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Bivariate Current Status Data

Mark J. van der Laan and Nicholas P. Jewell

Abstract

In many applications, it is often of interest to estimate a bivariate distribution
of two survival random variables. Complete observation of such random variables
is often incomplete. If one only observes whether or not each of the individ-
ual survival times exceeds a common observed monitoring time C, then the data
structure is referred to as bivariate current status data (Wang and Ding, 2000). For
such data, we show that the identifiable part of the joint distribution is represented
by three univariate cumulative distribution functions, namely the two marginal
cumulative distribution functions, and the bivariate cumulative distribution func-
tion evaluated on the diagonal. The EM algorithm can be used to compute the
full nonparametric maximum likelihood estimator of these three univariate cumu-
lative distribution functions; however, we show that smooth functionals of these
univariate cumulative cdfs can be efficiently estimated with easy to compute non-
parametric maximum likelihood estimators (NPMLE), based on reduced data con-
sisting of univariate current status observations. We use these univariate current
status NPMLEs to obtain both a test of independence of the two survival random
variables, and a test of goodness of fit for the copula model used in Wang & Ding
(2000). Finally, we extend the data structure by allowing the presence of covari-
ates, possibly time-dependent processes that are observed until the monitoring
time C. We show that applying the locally efficient estimator, developed in van
der Laan and Robins (1998), to the reduced univariate current status data yields
locally efficient estimators.



1 Introduction

Consider a study in which interest focuses on the bivariate distribution F of two positive

random variables (T1; T2) which cannot be directly measured. Rather, for each individual,

we observe, at a random monitoring, or censoring, time, C, whether Tj exceeds C or not for

each j = 1; 2. That is, on each subject, we observe:

(C;�1 � I(T1 � C);�2 � I(T2 � C)):

Following Wang & Ding (2000), we call this data structure bivariate current status data since

it generalizes the well-known current status data structure (C; I(T � C)) for a univariate

survival time T . It is assumed here that C is independent of ~T = (T1; T2), although this is

weakened later in the paper when covariates are present. The density of this observed data

structure, conditional on the monitoring time C = c, is:

p(�1; �2jC = c) = F3(c)
~�=(1;1)(1 + F3 � F1 � F2)(c)

~�=(0;0)

�(F1 � F3)(c)
~�=(1;0)(F2 � F3)

~�=(0;1);

where F1(t) = P (T1 � t), F2(t) = P (T2 � t) and F3(t) = P (T1 � t; T2 � t). It follows

that only the three univariate cdf's F1; F2 and F3 are identi�able. Although the complete

bivariate distribution, F , is not identi�ed, the dependence measure F3 � F1F2 is identi�able

from the data, so that assessment of independence of T1 and T2 is possible.

Here, we consider estimation of F1; F2; F3 and smooth functionals of these marginal cu-

mulative distribution functions of the type �j(r) =
R
r(s)f1� Fj(s)gds for a given function

r, j = 1; 2; 3. Note that, with R(x) =
R x
0 r(t)dt, by integration by parts, we have:

Z �

0
r(t)(1� Fj(t))dt = R(t) (1� Fj(t))j�0 +

Z �

0
R(t)dFj(t);

for any � (including � = 1). Hence if limt!� (1 � Fj(t))R(t) is zero or known, then an

estimate of
R �
0 r(1� Fj)dt provides us with an estimate of

R �
0 RdFj . In particular, with this

condition, if r(t) = 1 and the support of Fj is in [0; � ], then �j(r) = ETj, and, if r(t) = ktk�1,

then �j(r) = ET k
j , j = 1; 2; 3. Moreover, by setting r(t) = K(ft�t0g=h)=h for some kernel K

and bandwidth h, an estimator of �j(r) provides a smooth estimator of Sj(t0) = 1� Fj(t0).
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1.1 Motivating Examples

Many examples of univariate current status data yield related bivariate current status struc-

tures. Thus, for example, serial-sacri�ce carcinogenicity experiments of a single occult non-

lethal tumor provide simple examples of current status data. Such experiments, with the

possibility of occult non-lethal tumors at two di�erent sites (e.g. liver and brain), then yield

bivariate current status data.

Similarly, HIV transmission studies of the partners of HIV-infected index cases often

produce current status information on the time, or number of contacts, between infection

of the index case and the partner, since the latter event usually does not lead to clinically

observed symptoms (Jewell and Shiboski, 1990). In this case, there may be additional cross-

sectional information available at the monitoring time such as the disease status of the index

case. If T1 is the time to infection of the partner, and T2 is the time to diagnosis of AIDS

for the index case, both measured from the date of infection of the index case, the random

variable (T1; T2) is bivariate current status data, assuming that only whether or not the index

case has been diagnosed with AIDS is measured at the monitoring time C. Here, association

between T1 and T2 may suggest greater infectivity when the index case su�ers from rapidly

progressing HIV disease.

A quite di�erent example arises in twin pair studies in genetics where observed phenotypes

are the ages at onset of a speci�c disease. For conditions such as Alzheimer's disease, the

exact age of onset is usually imprecise even when a de�nitive diagnosis is available. If Tj is

the age of onset for the jth twin, then in such cases only bivariate current status information

is observed for (T1; T2), where the monitoring time C is here the common age of the twins

at observation. Interest may focus on the strength of association between T1 and T2 for both

non-identical and identical twins.

In all of these examples, it may be possible to measure time-independent and time-

dependent covariate processes up till time C, in addition to (C;�1;�2). Denote such pro-

cesses by �L(C) = fL(s) : s � Cg , where L may be of high dimension. For example, in
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the carcinogenicity example noted above, suppose that study mice are randomly allocated

to dose groups, a �xed covariate. In addition, daily measurements of the weight of each

mouse, a time-dependent covariate, are taken prior to sacri�ce. Let L(u) represent the mea-

surements taken at time u, including the weight at time u and dose. We only observe the

covariate process up to time C: L(C) = fL(u) : 0 < u < Cg. Thus, for each mouse,

Y = (C;�1 = I(T1 � C);�2 = I(T2 � C); L(C)) is observed. Accommodating the e�ects of

covariates is not only of interest in terms of their relationship to (T1; T2), but also allows for

the possibility of choosing monitoring times that depend on the observed covariate processes,

as we note in Section 1.2.

1.2 Outline

In Section 2, we consider the nonparametric maximum likelihood estimators (NPMLE) of

(F1; F2; F3), computed via the EM algorithm. We note that easy to compute estimators of

Fj , j = 1; 2; 3, are available. With �3 = �1�2, Fj(t) can be represented in terms of a

monotonic regression of �j on C since Fj(t) = E(�j j C = t), for j = 1; 2; 3. This suggest

the estimator Fjn(t) of Fj that minimizes
Pn

i=1(�ji�Fj(Ci))2 over all distribution functions

Fj . The solution of this problem can be computed using the rapid pool-adjacent-violators

algorithm (PAVA, see Barlow et al. 1972). This estimator happens to correspond with

the NPMLE based on the reduced data (C;�j). From Groeneboom & Wellner (1992), it

follows that these reduced data NPMLE's converge, under appropriate conditions, at rate

n�1=3, to known asymptotic distributions. In spite of the simplicity of these three reduced

data NPMLE's relative to the full NPMLE, it is shown, in x3, that, at most data generating

distributions, the reduced data NPMLE's yield e�cient estimators of smooth functionals of

(F1; F2; F3). For estimation of smooth functionals of Fj , we thus recommend these simple

estimators instead of the more complex full NPMLE. We doubt whether the full NPMLE of

Fj has better �nite sample performance than the simple estimators, Fjn, j = 1; 2; 3.

The results for smooth functionals are exploited, in x3.1{3.3, to construct (i) simple to

compute tests of independence of T1 and T2, and (ii) a goodness of �t test for the semipara-
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metric copula model for the bivariate distribution function F , assumed by Wang & Ding

(2000).

Finally, in x4, we brie
y describe locally e�cient estimators for the extended data struc-

ture Y = (C;�1;�2; �L(C)) that includes observation of covariate processes up to time C.

The assumption of independence between ~T and C is now assumed conditional on the ob-

served �L(C). This therefore allows dependence between the monitoring time C and the Tj 's

that arises solely through �L(C). To illustrate the importance of this extension, consider a

mouse tumorigenicity experiment designed to estimate the distributions of time to develop-

ment of liver adenoma and time to development of brain tumor, and dependence between

these two onset times. Suppose that L(u) includes weight at time u, and that for each individ-

ual Y = (C;�1 = I(T1 � C);�2 = I(T2 � C); L(C)) is observed. A reasonable monitoring

scheme is to increase the `hazard' of monitoring shortly after a mouse begins to lose weight,

since if the sacri�ce time is closer to the time of tumor onset then more e�cient estimation

is possible. This monitoring scheme introduces dependence between C and ~T and estimators

that ignore this dependence will be biased. Collecting information on a surrogate process,

and allowing the monitoring time to depend on it, is a superior design to experiments that

require independent censoring, and thus can be used to improve estimation.

1.3 Previous Work and Comparison with our Results

Previous work and examples of univariate current status data can be found in Diamond, et

al. (1986), Jewell & Shiboski (1990), Diamond & McDonald (1991), Keiding (1991), Sun &

Kalb
eisch (1993), among others. In its nonparametric setting, it is also known as interval

censoring, case I (Groeneboom & Wellner, 1992).

For a single random variable T , the NPMLE of the distribution function, F , of T , based

on current status data, is the pool-adjacent-violators estimator for the monotone regression

F (t) = E(� j C = t) of Barlow et al. (1972), where � = I(T � C) is the current status

indicator at time C. The asymptotic distribution of this estimator has been analyzed by

Groeneboom & Wellner (1992), and e�ciency of the NPMLE of smooth functionals of F
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(such as its mean and variance) has been proved by Groeneboom & Wellner (1992), van de

Geer (1994), and Huang & Wellner (1995). Estimation of regression coe�cients, associated

with �xed covariates, when survival time is subject to current status observation, has been

considered by several authors including Rabinowitz, Tsiatis & Aragon (1995), and Huang

(1996).

The addition of time-dependent covariates to the data structure is considered in van der

Laan & Robins (1998). They develop locally e�cient estimators of smooth functionals of

the distribution of T . By incorporating information on the process, L(C), their estimators

are guaranteed both (i) to be more e�cient than the NPMLE that ignores data on L(C),

and (ii) to remain consistent and asymptotically normal, whatever the joint distribution of

(T; L). The NPMLE that incorporates data on L(C) fails to attain these goals, when L has

high dimension, because of the curse of dimensionality (Robins & Ritov, 1997).

Wang & Ding (2000) were the �rst to consider bivariate current status data. To avoid

identi�ability issues, they assumed a semiparametric copula model for the bivariate distri-

bution, parametrizing the complete bivariate distribution by its marginals and a single real

valued parameter �. They proposed estimation of the marginals by the reduced data estima-

tors, Fjn, substitution of these estimators into the likelihood, and then maximization of the

plug-in-likelihood w.r.t. �. As a consequence, their estimate of dependence will be biased if

the true bivariate distribution is not adequately described by the copula model. As a result,

this paper provides an important extension of their work since it directly estimates what

is identi�able from the data. In particular, we provide a goodness-of-�t test for the copula

model. The extension of these ideas to incorporate covariate processes, with application of

the developed locally e�cient estimators, is also of considerable value as noted.

2 The Nonparametric Maximum Likelihood Estimator.

The general EM algorithm can be used to compute the NPMLEs of F1; F2 and F3. We note

that the masses of the NPMLEs can only be determined up to the intervals Cr�1 � t < Cr,
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for r = 1; : : : ; n + 1, where C0 = 0 and Cn+1 = 1. To describe the `full' data for the EM

algorithm, consider the grid of (n + 1)2 rectangles in the positive quadrant where the rsth

rectangle is Rrs = f(t1; t2) : Cr�1 � t1 < Cr; Cs�1 � t2 < Csg. The full data is then nrs, the

number of observations in Rrs, and the unknown parameters are prs, the mass given to Rrs

by the joint distribution of (T1; T2), for r; s = 1; : : : ; n+ 1.

Given current estimates, F k of F , the E step requires computation of

E(nrsj(C;�1;�2)i; i = 1; : : : ; n; F k) for each r; s. Since nrs is simply the sum of indicators

that re
ect whether an observation belongs toRrs or not, this computation is straightforward;

for example when (C;�1 = �2)i = (Ci; 1; 1), we assign the mass of the single observation to

each Rrs in f(t1; t2) : 0 � t1; t2 < Cig according to the relative mass that F k gives to Rrs,

conditional on being in f(t1; t2) : 0 � t1; t2 < Cig. Given the updated estimates n̂rs thus

calculated, the estimate of prs is then just n̂rs=n.

Note that each F k estimates more than what is identi�able from the data. Thus, at each

stage of the algorithm, only Fi
k; i = 1; 2; 3; should be evaluated for convergence assessment.

At convergence, we again only consider the estimates of Fi; i = 1; 2; 3; derived from the limit

of F k . As is typical with the EM algorithm, care must be used in selecting an appropriate

starting value; in particular, if the starting value for F puts no mass on a given Rrs, then no

subsequent iterative estimates of F will place mass there either. In such cases, the algorithm

will not necessarily converge to the NPMLE. Note however that, since the likelihood function

is strictly concave, the EM algorithm will converge to the global maximum so long as the

choice of support points of the starting value is su�ciently rich; if, for example, it places

positive mass on all rectangles Rrs (van der Laan, 1996).

3 E�cient Estimation of Smooth Functionals.

For estimation of Fj , j = 1; 2; 3, we have shown that one can use the full NPMLE or the

much simpler reduced data NPMLE's Fjn. In this section, we show that for the purpose

of estimation of smooth functionals of Fj , j = 1; 2; 3, there is no loss in e�ciency with the
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estimators Fjn at many data generating distributions. This result is made speci�c by the

following theorem. We assume that the random monitoring time C follows the distribution

G (with associated density function g).

Theorem 1 Let j 2 f1; 2; 3g be given. Consider the nonparametric model for Y =

(C;�1;�2), where C is independent of ~T and the distribution Fj is unspeci�ed. We observe

n i.i.d. observations of Y . Let �j =
R
(1 � Fj)(u)r(u)du for a given function r. Consider

the estimator �jn =
R
(1 � Fjn)(u)r(u)du, where Fjn is the isotonic regression estimator

of Fj(c) = E(�j j C = c). Then, �jn is regular and asymptotically linear at any (Fj ; G)

for which Fj is continuous with density fj > 0 on [0;Mj] and zero elsewhere (Mj < 1),

r=g(x) < M <1 for x 2 [0;Mj].

The in
uence curve of �jn is given by:

IC(C;�j j Fj ; g; r) = r(C)

g(C)
[Fj(C)(1��j)� f1� Fj(C)g�j] : (1)

The variance of this in
uence curve is given by:

VAR(IC) =

Z
r2(c)

g(c)
Fj(c)f1� Fj(c)gdc:

Finally, at any PF;G satisfying the conditions of Lemma 1 (Appendix), we have that �jn is

an asymptotically e�cient estimator of �j .

Since each Fjn is just the NPMLE for simple univariate current status data, the regularity

and asymptotic linearity of �jn follows from the results of Huang & Wellner (1995). Lemma 1

shows that for the full data distribution, PF;G, the tangent space is the entire space L
2
0(PF;G),

which implies that any regular and asymptotic linear estimator is asymptotically e�cient

(Bickel et al., 1993).

3.1 Test for independence.

We now apply the results of the previous section to obtain a test of independence of T1

and T2. Let M3 < 1 be the end point of the assumed compact support of F3. For a

given function w(�) satisfying RM3

0 w(s)ds = 1 and w(s) = 0 for s � M3, de�ne �I(w) =
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R fF1F2 �F3g(s)w(s)ds. Note that, if T1; T2 are independent, �I (w) = 0 for any such w. Let

�I;n(w) =
R fF1nF2n�F3ng(s)w(s)ds be the plug-in estimate of �I(w). We have the following

result which is a corollary of Theorem 1.

Theorem 2 Assume that Fj is continuous with density fj > 0 on [0;Mj] and zero elsewhere

(Mj < 1), w(x)=g(x) < M < 1 for x 2 [0;Mj], j = 1; 2; 3. Then, assuming the condi-

tions of Lemma 1 (Appendix), �I;n(w) is an asymptotically e�cient estimator of �I(w) with

in
uence curve

ICI(Y j F; g; w) = �IC(Y j F1; g; r = F2w)�IC(Y j F2; g; r = F1w)+IC(Y j F3; g; r = w);(2)

where the three in
uence curves on the right-hand side are de�ned in Theorem 1.

The calculation of the in
uence curve (2) follows from the results of Theorem 1, the de�nition

of �I;n(w), and a standard telescoping algebraic argument as for product di�erentiation.

Let �2 be the variance of ICI(Y ) and let �̂2 = (1=n)
Pn

i=1
cIC2

(Yi) be the estimate of �2

obtained by plugging in estimates of Fj ; g, j = 1; 2; 3, into the formula (2) for ICI(Y ). Any

reasonable density estimate of g su�ces, although, as for univariate current status data, it

may be helful to base the bin or bandwith on the support points for F1n; F2n and F3n, all of

which are a subset of c1; : : : ; cn. Now, the statistic

Dn(w) =
�I;n(w)

�̂
:

can be used to test independence of T1; T2. If T1 is independent of T2, then, under the

conditions of Theorem 2, Dn(w) is asymptotically normally distributed with mean zero and

variance one.

A global test of independence is based on taking w to be constant over the support of

F3. For more re�ned, or local, tests of independence, we take w to be some form of kernel

function around any chosen point in [0;M3]. Computing the test statistic for a collection of

such w's, weighting di�erent regions in [0;M3], allows us, in principal, to determine areas

of [0;M3] where violations of independence occur. A combined J degree of freedom test
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of independence, based on a set of J weight functions, can also be constructed by using a

multivariate version of Dn(w) with each element corresponding to a di�erent weight function.

3.2 Goodness of Fit Test of a Copula Model

Consider the copula model for the joint survival function, described in Wang and Ding (2000):

S(t1; t2) = C�(S1(t1); S2(t2)); (3)

where C�(�; �) : [0; 1]2 ! [0; 1] indexes a parametric family of survival functions on the unit

square, with �xed marginals. The function C determines the local dependence structure

and � 2 IR is a global association parameter related to Kendall's tau, denoted as � , via the

following equation:

� = 4
Z 1

0

Z 1

0
C�(u; v)dudv� 1:

Ding and Wang (2000) construct a `pseudomaximum likelihood' estimator of �, �n, that

converges at
p
n rate; speci�cally, their estimate is the maximum liklihood estimate of �,

assuming the copula model and substituting the reduced data NPMLEs of F1 and F2; the

latter immediately yield corresponding estimates of S1 and S2, similarly labeled S1n and S2n).

The estimates of � and the joint survival function depend on the copula model being correct

so that it is of value to have a goodness-of-�t test of this assumption available.

Note that, in general, S(t; t) = 1 + F3(t) � F1(t) � F2(t) which can be estimated non-

parametrically by Sn(t; t) = 1 + F3n(t) � F1n(t) � F2n(t). On the other hand, using the

copula model, we can also estimate S(t; t) by Sn;cop(t; t) = C�n(S1n(t1); S2n(t2)) One can

then assess the goodness of �t of the copula model using the test statistic �fit;n(w) =

R fSn;cop(t; t)� Sn(t; t)gw(t)dt for a given weight function w.

If the true data generating distribution follows the assumed copula model, then, under

regularity conditions
R fSn;cop(t; t) � Sn(t; t)gw(t)dt is asymptotically linear with a certain

in
uence curve ICcop(Y ). With the regularity conditions of Theorem 1, we also have that

R fSn(t; t)�S(t; t)gw(t)dt is asymptotically linear with in
uence curve ICNP (Y ) = �IC(Y j
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F3; g; w)+IC(Y j F1; g; w)+IC(Y j F2; g; w), where the latter in
uence curves are de�ned in

(1). Thus, if the copula model is correct, then �fit;n(w) is asymptotically linear with in
uence

curve ICcop(Y )�ICNP (Y ). If �̂ is the plug-in empirical estimate of the standard deviation of

ICcop(Y )�ICNP (Y ), then the test statistic �fit;n(w)=�̂ is asymptotically standard normal if

the copula model is correct. As for the proposed tests of independence, this test statistic can

be computed for a collection of w's, weighting di�erent regions in [0;M3], assuming su�cient

data is available. In this manner, areas of [0;M3] where deviations from the copula model

occur can be determined.

4 The Locally E�cient One-Step Estimator Including Covari-

ate Processes.

We now turn to estimation for extended bivariate current status data, Y = (C;�1;�2; L(C)),

where L(�) is a vector of covariates, possibly time-dependent, as introduced in x1. As before,

we can reduce the data to univariate current status data (C;�j; �L(C)) on Tj and apply the

locally e�cient one-step estimators of functionals �j(r) of van der Laan & Robins (1998).

Under regularity conditions, van der Laan & Robins showed that these one-step estimators

are locally e�cient for this reduced data structure. Lemma 2 (Appendix) proves that the

e�cient in
uence curve for the parameter �j(r) for the complete bivariate current status

data structure (C; ~�; �L(C)) equals the e�cient in
uence curve for the parameter �j(r) for

the reduced data structure (C;�j; �L(C)), j = 1; 2; 3, at most data generating distributions

of interest. As a consequence, the one-step estimators of �j(r) based on the reduced data are

also locally e�cient for the complete bivariate current status data structure.

We make some brief comments regarding these one-step estimators, referring to van der

Laan & Robins (1998) for a more detailed treatment. First we state the assumptions regarding

the monitoring time C. As noted earlier, we now allow dependence between C and ~T , but

only through the observed covariates. That is, the `hazard' of monitoring at time t, given the

full, unobserved, data X = (~T; L), is only a function of the observed portion of the covariate
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process, L(t):

�C(t j X) = �C(t j L(t)): (4)

This implies G(� j X), the conditional distribution function of C, satis�es coarsening at

random (Robins, 1993). Coarsening at random, originally formulated by Heitjan & Rubin

(1991), was generalized by Jacobsen & Keiding (1995) and Gill et al. (1997). If no covariate

process �L is available, then (4) implies that C is independent of ~T . The principal regularity

condition for the estimators is that r(�)=g(� j X) < M < 1 FX -a.e. which requires that the

monitoring density is positive at any point s with r(s) > 0.

The one-step estimators of �j , j = 1; 2; 3, are consistent and asymptotically normal if we

succeed in consistently estimating �C(� j X) at a suitable rate under the assumption (4). One

such case is the experiment described in Section 1.2 where �C(t j L(t)) is known by design

because it is under the control of the investigator (so estimation of �C(t j L(t)) is not even

necessary). In general, a correctly speci�ed semiparametric model which admits a consistent

estimator for �C(t j L(t)) can be used. van der Laan & Robins (1998) recommend modeling

�C(t j L(t)) by a time-dependent Cox proportional hazards model:

�C(t j �L(t)) = �0(t) exp(�
>W (t)); (5)

where W (t) is a function of �L(t). The model for the observed data distribution is now com-

plete since the observed data distribution PFX ;G of Y is indexed by the full data distribution

FX which is left unspeci�ed and the conditional distribution G(� j X) which needs to satisfy

a semiparametric model such as (5).

Implementing the one-step estimators require an estimator of Fj(t j �L(u)) = P (Tj � t j
�L(u)), j = 1; 2; 3, for various u's and t. By the curse of dimensionality, one needs to specify a

lower dimensional working model for this conditional distribution and estimate it accordingly.

The results of van der Laan & Robins (1998) show that the resulting one-step estimator is

locally e�cient for the data structure (C;�j; �L(C)) in the sense that it is asymptotically

e�cient for our model if the working model contains the truth, and it remains consistent and

asymptotically normal otherwise.
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Note that the methods of x3.1-3.2 can be generalized to the extended bivariate current

status data structure, only assuming a semiparametric model (5) for g(c j X).

5 Discussion

The EM algorithm described in x2 may be slow to converge. It would be of interest to

derive an alternative algorithm for computing the NPMLE of F1; F2 and F3 by extending the

multivariate isotonic algorithm of Jewell & Kalb
eisch (2002).

Throughout the paper we have assumed a common monitoring time C for both T1 and

T2. In some applications, it may be natural that the monitoring times will be di�erent for

the two survival time components. For example, this occurs in studies of age of onset for

siblings who are examined at a common time but, of course, have di�erent ages. This is a

substantially more complex problem and the methods discussed here do not easily extend to

cover this data structure.

APPENDIX: SATURATED TANGENT SPACE RESULTS.

We �rst provide a result for the marginal bivariate current status data structure.

Lemma 1 Assume that G is absolutely continuous w.r.t. Lebesgue measure with a density g

with support [0; K], that F has a Lebesgue density with support [0;M1] � [0;M2]. Then the

tangent space at PF;G equals L2
0(PF;G).

Proof. Let A : L2
0(F )! L2

0(PF;G) be de�ned by A(h)(Y ) = E(h(~T) j Y ). Then the adjoint

A> : L2
0(PF;G)! L2

0(F ) is given by A>(v)(~T) = E(v(Y ) j ~T ). Explicitly,

A>(v)(~T) =
Z
T1_T2

v(c; 1; 1)dG(c)+
Z T1^T2

0
v(c; 0; 0)dG(c)

�I(T2 < T1)
Z T1

T2

v(c; 0; 1)dG(c)� I(T1 < T2)
Z T2

T1

v(c; 1; 0)dG(c):

The tangent space is given by R(A) + L2
0(G). Since R(A)

?

= N(A>) it su�ces to prove

that N(A>) = L2
0(G). Fixing T2 = M2 at the end point of its support [0;M2], taking the
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derivative w.r.t T1 at t1 < M2 yields V (t1; 2)g(t1) = V (t1; 4)g(t1) for all t1 < M2. For �xed

T2 = 0, taking the derivative w.r.t T1 at t1 > 0 yields V (t1; 1)g(t1) = V (t1; 3)g(t1). Fixing

T1 = 0, taking the derivative w.r.t. T2 at t2 > 0 yields V (t2; 1)g(t2) = V (t2; 4)g(t2). Fixing

T1 = M1 at the end point of its support [0;M1], taking the derivative w.r.t. T2 at t2 < M1

yields V (t2; 2)g(t2) = V (t2; 3)g(t2). This proves that any V (C; ~�) 2 N(A>) does not depend

on ~�. 2

This lemma can be immediately generalized to the following result for the extended bi-

variate current status data structure.

Lemma 2 Assume that G(� j X) is absolutely continuous w.r.t. the Lebesgue measure with

a density g(� j X) with support [0; K], that F (� j L) has a Lebesgue density with support

[0; K1;L]� [0; K2;L]. Then the tangent space at PFX ;G equals L2
0(PFX ;G).

The implication of this result is that, under the conditions of Lemma 2, any regular

asymptotically linear estimator of FX is asymptotically e�cient.
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