)

where Ic(y) is the age-specific incidence of clinical breast cancer, whp is the instantaneous

3

Hosted by The Berkeley Electronic Press



&%
'$

H -

H
HHH

HHH
HHH

HHH
HHHHj

&%
'$

P -

@
@

@
@

@
@

@@R

&%
'$

C

?

&%
'$

D

whp(·) wpc(·)

whd(·) wpd(·) wcd(·)

Figure 1: Summary of states, possible transitions, and transition densities for the natural history model. This
scheme describes the progress of breast cancer in the absence of screening. All instantaneous probabilities of
transition are indicated next to the corresponding transition. The two subscripts correspond to the origin
and destination states, respectively.

probability of making a transition from H to P, and wpc is age-specific sojourn time density.

Note that the age-specific incidence of clinical breast cancer can be observed and is often

well documented in cancer registries or from the control arms of early detection trials. We

use the age-cohort-specific breast cancer incidence estimates developed by Moolgavkar et al.

(34). With a given distribution for the sojourn time of the pre-clinical disease state, the

age-specific incidence of pre-clinical breast cancer (whp) can be estimated using the method

of Parmigiani and Skates (35).

However, the estimation of the sojourn time distribution is not straightforward in general

(36; 37; 38; 39; 40; 41). In this study, we focus on three commonly used parametric distri-

butions for the sojourn time of the preclinical disease state, which are further modified to

incorporate the effect of age at the onset of the preclinical disease.

We first consider a smoothed age-specific exponential sojourn time distribution:

wpc(x|λ(t)) = λ−1(t) exp(−λ−1(t)x),

where the mean sojourn time λ(t) depends on the womans age. To incorporate the un-

certainty of the parameter into the model, we introduce an inverse gamma prior to the

parameter λ, where the two parameters of the inverse gamma distribution are age-specific

and are chosen to match the mean and standard deviation of sojourn times estimated from

the Canadian National Breast Screening Studies (CNBSS) trials in Shen and Zelen (32).
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An alternative assumption for the sojourn time distribution is the log-normal assumption.

We consider a modified version taking into account the womans age at the onset of the

preclinical disease, while generalizing the model by Spratt et al (42):

wpc(x|t) =
1√

2πσ(t)x
exp

{
− 1

2σ2
(log(x) − µ(t))2

}
,

where the logarithm of the mean, µ(t) is specified to be a linear function of the womans age,

t. An inverse gamma prior is used to incorporate the uncertainty for the variance, which

does not show an age effect (11). The parameters of the inverse gamma are chosen to match

the moments of the reported age-specific variances in Spratt et al (1986).

A modified tumor growth distribution of Peer et al (43; 44) is also used in our simulation

for sensitivity analyses. Specifically, the sojourn time of the preclinical duration is modeled

by the tumor growth rate or, equivalently, by the tumor doubling time. In particular, the

relationship between sojourn time and tumor doubling time can be expressed as

X = ln(Vp/Vc)DT/ ln(2),

where X is the sojourn time, DT is the tumor doubling time, and Vp and Vc are the vol-

umes of a tumor at onset of detectable preclinical disease and at onset of clinical disease,

respectively. We assume that the smallest tumor detectable by screening exam is 5mm, and

that the average diameter at which breast cancer manifests is 20 mm (11). Tumor doubling

times are assumed to follow an age-dependent log-normal distribution. The parameters in

the predictive sojourn time distribution are estimated to match with the median and 95%

quantile of the tumor doubling time based on findings from the Nijmegen trial (43). It is

worth noting that there is a direct relationship between the tumor growth rate (or doubling

time) and the sojourn time in the preclinical duration.

2.2 Survival Distributions and Mortality

One primary interest of the study is to evaluate the length of survival after diagnosis of

breast cancer with various screening strategies. The survival distribution for women with

breast cancer is determined by their age and tumor characteristics at diagnosis, and by

the treatment they receive following diagnosis. Women in the cohort who receive periodic

screenings are more likely to have breast tumors detected early and thus are more likely to

have better prognoses than women who do not receive such screening. However, due to im-

perfect screening sensitivities and heterogeneity in pre-clinical durations, some breast cancer

may still be clinically diagnosed between exams (interval cases). The survival distribution

depends on screening only through the tumor characteristics and age at diagnosis.

5
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Based on the natural history model, the tumor size and age at diagnosis are generated for

a woman diagnosed to have breast cancer in the cohort. It is well known that lymph node

involvement (nodal status) and the estogen receptor (ER) status of the tumor (positive or

negative) are also important risk factors, and are related to treatment options and survival.

To estimate the number of positive nodes at diagnosis, a predictive model was developed

using the data of a womans age and tumor size at diagnosis from the SEER registries (11;

45). A constraint via the truncated Poisson distribution is given to ensure that the number

of positive nodes for a screening- detected breast tumor is less than or equal to that for

the same woman if her tumor is clinically detected. Without enough evidence to connect

ER status with other risk factors, the ER status of a womans breast tumor is simulated

independently of the other risk factors, but according to the distribution for the general

population. It is estimated that roughly 70% of breast tumors are ER positive (46).

As expected, the tumor characteristics at diagnosis will determine the treatment received

thereafter. We assume that women in the cohort are treated according to the guidelines

established by the NIH Consensus Conference on Early Breast Cancer (1991), given their

risk factors including age, tumor ER status, tumor size, and nodal status at diagnosis.

Whether a woman receives tamoxifen depends on her age and tumor ER status. The survival

distribution for length with quality of life adjustment after diagnosis of breast cancer is

estimated using a Cox regression model with covariates of treatment, age, tumor ER status,

primary tumor size, and number of nodes involved. The predictive survival model was

established based on a combined analysis of four CALGB trials (11; 47; 48; 49), as described

in (50).

For a woman in the cohort, her age-specific mortality due to causes other than breast

cancer is obtained from actuarial tables, using a 1960 birth cohort from the census database.

If the breast-cancer-specific survival time for a woman is shorter than her simulated natural

lifetime, then we assume that she died from breast cancer and contributed to the breast

cancer mortality. Otherwise, we assume that she died from a competing cause.

2.3 Sensitivities of Mammography and Clinical Breast Examinations

The sensitivity of a screening program for the early detection of breast cancer plays a critical

role in its potential for the reduction of disease-specific mortality. When a screening program

involves more than one modality, it is important to obtain the sensitivity of each individual

screening modality and the dependence structure among the multiple diagnostic tests (41;

51). This knowledge provides a basis to guide health policy makers in designing optimal and

cost-effective screening programs.
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Some recent studies reveal that the sensitivity of a screening exam is likely to depend

on tumor size and age at the time of diagnosis (44; 32). Based on literature in the area of

breast cancer screening and the estimates of screening sensitivities for both MM and CBE,

we consider a model to relate the sensitivity of each modality with age and tumor size at

diagnosis, respectively (11; 32). In particular, a logit function is employed to model the

effects of age and tumor size at diagnosis on the sensitivities of mammography and clinical

breast exam, respectively. We assume the sensitivity of each modality satisfying the following

equation:

βk(t, d) =
exp{αk0 + αk1(t − 45) + αk2(d − 2)}

1 + exp{αk0 + αk1(t − 45) + αk2(d − 2)}
,

where t is the age at diagnosis, d is the diameter in centimeters of the primary tumor at

diagnosis, k = 1 corresponds to mammography, and 2 is for CBE.

The coefficients in the logit models are determined based on the corresponding sensitivity

estimates from the CNBSS trials (32) as follows. A sensitivity of mammography of 0.61 cor-

responds to a woman at age 45 with a tumor diameter of 2cm; a sensitivity of 0.1 corresponds

to a woman at the same age but with a tumor size of 0.1 cm; and a sensitivity of 0.66 corre-

sponds to a woman of age 55 with a tumor size of 2cm: β1(45, 2) = 0.61, β1(45, 0.05) = 0.1

and β1(55, 2) = 0.66. Thus, the coefficients in the logit model are solved to be, α10 = 0.447,

α11 = 0.216 and α12 = 1.36 for mammography. In the same vein, we can solve the coefficients

for the sensitivity of CBE: α20 = 0.364, α21 = −0.077 and α22 = 1.31. Moreover, because

the sensitivity can vary from subject to subject even when given the same age and tumor

size (52), we use a beta distribution to reflect such a random variation for each sensitivity,

while matching the corresponding mean and variance for the estimated sensitivity from the

CNBSS trials, as reported in Shen and Zelen (51).

The Health Insurance Plan of Greater New York (HIP) trial and the CNBSS both of-

fered independent annual clinical breast exams and mammograms to women in their study

arms, which gave us an opportunity to assess the dependence between the two screening

modalities. The analyses based on data from these trials indicate that mammography and

clinical breast examinations contribute independently to the detection of breast cancer (51).

Therefore, given the sensitivity of each individual screening modality, the overall sensitivity

of a screening program using both MM and CBE is as follows:

β(t, d) = β1(t, d) + β2(t, d) − β1(t, d)β2(t, d),

when the two modalities are independent to each other.
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2.4 Costs of Screening Programs

As expected in screening practices, the primary costs of a screening program is proportional

to the total number of mammograms and clinical breast examinations given. Although there

are additional costs related to follow-up confirmative tests such as a biopsy, and costs for the

treatment of breast cancer at various stages after diagnosis, we will focus only on the cost of

screening examinations in the current study. On its website, the National Cancer Institute

lists the estimated cost of mammography in 2002 at $100-200, and acknowledges that the

cost can vary widely among different centers and hospitals. Since it is frequently part of a

routine physical examination, the cost of a CBE is often less than that of mammography.

In a public website promoting cancer prevention, the estimated cost for an annual CBE is

$45-55, whereas the cost of MM is $75-150 (53). In the decision analysis, it is clear that the

cost ratio of MM and CBE determines the results in the comparison of different screening

strategies. Therefore, we investigate the effects of two cost ratios (1.5 and 2) between MM

and CBE, and allow the cost for a CBE to be $100. For simplification, we will not adjust

for the type of currency, or for inflation over the years.

3 Optimization of Screening Strategies and Sensitivity Analyses

The focus of this investigation is to compare the effects of different breast cancer screening

policies and the costs directly related to these policies, based on the models introduced in the

last section. The health ourcome of interest is the expected gain in quality-adjusted survival.

We interpret this quality adjustment to be relative to a typical health history rather than that

of a state of perfect health (50). Quality adjustments are important because they allow, with

certain limitations, to account for the effects of medical intervention on morbidity as well

as mortality. In screening this is especially important becasue of the so-called overdiagnosis

problem. While benefcial to many women, screening leads to discovering cancer that would

have not otherwise affected certain womens health. While lenght of life may be unaffected,

this is a considerable loss of quality of life. Also, early detection can prolong the portion of

one’s life spent as a cancer survivor. The specific quality adjustments used in our model are

the same as Parmigiani (11).

The marginal effectiveness for each screening strategy is calculated based on the difference

between the expected quality-adjusted life in years for women in a cohort undergoing screen-

ing versus the same cohort of women without screening. The summaries of interest are the

expected gain in quality life years (QALYS) and the expected total monetary cost for each

screening strategy. Marginal cost is the difference in total cost between the screened and
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unscreened cohorts. The marginal effectiveness for each screening strategy is the difference

between the expected QALYS in the screened and unscreened cohorts. The ratio is marginal

cost per year of quality-adjusted life saved (MCYQLS).

Three important issues to consider for screening policies are the age at which a woman

should start a screening program, the screening frequency, and what screening modalities

are to be used. In this study, we will evaluate a total of 48 screening strategies with the

following combinations:

• The age to begin and end periodic screening: 40-79, 45-79, and 50-79 years;

• The interval between consecutive examinations: 0.5, 1, 1.5 and 2 year(s);

• The combined use of MM and CBE: whether mammogram or CBE is given for every

one or every two exams.

Using the model described earlier, we generate a cohort of women and their natural

histories of disease, and assess how the screening strategies interact with the disease process

and the survival after diagnosis. The quantities of interest are estimated using the 100,000

Monte Carlo replicates, for each of the screening strategies.

In summary, we simulate a birth cohort of 100,000 women and follow them through the

years. A fraction of them will develop breast cancer according to the age-specific incidence of

pre-clinical breast cancer. For those women, we generate the natural histories of their disease,

which include their ages at the onset of the preclinical disease, the pre-clinical durations (via

tumor growth rates), and ages at the clinical onset of the disease. When a screening strategy

is provided to a woman during a pre-clinical disease state, the probability that her cancer

will be detected by this screening strategy is generated using the equations in Section 2.3,

based on her age and tumor size at the time of the exam. If the diagnosis is missed during

the exam, her breast cancer may be detected at her next scheduled exam or it may clinically

manifest before the next exam depending on the sojourn time of the womans preclinical

disease state. Once a woman is diagnosed to have breast cancer, we obtain her tumor size

and age at the time of detection. The information is then used to predict the woman’s

survival and quality-adjusted survival after the detection using models developed in Section

2.2. The expected cost is estimated based on the average cost of screening exams from the

100,000 women for each screening strategy in the simulation.

A balance sheet is a summary of the expected benefits and harms of an intervention. Its

goal is to inform decision makers, and enable them to weigh benefits and harms according

to their individual values (54; 55). Table 1 is a balance sheet for evaluating two alternative

9
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Screening Strategy
MM/1, CBE/1 MM/2, CBE/1

Additional number of MM per woman 33 17
Additional number of CBE per woman 33 33
Additional number of false positives per woman 5.2 4.3
Additional years of life per woman 0.144 0.124
Additional women detected in preclinical state 867 810
Women treated unnecessarily 55 51

Table 1: Balance sheet for two alternative screening strategies: annual MM and CBE screening and biannual
MM and annual CBE. In both cases screening starts at 40 years of age and stops at age 79. Values are
increments compared to no screening for a cohort of 10000 breast cancer women.

screening strategies, based on the model of this chapter. We consider annual MM and CBE

screening and biannual MM and annual CBE. Differences between the two columns can

inform decision makers about whether annual or biannual MM are to be preferred once

annual CBE is planned. Elmore and colleagues (56) collected data on a retrospective cohort

study of breast cancer screening and diagnostic evaluations among 2400 women who were 40

to 69 years old at study entry. False positive results occurred in 6.5% of the mammograms,

an estimate that was used here to translate the estimated number of additional tests into

estimated false positives. In addition we assume that positive CBE’s would be followed by

a mammography, that 10% of CBE are false positive, and the two tests are independent

of each other. Then the overall false positive number per woman for the 1st strategy is:

(0.065 + 0.1 − 0.1 ∗ 0.065) ∗ 33 = 5.2; and the overall false positive number per woman for

the 2nd strategy is 0.065 ∗ 17 + 0.1 ∗ 33 − 0.1 ∗ 0.065 ∗ 17 = 4.3.

In Section 2.1, three model specification are discussed for the distribution of sojourn times

in the preclinical state of the disease. It is of interest to investigate how these different models

may impact the QALYs and expected cost of each screening strategy reported by (33). We

find that the analyses are fairly robust for the three model assumptions. The marginal

QALYS is slightly higher (about 1-2%) for the lognormal model than for the exponential

model for a given screening strategy. The relative marginal costs and QALYS among the

screening strategies under evaluation are similar for the three model choices.

4 Discussion

Much attention has been focused on the early detection capabilities of new breast cancer

screening technologies, including advances in mammography and MRI. The importance of

clinical breast examination in breast cancer screening programs seems to be unclear. Even
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though some recent studies have indicated that regular CBE in addition to MM can be

important in the early detection of breast cancer, few studies have investigated the optimal

use of both mammography and clinical breast exam to reduce the mortality of breast cancer

while balancing the associated burdens and costs to women and to the health care system.

Developing early detection guidelines and making public health policy requires careful

consideration of the long-term benefits, costs, and feasibility associated with the screening

strategies. In Shen and Parmigiani (33), we explore the trade-off between the QALYS

and costs related to each screening strategy among several combinations of starting ages

of screening, frequencies of screening, and the use of two screening modalities. The study

indicates that starting from 40 years of age, a biennial mammogram is often cost-effective

for women who undergo annual clinical breast exams. Given the cost to women who are

already receiving care for other health issues or regular check-ups in a clinic, an annual CBE

as part of their routine examination should not add much burden. Our analyses also indicate

that CBE alone cannot replace regular mammography in screening practice, but can be used

complementarily or alternatively in a screening program.

The decision analysis methodology and simulation techniques we have developed for this

study can be directly applied to investigate other screening strategies, and even to other

chronic diseases with certain modifications to the models. We have modeled screening sensi-

tivity for MM and CBE, respectively, through age and tumor size at diagnosis. We have also

introduced random variations for the parameters to incorporate uncertainty of data input

and population heterogeneity. We have considered various sojourn time distribution models,

and have derived them based on data from the large randomized breast cancer screening

trials of the HIP (57), CNBSS (58), and the Nijmegen Trial (43), while taking random vari-

ations into consideration. We have performed sensitivity analyses to assess the robustness

of the patterns of benefit and cost with the alternative models.

Our study has several limitations. The cost of a biopsy following a CBE or MM that is

positive for breast cancer has not been considered in the analysis. Moreover, we have not

included the potential costs of false-positive exams, such as the anxiety, fear and discomfort

that are associated with a biopsy. In fact, it is often difficult to convert these factors into

dollar amounts (56). In addition, we have not included important cost components, which

are the costs of follow-up procedures undertaken after the detection of breast cancer. This

is in part due to the great variation in treatment protocols and in the cost of treating breast

cancer that has existed over the years. Finally, we have used a hypothetical birth cohort

of women with 100% compliance in the simulations for each screening strategy. In reality,

it is rare to have 100% compliance for any screening program, and a real cohort would be
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dynamic, which would include changes in the cohort due to migration.

12

http://biostats.bepress.com/jhubiostat/paper18



References

[1] HK W; MJ T; BF H; et al. Annual report to the nation on the status of cancer, 1975-

2000, featuring the uses of surveillance data for cancer prevention and control. Journal

of the National Cancer Institute, 95(17):1276–1299, 2003.

[2] Cancer Surveillance Research Program NCI. The surveillance, epidemiology, and end

results (seer) program. www seerimsncinihgov, 1998.

[3] for Research on Cancer (IARC) IA. The cancer-mondial website. www depiarcfr, 1999.

[4] Fletcher SW; Elmore JG. Mammographic screening for breast cancer. New England

Journal of Medicine, 348(17):1672–1680, 2003.

[5] Wang L. Mammography and beyond: Building better breast cancer screening tests.

Journal of the National Cancer Institute, 94(18):1346–1347, 2002.

[6] Berry DA. Benefits and risks of screening mammography for women in their forties: A

statistical appraisal. J Natl Cancer Inst, 90:1431–1439, 1998.

[7] Gordis L; Berry D; Chu S; et al. Breast cancer screening for women ages 40-49. J Natl

Cancer Inst, 89:1015–1026, 1997.

[8] Canadian Task Force on Preventive Health Care. Preventive health care, 2001 update:

screening mammography among women aged 40–49 years at average risk of breast

cancer. CMAJ, 164(4):469–476, 2001.

[9] Parmigiani G. Measuring uncertainty in complex decision analyses models. Statistical

Methods in Medical Research, 11(6):513–37, 2002.

[10] van Oortmarseen G; Boer R; Habbema J. Modeling issues in cancer screening. Statistical

Methods in Medical Research, 4:33–54, 1995.

[11] Parmigiani G. Modeling in Medical Decision Making. Wiley, Chichester, 2002.

[12] Parmigiani G. On optimal screening ages. Journal of the American Statistical Associa-

tion, 88:622–628, 1993.

[13] De Koning H. Breast cancer screening; cost-effectiveness in practice. Eur J Radiol,

33:32–7, 2000.

[14] Lindfors KK; Rosenquist CJ. The cost-effectiveness of mammographic screening strate-

gies. Journal of American Medical Association, 274:881–884, 1995.

[15] Brown ML. Sensitivity analysis in the cost-effectiveness of breast cancer screening. Can-

cer, 69 (7 Suppl):1963–1967, 1992.

13

Hosted by The Berkeley Electronic Press



[16] Mushlin AI; Fintor L. Is screening for breast cancer cost-effective? Cancer, 69 (7

Suppl):1957–1962, 1992.

[17] van Ineveld BM; van Oortmarssen GJ; de Koning HJ; Boer R; van der Maas PJ. How

cost-effective is breast cancer screening in different EC countries? European Journal

of Cancer, 29:1663–1668, 1993.

[18] Brown ML; Fintor L. Cost-effectiveness of breast cancer screening: preliminary results

of a systematic review of the literature. Breast Cancer Res Treat, 25:113–118, 1993.

[19] Elixhauser A. Costs of breast cancer and the cost-effectiveness of breast cancer screening.

Int J Technol Assess Health Care, 7:604–615, 1991.

[20] Clark RA. Economic issues in screening mammography. American Journal of

Roentgenology, 158:527–534, 1992.

[21] Parmigiani G; Kamlet M. Cost-utility analysis of alternative strategies in screening for

breast cancer. In C Gatsonis; J Hodges; RE Kass; N Singpurwalla, eds., Case Studies

in Bayesian Statistics, 390–402. Springer, New York, 1993.

[22] Eddy DM; Hasselblad V; McGivney W; Hendee W. The value of mammography screen-

ing in women under age 50 years. Journal of the American Medical Association,

259:1512–1519, 1989.

[23] Carter R; Glasziou P; van Oortmarssen G; de Koning H; Stevenson C; Salkeld G; Boer

R. Cost-effectiveness of mammographic screening in Australia. Australian Journal of

Public Health, 17:42–50, 1993.

[24] Saltzmann P; Kerlikowske K; Phillips K. Cost-effectiveness of extending screening mam-

mography guidelines to include women 40 to 49 years of age. Ann Intern Med,

127:955–965, 1997.

[25] Burnside E; Belkora J; Esserman L. The impact of alternative practices on the cost and

quality of mammographic screening in the United States. Clinical Breast Cancer,

2(2):145–152, 2001.

[26] Fett M. Computer modelling of the Swedish two country trial of mammographic screen-

ing and trade offs between participation screening interval. J Med Screen, 8(1):39–45,

2001.

[27] Yasmeen S; Romano P; Pettinger M; Chlebowski R; Robbins J; Lane D; Hendrix S. Fre-

quency and predictive value of a mammographic recommendation for short-interval

follow-up. J Natl Cancer Inst, 95(6):429–436, 2003.

14

http://biostats.bepress.com/jhubiostat/paper18



[28] Kerlikowske K; Smith-Bindman R; Sickles E. Short-interval follow-up mammography:

Are we doing the right thing? J Natl Cancer Inst, 95(6):418–419, 2003.

[29] Barton MB; Harris R; Fletcher SW. Does this patient have breast cancer? The screening

clinical breast examination: Should it be done? How? JAMA, 282:1270–80, 1999.

[30] Baines CJ; Miller AB; Bassett AA. Physical examination. its role as a single screening

modality in the canadian national breast screening study. Cancer, 63:1816–22, 1989.

[31] Bobo J; Lee N; Thames SF. Findings from 752081 clinical breast examinations reported

to a national screening program from 1995 through 1998. JNCI, 92:971–6, 2000.

[32] Shen Y; Zelen M. Screening sensitivity and sojourn time from breast cancer early de-

tection clinical trials: mammograms and physical examinations. JCO, 19:3490–9,

2001.

[33] Shen Y; Parmigiani G. A model-based comparison of breast cancer screening strategies:

Mammograms and clinical breast examinations. Journal of the National Cancer In-

stitute, submitted, 2003.

[34] Moolgavkar SH; Stevens RG; Lee JAH. Effect of age on incidence of breast cancer in

females. Journal of the National Cancer Institute, 62:493–501, 1979.

[35] Parmigiani G; Skates S. Estimating the age of onset of detectable asymptomatic cancer.

Mathematical and Computer Modeling, 29:in press, 2001.

[36] Albert A; Gertman P; Louis T. Screening for the early detection of cancer: I. the

temporal natural history of a progressive disease state. Mathematical Biosciences,

40:1–59, 1978.

[37] Day NE; Walter SD. Simplified models of screening for chronic disease: Estimation

procedures from mass screening programmes. Biometrics, 40:1–13, 1984.

[38] Brookmeyer R; Day NE; Moss S. Case-control studies for estimation of the natural

history of preclinical disease from screening data. Statistics in Medicine, 5:127–138,

1986.

[39] Etzioni RD; Shen Y. Estimating asymptomatic duration in cancer: the AIDS connection.

Statistics in Medicine, 16:627–644, 1997.

[40] Straatman H; Peer PG; Verbeek AL. Estimating lead time and sensitivity in a screening

program without estimating the incidence in the screened group. Biometrics, 53:217–

229, 1997.

15

Hosted by The Berkeley Electronic Press



[41] Shen Y ZM. Parametric estimation procedures for screening programmes: Stable and

nonstable disease models for multimodality case finding. Biometrika, 86:503–515,

1999.

[42] Spratt JS; Greenberg RA; Heuser LS. Geometry, growth rates, and duration of cancer

and carcinoma in situ of the breast before detection by screening. Cancer Research,

46:970–974, 1986.

[43] Peer P; van Dijck JAAM; Hendriks J; Holland R; Verbeek ALM. Age-dependent growth

rate of primary breast cancer. Cancer, 71:3547–3551, 1993.

[44] Peer P; Verbeek A; Straatman H; Hendriks J; Holland R. Age-specific sensitivities of

mammographic screening for breast cancer. Breast Cancer Research and Treatment,

38:153–160, 1996.

[45] National Cancer Institute: Surveillance, Epidemiology, and End Results (SEER) Pro-

gram. Seer homepage. http://www-seer.ims.nci.nih.gov, 1997.

[46] National Cancer Institute: Chemoprevention of Estrogen Receptor

(ER) Negative Breast Cancer Preclinical Studies. Nih homepage.

http://grants1.nih.gov/grants/guide/rfa-files/RFA-CA-03-005.html,

2002.

[47] Wood W; Weiss R; Tormey D; Holland J; Henry P; Leone L; et al. A randomized trial of

CMF versus CMFVP as adjuvant chemotherapy in women with node-positive stage

ii breast cancer: a CALGB study. World J Surg, 9:714–718, 1985.

[48] Perloff M; Norton L; Korzun A; Wood W; Carey R; Gottlieb A; et al. Postsurgical

adjuvant chemotherapy of stage ii breast carcinoma with or without crossover to

a non-cross-resistant regimen: a cancer and leukemia group b study. J Clin Oncol,

14:1589–98, 1996.

[49] Wood W; Budman D; Korzun A; Cooper M; Younger J; Hart R; et al. Dose and dose

intensity of adjuvant chemotherapy for stage ii, node-positive breast carcinoma. N

Engl J Med, 330:1253–1259, 1994.

[50] Parmigiani G; Berry DA; Winer EP; Tebaldi C; Iglehart JD; Prosnitz L. Is axillary

lymph node dissection indicated for early stage breast cancer—a decision analysis.

Journal of Clinical Oncology, 17(5):1465–1473, 1999.

[51] Shen Y; Wu D; Zelen M. Testing the independence of two diagnostic tests. Biometrics,

57:1009–1017, 2001.

16

http://biostats.bepress.com/jhubiostat/paper18



[52] Kerlikowske K; Grady D; Barclay J; Frankel SD; Ominsky SH; Sickles EA; Ernster

V. Variability and accuracy in mammographic interpretation using the american

college of radiology breast imaging reporting and data system. J Natl Cancer Inst,

90(23):1801–1809, 1998.

[53] PREVENTION. Cancer tests worth paying for. http://www.prevention.com/cda/

feature/0,1204,876,00.html, 2002.

[54] Matchar DB; Samsa GP. Using outcomes data to identify best medical practice: the

role of policy models. Hepatology, Jun;29(6 Suppl):36S–39S, 1999.

[55] Barratt A; Irwig L; Glasziou P; et al. Users’ guides to the medical literature: XVII. how

to use guidelines and recommendations about screening. evidence-based medicine

working group. JAMA, 281(21):2029–2034, 1999.

[56] Elmore JG; Barton MB; Moceri VM; Polk S; Arena PJ; Fletcher SW. Ten-year risk of

false positive screening mammograms and clinical breast examinations. New England

Journal of Medicine, 338:1089–1096, 1998.

[57] Shapiro S. Periodic screening for breast cancer: The HIP randomized controlled trial.

Monogr Natl Cancer Inst, 22:27–30, 1997.

[58] Miller A; To T; Baines C; Wall C. The Canadian national breast screening study: Update

on breast cancer mortality. Monogr Natl Cancer Inst, 22:37–41, 1997.

17

Hosted by The Berkeley Electronic Press


	12-1-2003
	Optimization of Breast Cancer Screening Modalities
	Yu Shen
	Giovanni Parmigiani
	Suggested Citation


	tmp.1070470864.pdf.kHtM7

