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Deletion Diagnostics for Alternating Logistic
Regressions

John S. Preisser, Kunthel By, Jamie Perin, and Bahjat F. Qaqish

Abstract

Deletion diagnostics are introduced for the regression analysis of clustered bi-
nary outcomes estimated with alternating logistic regressions, an implementation
of generalized estimating equations (GEE) that estimates regression coefficients
in a marginal mean model and in a model for the intracluster association given by
the log odds ratio. The diagnostics are developed within an estimating equations
framework that recasts the esti- mating functions for association parameters based
upon conditional resid- uals into equivalent functions based upon marginal resid-
uals. Extensions of earlier work on GEE diagnostics follow directly, including
computational formulae for one-step deletion diagnostics that measure the influ-
ence of a cluster of observations on the estimated regression parameters and on the
overall marginal mean or association model fit. The diagnostic formulae are eval-
uated with simulations studies and with an application concerning an as- sessment
of factors associated with health maintenance visits in primary care medical prac-
tices. The application and the simulations demonstrate that the proposed cluster-
deletion diagnostics for alternating logistic regressions are good approximations
of their exact fully iterated counterparts.
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Summary. Deletion diagnostics are introduced for the regression analysis of

clustered binary outcomes estimated with alternating logistic regressions, an

implementation of generalized estimating equations (GEE) that estimates

regression coefficients in a marginal mean model and in a model for the

intracluster association given by the log odds ratio. The diagnostics are

developed within an estimating equations framework that recasts the esti-

mating functions for association parameters based upon conditional resid-

uals into equivalent functions based upon marginal residuals. Extensions

of earlier work on GEE diagnostics follow directly, including computational

formulae for one-step deletion diagnostics that measure the influence of a

cluster of observations on the estimated regression parameters and on the

overall marginal mean or association model fit. The diagnostic formulae are

evaluated with simulations studies and with an application concerning an as-

sessment of factors associated with health maintenance visits in primary care

medical practices. The application and the simulations demonstrate that the

proposed cluster-deletion diagnostics for alternating logistic regressions are

good approximations of their exact fully iterated counterparts.
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1. Introduction

Many questions in medical research involving association structure among

correlated binary responses are suitably addressed with marginal regression

models. Consider, for example, cross-sectional observational medical prac-

tice data where patient outcomes are nested within physicians that are nested

within practices. An earlier analysis of such data described in Preisser and

Qaqish (1996) used generalized estimating equations (GEE) to estimate the

effects of explanatory variables on the population-averaged probability of

whether or not a patient made a health maintenance visit in the prior year.

An additional question that may be posed involves modeling the marginal

within-practice association structure of the response, and, in particular, char-

acterizing the degree of association within physicians and within practices.

When cluster sizes (eg., the number of patients sampled per practice) are

small, second-order generalized estimating equations (GEE2) provide esti-

mates of association parameters with good efficiency (Zhao and Prentice,

1990; Liang, Zeger, and Qaqish, 1992). However, GEE2 is not computation-

ally feasible when cluster sizes are large as in the medical practice data where

cluster sizes range from 19 to 197. Alternating logistic regressions (ALR), an

implementation of GEE for the regression analysis of clustered binary data

(Carey et al., 1993) provides more efficient estimation of association param-

eters than first-order GEE (Liang and Zeger, 1986; Prentice, 1988) and, at

least in situations with small cluster sizes, estimation nearly as efficient as

GEE2 (Carey et al., 1993; Lipsitz SR and Fitzmaurice, 1996). A practical

limitation, however, is that there currently do not exist influence diagnostics

for ALR. In the medical practice data, for example, it is natural to assess
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whether data from individual practices have a large influence on estimates of

within-physician and within-practice clustering.

This paper proposes computationally fast formulae and algorithms for

estimating the effect of the deletion of a cluster of observations on the re-

gression parameters in marginal models for intracluster associations. Section

2 describes the estimating equations procedure and introduces computation-

ally efficient formulae to estimate the change in parameter estimates upon

deletion of a cluster. The diagnostics are developed within an estimating

function framework that recasts the ALR estimating functions for association

parameters based upon conditional residuals (Carey, Diggle, Zeger, 1993) into

equivalent functions based upon marginal residuals (Zink and Qaqish, 2009).

Extensions of first order GEE diagnostics (Preisser and Qaqish, 1996) follow

directly, including computational formulae for one-step deletion diagnostics

that measure the influence of a cluster of observations on the estimated re-

gression parameters and on the overall marginal mean or association model

fit. Section 3 presents two simulation studies to evaluate the performance of

the diagnostics. In section 4, the formulae are applied to the medical practice

data.

2. Statistical methods

2.1 Alternating logistics regressions based upon marginal residuals

The development of deletion diagnostics in this paper is based upon a

new representation of the ALR method through marginal residuals proposed

by Zink and Qaqish (2009). Let Yi be the response vector for the ith cluster

where Yi = (Yi1, . . . , Yini
)′ is the vector of responses from the ni observations

in the ith cluster, i = 1, . . . , K. Let µi be the vector of population marginal
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means, E[Yi] = µi. A generalized linear model is g1(µij) = X′
ijβββ where g(·)

is the link function and Xij = (x0ij , x1ij , . . . , xp−1,ij)
′ is the p × 1 vector of

covariates for the j–th observation in the i–th cluster. Estimation by the ALR

procedure is performed by iteratively solving two estimation equations, one

for the marginal mean model parameters βββ, and the other for the marginal

bivariate association parameters ααα. The estimating equations for βββ are:

K∑

i=1

D′
iV

−1
i (Yi − µi) = 0 (1)

where Di = ∂µi/∂βββ,Vi(βββ,ααα) = diag(σ
1/2
ijj )Ri(ααα)diag(σ

1/2
ijj ), σijj = µij(1 −

µij), and Ri(ααα) is a working correlation matrix.

The second set of estimating equations correspond to ααα. Let mi = ni(ni−

1)/2 and j and k index observations within a cluster. Let Wijk = YijYik and

define µijk = E[Wijk] = pr(Yij = Yik = 1). The dependence or association

between Yij and Yik can be represented by the pairwise odds ratio (Carey,

Zeger, and Diggle, 1993; Lipsitz, Laird, and Harrington, 1991)

ψijk =
µijk(1− µij − µik + µijk)

(µij − µijk)(µik − µijk)
.

A log pairwise odds ratio model is specified for the association,

log[ψijk(µij, µij, µijk)] = Z′
ijkααα

where Zijk = (z0ijk, z1ijk, . . . , zq−1,ijk)
′ is a covariate q-vector associated with

the pair (Yij, Yik), and ααα is a vector of association parameters. The method

of Zink and Qaqish uses an mi-vector Ti with elements Tijk obtained as the

residuals from the linear regression of Wijk on Yij and Yik. Specifically,

Tijk = Wijk − {µijk + bijk:j(Yij − µij) + bijk:k(Yik − µik)} ,
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where

bijk:j = µijk(1− µik)(µik − µijk)/dijk,

bijk:k = µijk(1− µij)(µij − µijk)/dijk,

dijk = σijjσikk−σ
2
ijk, and σijk = cov(Yij, Yik) = µijk−µijµik. The reformulated

ALR estimating equations based upon marginal residuals are defined by

Uααα =
K∑

i=1

E

[
−∂Ti

∂ααα

′]
P−1

i Ti =
K∑

i=1

C′
iP

−1
i Ti (2)

where Pi = diag{vijk} and

vijk := var(Tijk) =
µijk(µij − µijk)(µik − µijk)(1− µij − µik + µijk)

µijµik(1− µij − µik + 2µijk)− µ2
ijk

.

Expression (2) is equivalent to the ALR estimating equations based upon

conditional residuals given by (7) of Carey et al. (1993). Zink and Qaqish

(2009) allow Pi to be non-diagonal in a procedure they call orthogonalized

residuals, thereby generalizing the ALR procedure and increasing efficiency.

They show, following standard arguments (Liang and Zeger, 1986; Pren-

tice, 1988), the asymptotic distribution of K1/2(θ̂ − θ), where θ = (βββ,ααα)′,

is multivariate Gaussian with mean zero. A practical advantage of (2) is

that, unlike the case based upon conditional residuals, the robust variance

estimator of the asymptotic covariance matrix corresponding to the associ-

ation model is invariant to permutations of the i-th subject’s response vec-

tor Yi. Kuk (2004) proposed a modified symmetrized version of the ALR

equations based upon conditional residuals that have permutation invari-

ance for the standard errors. By, Qaqish, and Preisser (2008) provide an

R package for ALR and orthogonalized residuals, which includes the regres-

sion diagnostics proposed in the next section. A SAS macro is available at

http://www.bios.unc.edu/∼qaqish/software.htm.

5
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2.2 Cluster–deletion diagnostics

The regression diagnostics proposed in this section are computationally

fast formulae because all matrix components of the diagnostics are available

at convergence of the iteratively reweighted least squares algorithm. They

are one-step deletion diagnostics because the computational formulae are

equivalent to deleting the cluster and computing one more iteration of (1)

and (2).

Let β̂ββ [i] denote the estimate with the i-cluster deleted. The one-step GEE

deletion diagnostic to approximate β̂ββ − β̂ββ[i] is

DBETACi = (D′V−1D)−1D′
iV

−1
i (Ini

−H1i)
−1(Yi − µi) (3)

where Id represents the identity matrix of dimension d and

H1i = Di(D
′V−1D)−1D′

iV
−1
i . (4)

Preisser and Qaqish (1996) gave a proof for a formula that is equivalent

to (3) (see also Ziegler and Arminger, 1996). Hammill and Preisser (2006)

proposed (3) in light of its connections, on a matrix component basis, to (1)

and they showed its algebraic equivalency to expression (5) of Preisser and

Qaqish (1996). Expression (4) is the leverage matrix (corresponding to βββ)

for cluster i (Mancl and DeRouen, 2001). The leverage of a cluster may be

defined as the trace of H1i, that is the sum of the diagonal elements which

may individually be viewed as leverages of observations. Preisser and Qaqish

(1996) gave a slightly different formula for the cluster leverage matrix.

Using arguments similar to their derivation of DBETACi, the one-step

formula to approximate α̂αα− α̂αα[i] is

DALPHACi = (C′P−1C)−1C′
iP

−1
i (Imi

−H2i)
−1Ti (5)
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where

H2i = Ci(C
′P−1C)−1C′

iP
−1
i (6)

is the cluster leverage matrix corresponding to ααα. Standardized versions of

DBETACi and DALPHACi are obtained by dividing their components by

their respective standard errors.

It is worth mention that computation of (5) is non-trivial for large cluster

sizes. For the medical practice data analyzed in section 4, max(ni) = 197,

and, thus, max(mi) = 19, 306. Fortunately, due to its special structure, the

matrix in (5) of this dimension involving H2i can be easily inverted using an

algorithm based upon the Sherman-Morrison-Woodbury formula (Sherman

and Morrison, 1950). Details of the computational approach are provided by

Preisser, Qaqish and Perin (2008).

The assessment of the influence of a cluster of observations on the overall

model fit may be carried out with diagnostic measures that are extensions

of Cook’s distance for linear regression (Cook and Weisberg, 1982). Cluster

level Cook’s Distance for βββ is defined as for GEE1 (Corollary 2.1 of Preisser

and Qaqish, 1996):

DCLSβββ,i(p) = (β̂ββ − β̂ββ [i])
′v̂ar−1(β̂ββ)(β̂ββ − β̂ββ [i])/p (7)

Analogously, Cook’s Distance describing the influence of the i-th cluster on

the overall fit of the model for ααα is defined as

DCLSααα,i(q) = (α̂αα− α̂αα[i])
′v̂ar−1(α̂αα)(α̂αα− α̂αα[i])/q (8)

This is the measure introduced by Ziegler and Arminger (1996) in the context

of modeling within-cluster correlations using the GEE approach of Prentice

7
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(1988). In that context, Preisser and Perin (2007) provided computationally

fast formula for the influence of the i-th cluster on the overall fit of the corre-

lation model. A similar computationally fast formula for the influence of the

i-th cluster on the overall fit of the within-cluster log odds ratio model, esti-

mated with alternating logistic regressions, may be obtained by substituting

DALPHACi in for α̂αα− α̂αα[i].

Interpretations for cluster diagnostics are not straightforward when clus-

ter sizes vary. Generally, one might expect that larger clusters tend to have

larger influence, so plots of cluster diagnostics against cluster size are recom-

mended to assess their influence.

3. Simulation studies

3.1 The performance of the one-step approximation

The first of two simulation studies was conducted to determine the extent

to which the clusters with the most extreme exact cluster Cook’s distance

are identified by the one-step cluster Cook’s distance. As in a study on the

performance of Cook’s Distance in the generalized linear mixed model (Xiang

et al. 2002), the simulation study assessed the diagnostics ability to identify

the clusters with the largest and second largest exact Cook’s distances. We

have two a priori expectations. First, we expect the one-step approximation,

to a large extent, will identify the same clusters as those identified by the

exact cluster Cook’s distance. Second, we expect the probability of identi-

fying the same clusters to increase as the value of the exact cluster Cook’s

distance increases. The simulation experiment was based upon 500 data sets

generated from the following model using the algorithm of Qaqish (2003):

logit(µij) = β0 + β1x1ij + β2x2ij (9)
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logψijk = α0 + α1z1ijk + α2z2ijk (10)

where

βββ =



β0
β1
β2


 =



−0.8
0.27
0.20


 and ααα =



α0

α1

α2


 =




1.05
0.35
−0.35


 .

and x1ij , x2ij , z1ijk, and z2ijk are continuous covariates: x1ij = [2(i−1)/(K−

1)] − 1 is a cluster level covariate taking equally spaced values in the inter-

val [-1,1], i = 1, . . . , K; x2ij = [2(j − 1)/(n− 1)] − 1 is an observation level

covariate taking equally spaced values in the interval [-1,1] where n denotes

the number of observations in each cluster, n = ni for all i; j = 1, . . . , n;

z1ijk = x1ij ; and z2ijk = |x2ij − x2ik|. These parameter values were chosen

so as to induce response vectors with positive within-cluster association that

decreased over time, akin to autoregressive correlation in longitudinal data

settings. For each replication, we simultaneously fit models (9) and (10) with

the ALR estimating procedure given by equations (1) and (2). Within a repli-

cation, for each cluster, we computed both exact cluster Cook’s distance and

one-step approximated cluster Cook’s distance for both βββ and ααα. Note that

the computation of exact cluster Cook’s distance for all clusters required an

additional K applications of ALR per replication to obtain fully iterated pa-

rameter estimates after deletion of a single cluster. Due to the computational

intensity of the experiment, only the combination of (K = 50, n = 5) was

considered, requiring a total of 500K =25,000 applications of ALR.

The results were as follows: 88% of the time, the one-step formula (8)

correctly identified the most influential cluster on ααα; 82% of the time, di-

agnostic (8) correctly identified the top two most influential clusters on ααα

(possibly in the reversed order); 60% of the time, the one-step formula (7)

9
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correctly identified the most influential cluster on βββ; 31% of the time, the

diagnostic (7) correctly identified the top two most influential clusters on βββ.

While the latter result was not very good, we note that DCLSβββ,i was able

to identify at least one of the two most influential clusters 88% of the time.

To determine if the probability of correctly identifying the most influential

clusters with DCLSβ,i increased as the influence of those clusters increased, as

measured by the magnitude of the exact fully-iterated Cook’s distance, two

logistic regressions were carried out. First, the binary indicator for whether

the cluster with largest exact cluster Cook’s distance matched with the clus-

ter with the largest DCLSβ,i was regressed on the exact cluster Cook’s dis-

tance. A significant monotonically increasing relationship (figure 1a) shows

that for a value of Cook’s distance at the third quantile (with respect to the

500 simulated largest exact cluster Cook’s distance values), the probability of

detecting the most influential cluster is approximately 75%. Next, the binary

indicator for whether the two clusters with largest exact cluster Cook’s dis-

tance were the same as the two clusters with largest DCLSβ,i was regressed

on the 2nd largest exact cluster Cook’s distance. A significant monotoni-

cally increasing relationship (figure 1b) shows that for values of the second

largest Cook’s distance at the 75th, 90th, and 95th percentiles, respectively,

the estimated probabilities of detecting the two most influential clusters are

approximately 35%, 42%, and 47%, respectively. A more extensive report of

the simulations is available as a technical report (Preisser, By, and Qaqish,

2008).
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3.2 Responsiveness of diagnostics to contamination models

The aim of the second simulation study is to consider the distribution of

extreme cluster Cook’s distance for β and α under binary response contam-

inated data models. The simulation study investigates whether the Cook’s

distance measures are responsive to contamination of the response data? Sec-

ond, if it is responsive to contamination, does it behave in some predictable

way relative to the Cook’s distance for the uncontaminated data? We expect

to see a shift in the distribution Cook’s distance under contamination relative

to the uncontaminated data. Furthermore, we expect this shift to grow (to

a point) as the level of contamination increases.

Data are generated from the models (9) and (10) with constant cluster size

n using the same values of βββ and ααα from the previous section. Contamination

is considered under two scenarios: (1) random contamination (RC) and (2)

cluster concentrated (CC) contamination. Under random contamination,

each of the Kn observations is contaminated with probability pc. Letting

Yij,c be the contaminated observation and Yij be the original observation,

the contamination is done as follows:

Yij,c =
{

1− Yij with probability pc
Yij with probability 1− pc

Under cluster contamination, each cluster is first chosen with probability

2pc. Once the cluster is chosen, each of the n observations within the chosen

cluster is contaminated with probability 0.50. The simulation experiment was

conducted to investigate 63 scenarios: K = {50, 100, 200}, n = {5, 20, 50},

pc = {0, 0.02, 0.05, 0.10} and cc = {RC,CC} (when pc > 0).

To address whether the one-step cluster Cook’s distance diagnostics for

11
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βββ and ααα are sensitive to contamination, the empirical distributions of their

largest order statistics under models of contamination were examined rela-

tive to empirical distributions of the largest Cook’s statistic when their was

no contamination. This was accomplished visually with QQ plots for each

combination of K and n. Figure 2 compares the QQ plots of the largest

order statistic for cluster Cook’s distance for α under contaminated data rel-

ative to uncontaminated. For cluster size 5 (lower panels of Figure 2), there

is not any observable difference between the empirical distribution of the

cluster Cook’s distance under contamination relative to no contamination.

However, for cluster size n = 50 (as well as for n = 20, not shown), the

spacing (or clear separation) in the loess fits, and the fact that the curves

generally lie above the 45 degree line, indicates that the distibution of Cook’s

distance under contamination is shifted to the right, and that their values

increase monotonically with the level of contamination. Plots for K = 200

(not shown) are similar to plots for K = 100 for a given value of n. Thus, at

least for α, cluster Cook’s distance under random contamination behaves in

the manner that is expected by shifting to the right as the level of contami-

nation increases. The second largest, third largest, and fourth largest cluster

Cook’s distance for ααα also exhibit this behavior (plots not shown).

This behavior is not consistent in general. In fact, for every other situ-

ation, the QQ plots either show that the distribution of the contaminated

Cook’s distance is no different than the uncontaminated or that if a shift

is present, it is shifting to the left as the contamination increases. For ex-

ample, for β under random contamination and small cluster sizes (n = 5),

the distribution has a tendency to shift further and further to the left as

12
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the level of contamination increases, opposite as was expected (plots not

shown). For the other cluster sizes (n = 20 and n = 50) as they pertain

to βββ under random contamination, there is no apparent difference between

contaminated and uncontaminated distributions. A report of the entire simu-

lation experiment, including exhaustive displays of QQ plots for both random

and cluster-concentrated contamination cases, is available (By, Preisser and

Qaqish, 2008).

4. Application of Diagnostics to Medical Practice Data

The proposed cluster deletion diagnostics are illustrated with medical prac-

tice data. In 1990-1991, chart review data were collected from a random

sample of 3889 medical charts in 57 medical practices (clusters). The cluster

sizes (number of patients per practice) ranged from 19 to 197 with a mean

of 68. A logistic regression model was specified for the probability that the

j-th patient in the i-th practice made at least one maintenance visit dur-

ing the years 1990 and 1991. Preisser and Qaqish (1996) introduced and

applied to the medical practice data computationally efficient formulae for

cluster deletion diagnostics to identify practices with the largest influences

on regression coefficients. ALR may be used to fit the same logistic regres-

sion model for the marginal mean while specifying an additional model for

the within-practice association. The pairwise odds ratio model has the form

of (10) where z1ijk = 1 if patients j and k in practice i have the same physician

(and z1ijk = 0, otherwise); and z2ijk = (ni − 68)/50. Note α0 is the log pair-

wise odds ratio of health maintenence visit for two patients from the same

medical practice who saw different doctors for a practice with cluster size

ni = 68; α1 is the change in the log pairwise odds ratio between two patients

13
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who saw the same doctor, relative to the association between two patients

who saw different doctors; and α2 is the change in the within-practice log

pairwise odds ratio for two patients comparing two practices that differ in

cluster size by 50 patients.

The first column of results in Table 1 shows the ALR parameter estimates

applied to the full data set where all three association model covariates are

statistically significant at the 0.05 level. Recall that the standard errors in

Table 1, based upon the reformulated ALR of Zink and Qaqish given in equa-

tion (2), are invariant to the ordering of a subjects’ responses. For a practice

of mean cluster size, the estimated between-physician within-practice odds

ratio is 1.71, and the within-physician odds ratio is 2.29. These associations

decrease with increasing cluster size. It is natural to inquire whether cer-

tain practices have an undue influence on these estimates. The remaining

columns of Table 1 show the fully iterated results obtained upon deleting

selected clusters, suggesting that some clusters have a moderate influence on

estimates of within-practice and within-physician clustering.

Figure 3 presents cluster deletion diagnostic statistics for medical prac-

tices for the ALR procedure given by (1) and (2). Plots (a), (b) and (c)

depict the difference, given by the vertical distance between a point and

the 45 degree line, between the fully-iterated parameter estimate after re-

moval of a medical practice (’exact’) and the approximate change given by

DALPHACi, for α0, α1, and α2, respectively. These plots show that the pro-

posed one-step diagnostics provide good approximations of the exact change,

as nearly all the points fall close to the 45 degree line. The most infuential

clusters are identified in the figure, practice # 34 for α̂0 and α̂2 (Figures

14
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3(a) and 3(c), respectively), and practice # 15 for α̂1 (Figure 3(b)). Figure

3(d) shows the three clusters with the most influence on the overall fit of

the within-practice association model; practice # 34 has the second greatest

influence by this measure. Table 2 gives the actual values of the deletion

diagnostic statistics for selected practices. It is interesting that Preisser and

Qaqish (1996) using DCLSβ,i (see their expression (9)) identified cluster #

5 as having the greatest influence among clusters on the overall fit of the

marginal mean model. This was also true for the ALR analysis of the influ-

ence of clusters on β (not shown). However, as shown in Table 2, cluster # 5

was not particularly notable for its overall influence on the fit of model (10)

despite its having the second largest influence on α1.

5. Discussion

Application to the medical practice data, as well as results from the first sim-

ulation study (section 3.1), demonstrate that the proposed cluster-deletion

diagnostics for alternating logistic regressions are good approximations of

their exact counterparts. On the other hand, results from the second simula-

tion failed to provide convincing evidence that the extreme Cook’s Distance

diagnostics respond in a consistent manner to contaminated binary response

models. Besides their relevance to alternating logistic regressions, these are

the first published results of their kind concerning the behavior in practical

situations of DCLSβββ,i (Preisser and Qaqish, 1996) for generalized estimating

equations (Liang and Zeger, 1986).

The proposed diagnostic formulae are computationally fast. Computation

of the cluster diagnostics for the medical practice data of section 4 took 13

minutes on dual 700 MHz SPARC processors, compared to over 12 hours for
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computation of their fully iterated ’exact’ counterparts. Qualitatively similar

computational savings using formulae similar to (5)- (8), in the context of

modelling intracluster correlations using the estimating equations approach

of Prentice (1988), have been reported by Preisser and Perin (2007), for

four data sets from medicine and public health. One-step formulae that

have structure similar to those presented here could be developed for other

estimating equation procedures for correlated binary data (Kuk and Nott,

2000; le Cessie and van Houwelingen, 1994; Lipsitz and Fitzmaurice, 1996).

Although cluster-deletion diagnostics seem to be the most useful, diagnos-

tic formulae for other kinds of subset deletion could be developed. Preisser

and Qaqish (1996) proposed a one-step approximation to β̂ββ − β̂ββ [m] for GEE

where m denotes an arbitrary subset of observations to be deleted. A similar

formula for α̂αα − α̂αα[m] could be easily developed with derivations similar to

those found in their appendix. Besides cluster-deletion diagnostics, we have

developed and implemented in SAS/IML software observation-deletion diag-

nostics for ALR that approximate the change in regression coefficients when

a single observation (eg., patient) is deleted. The formulae, not presented

here, are similar in form to observation-deletion diagnostics of Preisser and

Perin (2007). When applied to the medical practice data, however, they

reveal that no single patient was found to have large influence (results not

shown).
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Table 1

Model parameter estimates (est.) with robust standard errors (se)∗ for the
logistic model of the marginal probability a patient made a health

maintenance visit during the years 1990 and 1991 (β), and for the log odds
ratio model of within-practice association (α). Data are from the North

Carolina Early Cancer Detection Program at the Lineberger Comprehensive
Cancer Center. Results are presented for the full data, and based upon

selected cluster deletions.

Full Data Without #15 Without #19 Without #34
Parameter est. (se) est. (se) est. (se) est. (se)

β‡

INTERCEPT -0.106 (0.173) -0.070 (0.182) -0.178 (0.170) -0.155 (0.167)
NBRMDS -0.034 (0.039) -0.013 (0.043) -0.018 (0.053) -0.030 (0.039)
M3 0.249 (0.170) 0.340 (0.161) 0.244 (0.171) 0.228 (0.173)
SPECLTY -0.078 (0.249) -0.178 (0.263) 0.056 (0.250) -0.075 (0.239)
MDAGE -0.264 (0.064) -0.297 (0.059) -0.268 (0.066) -0.227 (0.065)
MDSEX 0.424 (0.262) 0.511 (0.266) 0.476 (0.283) 0.472 (0.255)
MDFLU -0.072 (0.099) -0.123 (0.087) -0.092 (0.104) -0.073 (0.102)
PATAGE -0.097 (0.034) -0.103 (0.035) -0.101 (0.035) -0.103 (0.035)
BLACKPAT -0.395 (0.123) -0.413 (0.122) -0.401 (0.124) -0.426 (0.124)
MALEPAT -0.411 (0.065) -0.422 (0.067) -0.431 (0.066) -0.421 (0.068)
NOINSUR -0.416 (0.119) -0.422 (0.122) -0.439 (0.123) -0.393 (0.120)
α‡‡

INTERCEPT 0.538 (0.173) 0.613 (0.172) 0.524 (0.156) 0.410 (0.147)
SAMEMD 0.290 (0.112) 0.207 (0.098) 0.256 (0.107) 0.347 (0.113)
CLSIZE -0.179 (0.062) -0.178 (0.069) -0.147 (0.072) -0.139 (0.052)

∗ Standard errors are from the reformulated ALR based upon marginal residuals.
‡ NBRMDS = number of doctors in practice minus one; M3 = (The number of
patients over 50 years old seen per day minus 15)/10. SPECLTY = doctor’s
specialty: 0 if family or general practice, 1 if internal medicine; MDAGE =
(doctor’s age in years minus 45)/10; MDSEX=1 if female, 0 if male; MDFLU =
Doctor’s flu vaccination: 0 in the last two years, 1 if 3 to 5 years ago, 2 if never;
PATAGE = (patient’s age in years - 65)/10; BLACKPAT = 1 if black, and 0 if;
white; MALEPAT = 1 if patient is male, and 0 if female; and NOINSUR = 1 if
patient is not insured, and 0 if insured.
‡‡ SAMEMD = 1 if two patients have the same doctor, and 0 otherwise;
CLSIZE is the size of the cluster centered at 68 scaled by 50.
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Table 2

One-step approximated cluster-deletion diagnostic values for selected
clusters. The values are based upon the “full data” analysis in Table 1 using
data from the North Carolina Early Cancer Detection Program. Ranks are

shown in parentheses.

DALPHA∗

Cluster # ni DCLS
‡
α INTERCEPT SAMEMD CLSIZE

5 191 (2) 0.059 (7) -0.121 (13) 0.367 (2) -0.123 (17)
15 158 (3) 0.064 (5) -0.197 (8) 0.417 (1) -0.050 (43)
19 197 (1) 0.126 (3) -0.039 (32) 0.284 (6) -0.452 (2)
34 100 (12) 0.143 (2) 0.629 (1) -0.359 (3) -0.521 (1)
50 120 (9) 0.061 (6) 0.356 (3) -0.150 (12) -0.080 (27)
52 140 (6) 0.146 (1) 0.358 (2) -0.333 (4) 0.235 (6)

∗ Rankings are based on the absolute value of DALPHA.
‡ Cluster level Cook’s distance for α.
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Figure 1. Probability of detecting the most influential clusters with respect
to β. Plot 1(a) shows the probability of detecting the cluster with the largest
exact Cook’s distance. Plot 1(b) shows the probability of detecting the two
clusters with largest exact Cook’s distance. Q1, Q2, and Q3 represent the ap-
propriate quantiles of exact cluster Cook’s distance from the 500 simulationss
while P90 and P95 denote the 90-th and 95-th percentiles respectively.
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QQ:  No Contamination vs 2%, 5%, and 10% random contamination
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Figure 2. QQ plot of cluster Cook’s distance for α. Vertical axis denotes
cluster Coook’s distance under random contamination. C2, C5 and C10
denotes 2, 5 , and 10 percent contamination respectively. The horizontal
axis denotes cluster Cook’s distance under no contamination.
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Cluster Size

D
C

LS
 (

al
ph

a)

0.00

0.05

0.10

0.15

50 100 150 200

34

52

19

(d) Cluster cook’s distance (α)

Figure 3. Cluster deletion diagnostics for within-cluster association model.
DALPHA’s and the exact deletion diagnostic for α in plots 3(a), 3(b), and
3(c) are standardized by the appropriate robust standard errors.
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