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ABSTRACT

Mathematical models and decision analyses based on microsimulations have been
shown to be useful in evaluating relative merits of various screening strategies
in terms of cost and mortality reduction. Most investigations regarding the bal-
ance between mortality reduction and costs have focused on a single modality,
mammography. A systematic evaluation of the relative expenses and projected
benefit of combining clinical breast examination and mammograpphy is not at
present available. The purpose of this report is to provide methodologic details
including assumptions and data used in the process of modeling for complex deci-
sion analyses, when searching for optimal breast cancer screening strategies with
the multiple screening modalities. To systematic evaluate the relative expenses
and projected benefit of screening programmes that combine the two modalities,
we build a simulation model incorporating age-specific incidence of the disease,
age-specific pre-clinical duration of the disease, age-specific sensitivities of the two
screening modalities, and competing causes of mortality. Using decision models, we
can integrate information from different sources into the modeling processes, and
assess the cost-effectiveness of a variety of screening strategies while incorporating

uncertainties.
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1 Introduction

Breast cancer is the most frequently diagnosed cancer among women. Its rate of incidence
in the United States has continued to increase since 1986, (1) while breast cancer mortality
has decreased overall in the United States, Canada and the United Kingdom (2; 3; 1).
Plausible explanations for this decrease in mortality include progress in treatment, as well as
widespread participation in early detection programs that contribute to increased cure rates
and reduced disease-specific mortality. Many studies have indicated that early detection
through screening can lead to more advantageous treatment options, and often leads to an
increase in survival rates and improvement in the quality of life for women who develop
breast cancer (4; 5). The development of new technologies and further improvement of the
existing modalities for disease detection may increasingly make screening for cancer a routine
part of secondary prevention.

The goals of early detection are to reduce breast cancer morbidity and mortality. Optimal
screening strategies are expected to carefully balance these goals against the associated
burden to women and cost to health care systems. Several issues regarding the optimal
choice of breast cancer screening strategies remain open. For example, debate surrounds
the question of whether regular mammographies are beneficial to women in their forties.
Evidence of benefit varies across the relevant randomized clinical trials (6), and there is
controversy on the relevance of the suggested benefits for individual women. Consensus
panels (7; 8) who reviewed the evidence did not find it sufficiently strong to make general
recommendations, emphasizing that “women should be informed of the potential benefits and
risks of screening mammography and assisted in deciding at what age they wish to initiate
he manoeuvre” (8). In addition to the issue of the appropriate age at which screening should
begin, complex open issues include the appropriate frequency of screening examinations;
whether women who are at increased risk of breast cancer would benefit from more frequent
screening; and what would be the impact of combining multiple screening modalities.

Evaluating alternative screening strategies is difficult because the benefits of screening de-
pend on complex interaction among several factors, including the ability of various screening
tests to detect cancer sufficiently early; the time window during which such detection can
take place, and its relation to the interval between screening exams; the relative advantage of
an early detection compared to waiting for symptoms to arise; the age distribution of onset
of pre—symptomatic cancer; competing causes of mortality; and others.

Simulation-based decision models have proved to be an effective way to evaluate health

care interventions whose consequences are complex and depend on the interaction of many
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factors. They can provide a formal structure for supporting optimal choice of screening
strategies, cost—effectiveness analysis of specific interventions, and formal optimization of
utility functions of interest. These models often generate simulated individual histories by
drawing evidence from several sources, including the epidemiology and genetics of risk factors,
relevant clinical trials of secondary prevention and treatment, and studies of tumor growth.
A decision model can also support realistic assessments of uncertainty about the relative
merits of alternative choices, an aspect that is often underappreciated in policy making (9).
The literature on model-baased evaluation of screening strategies is now extensive (10; 11).

In this article we consider the model by Parmgiani (12; 11), and generalize it by incorpo-
rating the possibility of using two breast cancer screening modalities in concert: mammog-
raphy (MM) and clinical breast examination (CBE). We also update the model inputs to
reflect recent contributions to the literature. Existing investigations regarding the balance
between mortality reduction and costs have focused on mammography only, and have paid
less attention to the combined use of periodic mammography with clinical breast examina-
tion. (13; 14; 15; 16; 17; 15; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28). Recent studies
have shown that periodic clinical breast examinations combined with mammograms improve
the overall sensitivity of the screening exam compared with mammography alone, (29; 30;
31; 32), and can be particularly valuable among younger women for whom the sensitivity of
mammography alone is relatively low. Logistically, a regular clinical breast examination is
easy to administer as part of a routine physical examination, and is less expensive compared
to mammography.

To promote more efficient and cost-effective breast cancer early detection programs, we
will explore optimal screening strategies in terms of the costs and the quality-adjusted years
of life saved. The analyses focus on strategies that combine the use of both mammogra-
phy and clinical breast examination. The other factors we investigate include age group
and screening interval. The primary objective of this article are to discuss modeling is-
sues arising in optimization of screening strategies with multiple modalities, and to provide
methodologic justifications for models and sources of data used in the analyses reported Shen
and Parmigiani (33).

The results from our investigation will help in the design of more efficient and near optimal
early detection programs, thereby maximizing the survival benefit for breast cancer patients
while also considering the associated societal costs. This study focuses on breast cancer, but
the methods are also applicable to early detection programs for other types of cancer. The
proposed research will provide a basis to guide health policy makers in designing optimal

and cost-effective screening programs, and in extending such benefits to a large population.
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2 Model

2.1 Natural History of Breast Cancer

The basis of our investigation of optimal combinations of screening modalities is a simu-
lation model that can generate individual health histories. It is useful to distinguish the
natural history model, which refers to the health histories of women without early detection
screening, from the intervention model, which refers to the effects of screening. For a patient
with preclinical disease, the natural history model provides a way of simulating age of onset
and preclinical sojourn time, or, equivalently, growth rate. Conditional on these, it then
simulates the age of the woman and the tumor size at the time of diagnosis. These variables
can then be used in turn as covariates in predicting a woman’s survival and quality adjusted
survival. This multi-stage prediction can be repeated for various screening strategies, by
superimposing a history of examinations to the natural history, appropriately simulating
results of screening tests based on assumed sensitivity, and appropriately modyfying age
and size at detection when early detection takes place. Thus, given women’s risk factors, a
decision model using Monte Carlo simulations can be employed to jointly model the disease
histories and screening interventions, and predict the outcomes of interest.

In the natural history model, breast cancer events are simulated according to the age-
specific incidence of preclinical disease and mortality from other causes. For a woman with
breast cancer, the natural history model also provides a way of generating her history of
disease over time. The natural history of the disease over time requires a description of the
transition between different states of the disease. Using the same notation as in Parmigiani
(11), we assume that there are four relevant states: H, women who are either disease-free or
asymptomatic; P, women who have detectable pre-clinical disease; C', women with clinical
manifestation of the disease; and D, women who have died. For women in the cohort who
have breast cancer, we generate their ages at the onset of pre-clinical breast cancer, P, ages
at the onset of clinical breast cancer, C', via tumor growth, and ages at death D according
to corresponding models.

Because the age-specific incidence of pre-clinical disease cannot be directly observed, we
have to estimate such a quantity from the sojourn time distribution and age-specific incidence
of the clinical disease. Specifically, we can derive the incidence of pre-clinical breast cancer

backward from the following deconvolution formula:

Iy) = / " () wpely — tlt)dt, 1)

where I.(y) is the age-specific incidence of clinical breast cancer, wy, is the instantaneous
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Figure 1: Summary of states, possible transitions, and transition densities for the natural history model. This
scheme describes the progress of breast cancer in the absence of screening. All instantaneous probabilities of
transition are indicated next to the corresponding transition. The two subscripts correspond to the origin
and destination states, respectively.

probability of making a transition from H to P, and w,. is age-specific sojourn time density.

Note that the age-specific incidence of clinical breast cancer can be observed and is often
well documented in cancer registries or from the control arms of early detection trials. We
use the age-cohort-specific breast cancer incidence estimates developed by Moolgavkar et al.
(34). With a given distribution for the sojourn time of the pre-clinical disease state, the
age-specific incidence of pre-clinical breast cancer (wy,) can be estimated using the method
of Parmigiani and Skates (35).

However, the estimation of the sojourn time distribution is not straightforward in general
(36; 37; 38; 39; 40; 41). In this study, we focus on three commonly used parametric distri-
butions for the sojourn time of the preclinical disease state, which are further modified to
incorporate the effect of age at the onset of the preclinical disease.

We first consider a smoothed age-specific exponential sojourn time distribution:

wpe(z|A()) = A7 (t) exp(=A7 (t)x),

where the mean sojourn time A(t) depends on the womans age. To incorporate the un-
certainty of the parameter into the model, we introduce an inverse gamma prior to the
parameter A\, where the two parameters of the inverse gamma distribution are age-specific
and are chosen to match the mean and standard deviation of sojourn times estimated from
the Canadian National Breast Screening Studies (CNBSS) trials in Shen and Zelen (32).
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An alternative assumption for the sojourn time distribution is the log-normal assumption.
We consider a modified version taking into account the womans age at the onset of the

preclinical disease, while generalizing the model by Spratt et al (42):

o) = = exp { g (oate) — le)

where the logarithm of the mean, yu(t) is specified to be a linear function of the womans age,
t. An inverse gamma prior is used to incorporate the uncertainty for the variance, which
does not show an age effect (11). The parameters of the inverse gamma are chosen to match
the moments of the reported age-specific variances in Spratt et al (1986).

A modified tumor growth distribution of Peer et al (43; 44) is also used in our simulation
for sensitivity analyses. Specifically, the sojourn time of the preclinical duration is modeled
by the tumor growth rate or, equivalently, by the tumor doubling time. In particular, the

relationship between sojourn time and tumor doubling time can be expressed as
X =In(V,/V.)DT/In(2),

where X is the sojourn time, DT is the tumor doubling time, and V}, and V, are the vol-
umes of a tumor at onset of detectable preclinical disease and at onset of clinical disease,
respectively. We assume that the smallest tumor detectable by screening exam is 5mm, and
that the average diameter at which breast cancer manifests is 20 mm (11). Tumor doubling
times are assumed to follow an age-dependent log-normal distribution. The parameters in
the predictive sojourn time distribution are estimated to match with the median and 95%
quantile of the tumor doubling time based on findings from the Nijmegen trial (43). It is
worth noting that there is a direct relationship between the tumor growth rate (or doubling

time) and the sojourn time in the preclinical duration.

2.2 Survival Distributions and Mortality

One primary interest of the study is to evaluate the length of survival after diagnosis of
breast cancer with various screening strategies. The survival distribution for women with
breast cancer is determined by their age and tumor characteristics at diagnosis, and by
the treatment they receive following diagnosis. Women in the cohort who receive periodic
screenings are more likely to have breast tumors detected early and thus are more likely to
have better prognoses than women who do not receive such screening. However, due to im-
perfect screening sensitivities and heterogeneity in pre-clinical durations, some breast cancer
may still be clinically diagnosed between exams (interval cases). The survival distribution

depends on screening only through the tumor characteristics and age at diagnosis.
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Based on the natural history model, the tumor size and age at diagnosis are generated for
a woman diagnosed to have breast cancer in the cohort. It is well known that lymph node
involvement (nodal status) and the estogen receptor (ER) status of the tumor (positive or
negative) are also important risk factors, and are related to treatment options and survival.
To estimate the number of positive nodes at diagnosis, a predictive model was developed
using the data of a womans age and tumor size at diagnosis from the SEER registries (11;
45). A constraint via the truncated Poisson distribution is given to ensure that the number
of positive nodes for a screening- detected breast tumor is less than or equal to that for
the same woman if her tumor is clinically detected. Without enough evidence to connect
ER status with other risk factors, the ER status of a womans breast tumor is simulated
independently of the other risk factors, but according to the distribution for the general
population. It is estimated that roughly 70% of breast tumors are ER positive (46).

As expected, the tumor characteristics at diagnosis will determine the treatment received
thereafter. We assume that women in the cohort are treated according to the guidelines
established by the NIH Consensus Conference on Early Breast Cancer (1991), given their
risk factors including age, tumor ER status, tumor size, and nodal status at diagnosis.
Whether a woman receives tamoxifen depends on her age and tumor ER status. The survival
distribution for length with quality of life adjustment after diagnosis of breast cancer is
estimated using a Cox regression model with covariates of treatment, age, tumor ER status,
primary tumor size, and number of nodes involved. The predictive survival model was
established based on a combined analysis of four CALGB trials (11; 47; 48; 49), as described
in (50).

For a woman in the cohort, her age-specific mortality due to causes other than breast
cancer is obtained from actuarial tables, using a 1960 birth cohort from the census database.
If the breast-cancer-specific survival time for a woman is shorter than her simulated natural
lifetime, then we assume that she died from breast cancer and contributed to the breast

cancer mortality. Otherwise, we assume that she died from a competing cause.

2.3 Sensitivities of Mammography and Clinical Breast Examinations

The sensitivity of a screening program for the early detection of breast cancer plays a critical
role in its potential for the reduction of disease-specific mortality. When a screening program
involves more than one modality, it is important to obtain the sensitivity of each individual
screening modality and the dependence structure among the multiple diagnostic tests (41;
51). This knowledge provides a basis to guide health policy makers in designing optimal and

cost-effective screening programs.
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Some recent studies reveal that the sensitivity of a screening exam is likely to depend
on tumor size and age at the time of diagnosis (44; 32). Based on literature in the area of
breast cancer screening and the estimates of screening sensitivities for both MM and CBE,
we consider a model to relate the sensitivity of each modality with age and tumor size at
diagnosis, respectively (11; 32). In particular, a logit function is employed to model the
effects of age and tumor size at diagnosis on the sensitivities of mammography and clinical
breast exam, respectively. We assume the sensitivity of each modality satisfying the following

equation:
exp{ako + o (t — 45) + Oékg(d — 2)}
1+ eXp{O./ko + o (t — 45) + Cl/kg(d — 2)}7

where t is the age at diagnosis, d is the diameter in centimeters of the primary tumor at

ﬁk (ta d) =

diagnosis, k = 1 corresponds to mammography, and 2 is for CBE.

The coefficients in the logit models are determined based on the corresponding sensitivity
estimates from the CNBSS trials (32) as follows. A sensitivity of mammography of 0.61 cor-
responds to a woman at age 45 with a tumor diameter of 2cm; a sensitivity of 0.1 corresponds
to a woman at the same age but with a tumor size of 0.1 cm; and a sensitivity of 0.66 corre-
sponds to a woman of age 55 with a tumor size of 2cm: ;(45,2) = 0.61, (31(45,0.05) = 0.1
and (41(55,2) = 0.66. Thus, the coefficients in the logit model are solved to be, ajg = 0.447,
a1 = 0.216 and aq5 = 1.36 for mammography. In the same vein, we can solve the coefficients
for the sensitivity of CBE: agy = 0.364, as; = —0.077 and ags = 1.31. Moreover, because
the sensitivity can vary from subject to subject even when given the same age and tumor
size (52), we use a beta distribution to reflect such a random variation for each sensitivity,
while matching the corresponding mean and variance for the estimated sensitivity from the
CNBSS trials, as reported in Shen and Zelen (51).

The Health Insurance Plan of Greater New York (HIP) trial and the CNBSS both of-
fered independent annual clinical breast exams and mammograms to women in their study
arms, which gave us an opportunity to assess the dependence between the two screening
modalities. The analyses based on data from these trials indicate that mammography and
clinical breast examinations contribute independently to the detection of breast cancer (51).
Therefore, given the sensitivity of each individual screening modality, the overall sensitivity

of a screening program using both MM and CBE is as follows:

B(t,d) = Bi(t,d) + Ba(t, d) — Bi(t, d)Ba(t, d),

when the two modalities are independent to each other.
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2.4 Costs of Screening Programs

As expected in screening practices, the primary costs of a screening program is proportional
to the total number of mammograms and clinical breast examinations given. Although there
are additional costs related to follow-up confirmative tests such as a biopsy, and costs for the
treatment of breast cancer at various stages after diagnosis, we will focus only on the cost of
screening examinations in the current study. On its website, the National Cancer Institute
lists the estimated cost of mammography in 2002 at $100-200, and acknowledges that the
cost can vary widely among different centers and hospitals. Since it is frequently part of a
routine physical examination, the cost of a CBE is often less than that of mammography.
In a public website promoting cancer prevention, the estimated cost for an annual CBE is
$45-55, whereas the cost of MM is $75-150 (53). In the decision analysis, it is clear that the
cost ratio of MM and CBE determines the results in the comparison of different screening
strategies. Therefore, we investigate the effects of two cost ratios (1.5 and 2) between MM
and CBE, and allow the cost for a CBE to be $100. For simplification, we will not adjust

for the type of currency, or for inflation over the years.

3 Optimization of Screening Strategies and Sensitivity Analyses

The focus of this investigation is to compare the effects of different breast cancer screening
policies and the costs directly related to these policies, based on the models introduced in the
last section. The health ourcome of interest is the expected gain in quality-adjusted survival.
We interpret this quality adjustment to be relative to a typical health history rather than that
of a state of perfect health (50). Quality adjustments are important because they allow, with
certain limitations, to account for the effects of medical intervention on morbidity as well
as mortality. In screening this is especially important becasue of the so-called overdiagnosis
problem. While benefcial to many women, screening leads to discovering cancer that would
have not otherwise affected certain womens health. While lenght of life may be unaffected,
this is a considerable loss of quality of life. Also, early detection can prolong the portion of
one’s life spent as a cancer survivor. The specific quality adjustments used in our model are
the same as Parmigiani (11).

The marginal effectiveness for each screening strategy is calculated based on the difference
between the expected quality-adjusted life in years for women in a cohort undergoing screen-
ing versus the same cohort of women without screening. The summaries of interest are the
expected gain in quality life years (QALYS) and the expected total monetary cost for each

screening strategy. Marginal cost is the difference in total cost between the screened and
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unscreened cohorts. The marginal effectiveness for each screening strategy is the difference
between the expected QALYS in the screened and unscreened cohorts. The ratio is marginal
cost per year of quality-adjusted life saved (MCYQLS).

Three important issues to consider for screening policies are the age at which a woman
should start a screening program, the screening frequency, and what screening modalities
are to be used. In this study, we will evaluate a total of 48 screening strategies with the

following combinations:
e The age to begin and end periodic screening: 40-79, 45-79, and 50-79 years;
e The interval between consecutive examinations: 0.5, 1, 1.5 and 2 year(s);

e The combined use of MM and CBE: whether mammogram or CBE is given for every

one or every two exams.

Using the model described earlier, we generate a cohort of women and their natural
histories of disease, and assess how the screening strategies interact with the disease process
and the survival after diagnosis. The quantities of interest are estimated using the 100,000
Monte Carlo replicates, for each of the screening strategies.

In summary, we simulate a birth cohort of 100,000 women and follow them through the
years. A fraction of them will develop breast cancer according to the age-specific incidence of
pre-clinical breast cancer. For those women, we generate the natural histories of their disease,
which include their ages at the onset of the preclinical disease, the pre-clinical durations (via
tumor growth rates), and ages at the clinical onset of the disease. When a screening strategy
is provided to a woman during a pre-clinical disease state, the probability that her cancer
will be detected by this screening strategy is generated using the equations in Section 2.3,
based on her age and tumor size at the time of the exam. If the diagnosis is missed during
the exam, her breast cancer may be detected at her next scheduled exam or it may clinically
manifest before the next exam depending on the sojourn time of the womans preclinical
disease state. Once a woman is diagnosed to have breast cancer, we obtain her tumor size
and age at the time of detection. The information is then used to predict the woman’s
survival and quality-adjusted survival after the detection using models developed in Section
2.2. The expected cost is estimated based on the average cost of screening exams from the
100,000 women for each screening strategy in the simulation.

A balance sheet is a summary of the expected benefits and harms of an intervention. Its
goal is to inform decision makers, and enable them to weigh benefits and harms according

to their individual values (54; 55). Table 1 is a balance sheet for evaluating two alternative
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Screening Strategy
MM/1, CBE/1 MM/2, CBE/1

Additional number of MM per woman 33 17
Additional number of CBE per woman 33 33
Additional number of false positives per woman 5.2 4.3
Additional years of life per woman 0.144 0.124
Additional women detected in preclinical state 867 810
Women treated unnecessarily 55 51

Table 1: Balance sheet for two alternative screening strategies: annual MM and CBE screening and biannual
MM and annual CBE. In both cases screening starts at 40 years of age and stops at age 79. Values are
increments compared to no screening for a cohort of 10000 breast cancer women.

screening strategies, based on the model of this chapter. We consider annual MM and CBE
screening and biannual MM and annual CBE. Differences between the two columns can
inform decision makers about whether annual or biannual MM are to be preferred once
annual CBE is planned. Elmore and colleagues (56) collected data on a retrospective cohort
study of breast cancer screening and diagnostic evaluations among 2400 women who were 40
to 69 years old at study entry. False positive results occurred in 6.5% of the mammograms,
an estimate that was used here to translate the estimated number of additional tests into
estimated false positives. In addition we assume that positive CBE’s would be followed by
a mammography, that 10% of CBE are false positive, and the two tests are independent
of each other. Then the overall false positive number per woman for the 1st strategy is:
(0.065 + 0.1 — 0.1 % 0.065) * 33 = 5.2; and the overall false positive number per woman for
the 2nd strategy is 0.065 * 17 4+ 0.1 % 33 — 0.1 * 0.065 * 17 = 4.3.

In Section 2.1, three model specification are discussed for the distribution of sojourn times
in the preclinical state of the disease. It is of interest to investigate how these different models
may impact the QALYs and expected cost of each screening strategy reported by (33). We
find that the analyses are fairly robust for the three model assumptions. The marginal
QALYS is slightly higher (about 1-2%) for the lognormal model than for the exponential
model for a given screening strategy. The relative marginal costs and QALYS among the

screening strategies under evaluation are similar for the three model choices.

4 Discussion

Much attention has been focused on the early detection capabilities of new breast cancer
screening technologies, including advances in mammography and MRI. The importance of

clinical breast examination in breast cancer screening programs seems to be unclear. Even

10
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though some recent studies have indicated that regular CBE in addition to MM can be
important in the early detection of breast cancer, few studies have investigated the optimal
use of both mammography and clinical breast exam to reduce the mortality of breast cancer
while balancing the associated burdens and costs to women and to the health care system.

Developing early detection guidelines and making public health policy requires careful
consideration of the long-term benefits, costs, and feasibility associated with the screening
strategies. In Shen and Parmigiani (33), we explore the trade-off between the QALYS
and costs related to each screening strategy among several combinations of starting ages
of screening, frequencies of screening, and the use of two screening modalities. The study
indicates that starting from 40 years of age, a biennial mammogram is often cost-effective
for women who undergo annual clinical breast exams. Given the cost to women who are
already receiving care for other health issues or regular check-ups in a clinic, an annual CBE
as part of their routine examination should not add much burden. Our analyses also indicate
that CBE alone cannot replace regular mammography in screening practice, but can be used
complementarily or alternatively in a screening program.

The decision analysis methodology and simulation techniques we have developed for this
study can be directly applied to investigate other screening strategies, and even to other
chronic diseases with certain modifications to the models. We have modeled screening sensi-
tivity for MM and CBE, respectively, through age and tumor size at diagnosis. We have also
introduced random variations for the parameters to incorporate uncertainty of data input
and population heterogeneity. We have considered various sojourn time distribution models,
and have derived them based on data from the large randomized breast cancer screening
trials of the HIP (57), CNBSS (58), and the Nijmegen Trial (43), while taking random vari-
ations into consideration. We have performed sensitivity analyses to assess the robustness
of the patterns of benefit and cost with the alternative models.

Our study has several limitations. The cost of a biopsy following a CBE or MM that is
positive for breast cancer has not been considered in the analysis. Moreover, we have not
included the potential costs of false-positive exams, such as the anxiety, fear and discomfort
that are associated with a biopsy. In fact, it is often difficult to convert these factors into
dollar amounts (56). In addition, we have not included important cost components, which
are the costs of follow-up procedures undertaken after the detection of breast cancer. This
is in part due to the great variation in treatment protocols and in the cost of treating breast
cancer that has existed over the years. Finally, we have used a hypothetical birth cohort
of women with 100% compliance in the simulations for each screening strategy. In reality,

it is rare to have 100% compliance for any screening program, and a real cohort would be

11
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dynamic, which would include changes in the cohort due to migration.

12
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