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Group SCAD Regression Analysis for
Microarray Time Course Gene Expression

Data

Lifeng Wang, Guang Chen, and Hongzhe Li PhD

Abstract

Since many important biological systems or processes are dynamic systems, it
is important to study the gene expression patterns over time in a genomic scale in
order to capture the dynamic behavior of gene expression. Microarray technolo-
gies have made it possible to measure the gene expression levels of essentially
all the genes during a given biological process. In order to determine the tran-
scriptional factors involved in gene regulation during a given biological process,
we propose to develop a functional response model with varying coefficients in
order to model the transcriptional effects on gene expression levels and to de-
velop a group smoothly clipped absolute deviation (SCAD) regression procedure
for selecting the transcriptional factors with varying coefficients that are involved
in gene regulation during a biological process. Simulation studies indicated that
such a procedure is quite effective in selecting the relevant variables with time-
varying coefficients and in estimating the coefficients. Application to the yeast
cell cycle microarray time course gene expression data set identified 19 of the 21
known transcriptional factors related to the cell cycle process. In addition, we
have identified another 52 TFs that also have periodic transcriptional effects on
gene expression during the cell cycle process. Compared to simple linear regres-
sion analysis at each time point, our procedure identified more known cell cycle
related transcriptional factors. The proposed group SCAD regression procedure
is very effective for identifying variables with time-varying coefficients, in partic-
ular, for identifying the transcriptional factors that are related to gene expression
over time. By identifying the transcriptional factors that are related to gene ex-
pression variations over time, the procedure can potentially provide more insight
into the gene regulatory networks.
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Abstract

Motivation:

Since many important biological systems or processes are dynamic systems, it is important to

study the gene expression patterns over time in a genomic scale in order to capture the dynamic

behavior of gene expression. Microarray technologies have made it possible to measure the gene

expression levels of essentially all the genes during a given biological process. In order to de-

termine the transcriptional factors involved in gene regulation during a given biological process,

we propose to develop a functional response model with varying coefficients in order to model

the transcriptional effects on gene expression levels and to develop a group smoothly clipped

absolute deviation (SCAD) regression procedure for selecting the transcriptional factors with

varying coefficients that are involved in gene regulation during a biological process.

Results:

Simulation studies indicated that such a procedure is quite effective in selecting the relevant

variables with time-varying coefficients and in estimating the coefficients. Application to the

yeast cell cycle microarray time course gene expression data set identified 19 of the 21 known

transcriptional factors related to the cell cycle process. In addition, we have identified another

52 TFs that also have periodic transcriptional effects on gene expression during the cell cycle

process. Compared to simple linear regression analysis at each time point, our procedure iden-

tified more known cell cycle related transcriptional factors.

Conclusions:

The proposed group SCAD regression procedure is very effective for identifying variables with

time-varying coefficients, in particular, for identifying the transcriptional factors that are related

to gene expression over time. By identifying the transcriptional factors that are related to gene

expression variations over time, the procedure can potentially provide more insight into the gene

regulatory networks.

Supplementary Information:

http://www.cceb.med.upenn.edu/∼hli/gSCAD-Appendix.pdf.
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INTRODUCTION

Since many important biological systems or processes are dynamic systems, it is important to

study the gene expression patterns over time in a genomic scale in order to capture the dynamic

behavior of gene expression. Microarray technologies have made it possible to measure the gene

expression levels of essentially all the genes during a given biological process. Research in analysis

of such microarray time course (MTC) gene expression data has focused on two areas: clustering

of MTC expression data (Luan and Li, 2003; Ma et al., 2006) and identifying genes that are

temporally differentially expressed (Hong and Li, 2006; Yuan and Kendziorski, 2006; Tai and

Speed, 2006). While both problems are important and biologically relevant, they provide little

information about our understanding of gene regulations.

One approach of studying gene regulation is to associate gene expression values with oligomer

motif abundance by using a simple linear regression for each oligomer of a given length. Those

oligomers with significant coefficients in regression analysis are inferred as potential transcrip-

tional factor binding motifs (TFBMs) (Bussemaker et al. 2000; Keles et al., 2002). Assuming

that in response to a given biological condition, the effect of a TFBM is strongest among genes

with the most dramatic increase or decrease in mRNA expression, Conlon et al. (2003) proposed

to use simple linear regression to relate the motif abundance to gene expression by first selecting

genes with large changes in expression levels. While these approaches work reasonably well in

discovery of regulatory motifs in lower organisms, they often fail to identify mammalian tran-

scriptional factor binding sites (Das et al., 2006). Das et al. (2006) proposed to correlate the

binding strength of motifs with expression levels using multivariate adaptive regression splines

(MARS) of Friedman (2001). In addition, all these methods consider gene expression level at

single time point as the response in regression analysis, rather than the full time course, which

can lead to loss of efficiency in identifying the relevant transcriptional factors (TFs).

In this paper, we consider the problem of identifying the transcriptional factors from a large

set of candidates (e.g., from TRANSFAC database) that may explain the variations of gene

expression over time. Identification of such TFs can provide biological insights into the active

transcriptional subnetworks anchored on the proximal promotor DNA from genome-wide mRNA

profiles during a biological process (Das et al., 2006). One approach to analyzing such MTC

data is to use the simple linear regression analysis to relate the TFBM score to the expression

level of genes at each time point (Conlon et al., 2003). Since the effects of a relevant TF are
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expected to change over time during a given biological process, one should expect some gains

in power in detecting the TFs involved in gene expression changes over a time course when the

expression levels over all the time points are considered simultaneously in a regression framework.

We propose to consider functional response regression analysis with varying coefficients in order

to identify the relevant transcriptional factors. In such models, the ith response is a real function

yi(t), i = 1, · · · , n, t ∈ T with associated covariate vector xi = {xi1, · · · , xiK}, which is constant

in time. Of course, it is only possible to observe the function yi(t) at a finite number of points,

possibly with errors. For the problem of modeling the MTC gene expression data, yi(t) is the

measure expression data for the ith gene at time point t during a given biological process, xik

is the binding strength of the kth motif corresponding to the kth TF (Das et al., 2006). The

statistical question to be addressed in this paper is to select a set of TFs from a large set of K

candidate TFs that can explain partially the variation of gene expression levels over time, where

the effects of the TFs on gene expression levels are time-varying.

Partially motivated by analysis of high-dimensional microarray gene expression data, the

problem of variable selection in high-dimensional regression settings has attracted much research

attention in recent years. Among those, the most popular approach is based on penalized es-

timation, including Lasso (Tibishrani, 1996), the clipped absolute deviation (SCAD) (Fan and

Li, 2001) and the least angle regressions (LARS) (Efron, 2005) and various extensions (Zou and

Hastie, 2005; Yuan and Lin, 2006; Gui and Li, 2005). However, all these methods are devel-

oped for regression models with parametric scalar parameters. We propose to develop methods

for variable selection for varying coefficient models by combining regression spline method with

the SCAD procedure where we represent the time-varying coefficients in terms of B-spline basis

functions and propose a penalized estimation procedure to select the sets of basis functions. Our

approach is similar in spirit to the group LARS or group Lasso of Yuan and Lin (2006). Although

the L1 penalty gives sparse solutions, the estimates can be biased for large coefficients since large

penalties are imposed on larger coefficients. In this paper, we propose to use the SCAD penalty on

sets of basis functions. Such a penalty produces sparse solutions by thresholding small estimates

to zero, providing unbiased estimates for large coefficients.

The rest of the paper is organized as follows. We first introduce the functional response model

with time-varying coefficients for relating the TFs to the MTC gene expression data. We then

present the SCAD procedure for fitting the models and for selecting the variables (i.e., the TFs).
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We present simulation studies to evaluate the methods. We also present results from analysis of

the yeast cell cycle data set of Spellman et al. (1998). Finally, we present a brief discussion of

the results and methods.

Functional Response Model with Time-varying Coefficients

for MTC Gene Expression Data

Let Yi(t) be the expression level of the ith gene at time t, for i = 1, · · · , n. We assume the

following regression model with functional response,

Yi(t) = µ(t) +
K∑

k=1

βk(t)Xik + εit, (1)

where µ(t) is the overall mean effect, βk(t) is the regulation effect associated with the kth tran-

scriptional factor, Xik is the matching score of the binding probability of the kth transcriptional

factor on the promoter region of the ith gene. Several different ways and data sources can be

used to derive this probability. One approach is to derive the score using the position-specific

weight matrix (PSWM) as in Das et al. (2006). In particular, for gene i, we can obtain the

promoter DNA sequences from CSHL database (Xuan et al., 2005) (-700 and +300 nt from the

TSS). For each candidate TF k, let Pk be the positive specific weight matrix of length L, b with

element pkl(b) being the probability of observing the base b at position l. Then each L-mer l in

the promoter sequence of the ith gene was assigned a score Sikl as:

Sikl = [pk1(bl1)pk2(bl2) · · · pkL(blL)]1/L.

This score always assumes a value between 0 and 1. We then define Xik = maxlSikl, which is

the maximum of the matching scores over all the L-mer in the promoter region of the ith gene.

Alternatively, we can define the binding probability based on the chromatin immunoprecipi-

tation (ChIP-chip) data. We present some details in the next section.

Calculation of binding probabilities based on ChIP data

The results produced by a typical ChIP binding experiment for TF k is a set of measures Zik

for the enrichment of each gene i for that TF k. These measures are then standardized, UiK =

4
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(Zik−Zk)/sZk
, to have a common mean and standard deviation. For each Uik, a significance test

is performed against a null hypothesis of no enrichment, giving a p-value pik for each gene that is

calculated using a standard normal distribution. However, as these p-values cannot be directly

interpreted as the probability Xik = P(TFk j binds gene i), we adopted the method proposed by

Chen et al. (2006) to convert pik into binding probabilities Xik using mixture modeling. For

simplicity of notation, we drop the subscript k in the following. We first convert the p-values pi

to normal score Zi using the inverse-CDF for the standard normal distribution. The distribution

of these enrichment measures Xi should be a mixture of two different groups: a large group of

unenriched genes that should be centered at X = 0 and a smaller group of genes that are truly

enriched, with center µ > 0. We can model each gene with a latent variable Ii that indicates

whether that gene is in the enriched group (Ii = 1) or unenriched group (Ii = 0). Then the

binding probability for each gene is simply defined as Xi = P(Ii = 1|Data). An EM algorithm

can then be applied to estimate these probabilities.

It should be noted that the mixture model used the theoretical standard normal null distribu-

tion instead of an empirical null distribution since the use of an unrestricted mixture model (with

an empirically-fitted null distribution) led to unreasonable mixtures for several transcription fac-

tors. This procedure was repeated for each TF k to generate our full set of binding probabilities

Xik. For the yeast data set we analyzed in later section, the correspondence between the num-

ber of genes we predicted as enriched based on p-values (pi < 0.005) and binding probabilities

(Xi > 0.5) is very good, with a correlation of 0.97 between the number of genes predicted across

our 113 transcription factors. However, we noticed that our conversion procedure tended to be

overly-conservative for genes with very low p-values. In other words, genes with pik < 0.001 had

estimated binding probabilities that smaller than expected, possibly due to our assumption of a

standard normal null distribution. For these highly-significant genes, the binding probabilities

were increased to Xik = 0.95 to reflect our extra confidence that these genes were truly enriched

in the ChIP binding experiment for TF k.
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Methods of Variable Selection for Varying Coefficient Mod-

els

We present a penalized estimation procedure for Model (1) using SCAD by representing the

varying coefficient βk(t) using regression splines. In particular, we propose to use B-splines,

which have been shown to provide quite reasonable fits to MTC gene expression data (Luan and

Li, 2003; Hong and Li, 2006; Storey et al., 2005).

Estimation using B-splines

We consider estimation of nonparametric function in Model (1) using the regression spline method

by approximating βk(t) by using the natural cubic B-spline basis,

βk(t) =
L+4∑

l=1

βklBl(t) (2)

where Bl(t) is the natural cubic B-spline basis function, for l = 1, · · · , L + 4, where L is the

number of interior knots. Replacing βk(t) by its B-spline approximation in equation (2), Model

(1) can be approximated as

Yi(t) = µ +
K∑

k=1

{
L+4∑

l=1

βkl[Bl(t)Xik]

}
+ εit, (3)

where we have K group of parameters, with β∗k = {βk1, · · · , βkL+4}, and we want to select the

groups with non-zero coefficients. This is the grouped variable selection problem considered in

Yuan and Lin (2006).

A group SCAD penalization procedure

We propose a general group SCAD (gSCAD) procedure for selecting the groups of variables in a

linear regression setting. Selecting important variables in Model (1) corresponds to the selection

of groups of basis functions in Model (3). Yuan and Lin (2006) proposed several procedures for

such group variable selection, including group LARS and group LASSO. Instead of using the L1

penalty for group selection as in Yuan and Lin (2006), we propose to use the SCAD penalty of

Fan and Li (2001). Specifically, to select non-zero βk(t), we can minimize the following penalized
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loss function

l(β) =
n∑

i=1

T∑
j=1

[yij − µ(tj)−
K∑

k=1

L+4∑

l=1

βklSl(t)Xik]
2

+nT

K∑

k=1

pλ(||β∗k||2), (4)

where pλ(.) is the SCAD penalty with λ as a tuning parameter, which is defined as

pλ(|w|) =





λ|w| if |w| ≤ λ, ,

− (|w|2−2aλ|w|+λ2)
2(a−1)

if λ < |w| < aλ,

(a+1)λ2

2
if |w| > aλ

(5)

and ||β∗k||2 =
√∑L+4

l=1 β2
kl. The penalty function (5) is a quadratic spline function with two knots

at λ and aλ, where a is another tuning parameter. Fan and Li (2001) showed that the Bayes

risks are not sensitive to the choice of a and suggested to use a = 3.7, which was also used in

this paper.

Algorithm and selection of tuning parameters

Because of non-differentiability of the penalized loss l(β) in equation (4), the commonly used

gradient method is not applicable. Instead we develop an iterative algorithm based on local

quadratic approximation of the non-convex penalty pλ(‖βk‖2) as in Fan and Li (2001). More

specifically, in a neighborhood of a given non-zero β0 ∈ R, we can approximate the SCAD penalty

as the following,

pλ(|β|) ≈ pλ(|β0|) + 1/2{p′λ(|β0|)/|β0|}(β2 − β2
0).

In our algorithm, a similar quadratic approximation is used by substituting β with ‖βk‖2, k =

1, . . . , K. Given an initial value of β0
k with ‖β0

k‖2 > 0, pλ(‖βk‖2) can be approximated by a

quadratic form

pλ(‖β0
k‖2) + 1/2{p′λ(‖β0

k‖2)/‖β0
k‖2}(βt

kβk − (β0
k)

tβ0
k).

Using this approximation, the equation (4) becomes

l(β) = (Y − Cµ− X̃β)t(Y − Cµ− X̃β) +
1

2
nTβtΣβ,

where Y = (y11, · · · , y1T , · · · , yn1, · · · , ynT )t, µ = (µ(t1), · · · , µ(tT )), C = ~1n

⊗
IT , β = (β11, · · · , β1(L+4),

· · · , βK1, · · · , βK(L+4)), X̃ = X
⊗

B with Blj = Bl(tj), l = 1, . . . , L + 4, j = 1, . . . , T , and

Σ = diag{p′λ(‖β0
1‖2)/‖β0

1‖2, · · · , p′λ(‖β0
K‖2)/‖β0

K‖2}
⊗

I(L+4).
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This is a quadratic form and can be solved by

(X̃ tX̃ +
1

2
nTΣ)β = X̃ t(Y − Cµ),

µ = Ct(Y − X̃β). (6)

We outline the algorithm as follows:

Step 1: Initialize (µ(1), β(1)).

Step 2: Set β0 = β(k), and solve (µ(k+1), β(k+1)) by (2) and (3).

Step 3: Iterate Steps 2 until convergence of β.

In the initialization step, we obtain an initial estimation of (µ, β) using a ridge regression,

which substitutes pλ(‖βk‖2) in (4) with a quadratic function ‖βk‖2
2. At any iteration of step 2,

if some ‖βk‖2 is smaller than a cutoff value ε1 > 0, we set β̂kl = 0 for all l = 1, . . . , L + 4 and

treat Xik as irrelevant. If any matrix is singular when solving equation (6), a small perturbation

ε2 is added to the diagonal entry of the matrix. In our algorithm both ε1 and ε2 are set to

10−3. Note that adding a small perturbation ε2 is equivalent to adding another L2 penalty to

the penalized loss function (4), which also facilitates the selection of highly-correlated features

(Zou and Hastie, 2005).

There are two tuning parameters that we need to choose in order to implement the proposed

procedure: the number of knots L in the B-spline basis expansion (see equation 2) and the tuning

parameter λ in the SCAD penalty function. These two parameters can be selected simultaneously

using the generalized cross-validation (GCV). In practice, since the number of time points in

typical MTC experiments is usually small, we choose the a small number of basis functions in

our analysis. Key to the performance of gSCAD is selection of the tuning parameter λ. When

λ is too large, it leads to biased estimates of the coefficients, whereas a too small λ often fails

to yield a sufficiently sparse solution. It is well known that, for all linear methods that have the

estimated response ŷ = My, the GCV error can be computed by

1

n

‖y − ŷ‖2
2

(1− tr[M ]/n)2
.

Note that in our algorithm, when βk converges, the estimated β̂ = (X̃ tX̃ + 1/2nTΣλ(β̂))−1X̃ t,

and thus ŷ = X̃β̂ = M(λ)y with M(λ) = X̃(X̃ tX̃ + 1/2nTΣλ(β̂))−1X̃ t. Therefore, an optimal λ

can be obtained by minimizing the following estimated GCV error

GCV (λ) =
1

n

‖y −M(λ)y‖2
2

(1− tr[M(λ)]/n)2
.
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Simulations

We conducted simulation studies to evaluate the proposed gSCAD procedure in selecting relevant

variables and in estimating the regression coefficients. Specifically, we simulated MTC gene

expression data for 500 genes over 11 time points at 0, 0.1, 0.2, · · · , 0.9 and 1.0 based on Model

(3), where βk(t) was generated using B-splines with 1 interior knot, which corresponds to five

basis functions. We assume that there are 10 TFs that affect the MTC expression levels over

time. The true time-varying coefficients of these 10 TFs are shown as solid lines in Figure 1.

We also assume that the 500 genes can be divided into 25 regulatory modules, each including

20 genes that have similar promoter motif matching scores. Finally, the noises in Model (3) are

generated from N(0, σ2), where σ2 = 1 or 3 for low and high noise levels.

When the noise variance is 1, the gSCAD procedure identified 11 TFs, including all 10 true

TFs. The dashed lines of Figure 1 show that estimated time-varying coefficients for four of the

10 TFs when the noise variance σ2 = 1, indicating that the gSCAD procedure estimates the

parameters very well (plots for other 6 TFs are given in the Supplemental Materials). Similarly,

the dotted lines in Figure 1 show the estimated βk(t) when the noise variance is large (σ2 = 3), also

indicating good estimates of the time-varying coefficients. When the noise variance is increased

to σ2 = 3, the gSCAD procedure identifies four TFs, including the 1st, 4th, 7th, and the 9th

true TFs; all have relatively larger effects than the other six true TFs, i.e. the ranges of the

corresponding true functions are relatively large.

As a comparison, Figure 1 also shows the results based on simple linear regression analysis for

each time point. When σ2 = 1, the estimates of the regression coefficients can roughly capture

the trend of the true functions. However, the estimates based on the simple linear regression

models are more biased than those obtained from the gSCAD. When the noise variance is large

(σ2=3), the trends based on estimates of the coefficients from simple linear regression can be

quite misleading. In addition, after adjusting for multiple testing, many of these coefficient

estimates are not significantly different from zero using simple linear regression analysis, which

resulted in missing many of the important transcriptional factors.
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Table 1: Fifty-two additional TFs identified by gSCAD procedure. These include 34 that belong

to the cooperative pairs of the TFs identified by Banerjee and Zhang (2003).

ARG81 ARO80 ASH1 CIN5 CRZ1 CUP9 DAL81 DOT6 FHL1 FZF1

GAT1 GAT3 GRF10.Pho2. GTS1 HAL9 HAP2 HAP3 HAP4 HAP5 HIR2

HMS1 HSF1 IME4 INO2 MAC1 MAL13 MATa1 MET4 MIG1 MOT3

MSN4 MTH1 NRG1 PHD1 PUT3 RFX1 RGM1 RLM1 ROX1 RTG1

RTG3 SFP1 SIG1 SIP4 SMP1 SOK2 SRD1 STP1 STP2 YAP5

YAP6 YJL206C

Application to Yeast Cell Cycle Data Set

The cell cycle is one of life’s most important processes, and the identification of cell cycle reg-

ulated genes has greatly facilitated the understanding of this important process. Spellman et

al. (1998) monitored genome-wide mRNA levels for 6178 yeast ORFs simultaneously using sev-

eral different methods of synchronization including an α-factor-mediated G1 arrest, which covers

approximately two cell-cycle periods with measurements at 7-min intervals for 119 mins with

a total of 18 time points (http://genome-www.stanford.edu/cellcycle/data/rawdata/). Using

data based on different synchronization experiments, Spellman et al. (1998) identified a total of

about 800 cell cycle regulated genes, some showing periodic expression patterns only in a specific

experiment. Using a model-based approach, Luan and Li (2003) identified 297 cell-cycle regu-

lated genes based on the α-factor synchronization experiments. We applied the mixture model

approach described in previous section using the ChIP data of Lee et al. (2002) to derive the

binding probabilities Xik for these 297 cell - cycle regulated genes for a total of 96 transcriptional

factors with at least one nonzero binding probability in the 297 genes.

We applied the gSCAD procedure with additional L2 penalty in order to identify the TFs that

affect the expression changes over time for these 297 cell cycle regulated genes in the α-factor

synchronization experiment. The gSCAD procedure identified a total of 71 TFs that are related

to yeast cell cycle processes, including 19 of the 21 known and experimentally verified cell - cycle

related TFs. The estimated transcriptional effects of these 21 TFs are shown in Figure 2, except

for the two TFs that were not selected by the gSCAD procedure and the TF LEU3, the other 18

10
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TFs all showed certain periodic effects over time, indicating that the effects of these TFs on gene

expression levels are time-dependent. Overall, the model can explain 43% of the total variations

of the gene expression levels.

The 52 additional TFs (see Table 1) that were selected by the gSCAD procedure almost all

showed estimated periodic transcriptional effects. Figure 3 showed the estimated transcriptional

effects for eight of these TFs (CIN5, PHD1, NDD1, STP1, YAP6, NRG1, HSP1 and MBP1),

all showing periodic transcriptional effects (plots for other 10 randomly selected TFs can be

found in the Supplemental Materials). The identified TFs include many pairs of cooperative or

synergistic pairs of TFs involved in the yeast cell cycle process reported in the literature (Banerjee

and Zhang, 2003; Tsai et al., 2005). Of these 52 TFs, 34 of them belong to the cooperative pairs

of the TFs identified by Banerjee and Zhang (2003). The results are not surprising, since by

adding a L2 penalty term to the SCAD penalized loss function, our procedure can effectively

identify the transcriptional factors that bind to similar genes or the TFs that have similar binding

scores.

To assess false identifications of the TFs that are related to a dynamic biological procedure,

we randomly permuted the gene expression values across genes and time points and applied

the gSCAD procedure again to the permuted data sets. We repeated this procedure 50 times.

Among the 50 runs, 5 runs selected 4 TFs, 1 run selected 3 TFs, 16 runs selected 2 TFs and the

rest of the 28 runs did not select any of the TFs, indicating that our procedure indeed selects

the relevant TFs with few false positives.

Finally, to compare the gSCAD procedure with simple linear regression, we performed simple

linear regression with motif probability as the predictor and the gene expression at each time

point as the response. After Bonferroni adjustment for multiple testing, we found that only 7

out of the 21 known cell cycle related TFs that showed statistically significant association with

the gene expression levels.

Conclusions and Discussion

Motivated by identifying transcriptional factors that can explain (partially) the observed varia-

tion of MTC gene expression over time during a given biological process, we introduce a group

SCAD penalized estimation procedure for selecting variables with time-varying coefficients in the
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context of functional response models. Simulation studies indicated that this procedure is very

effective in selecting the relevant groups of variables and in estimating the regression coefficients.

Results from application to the yeast cell cycle data set indicate that the procedure can be ef-

fective in selecting the transcriptional factors that potentially play important roles in regulation

of gene expressions during the cell cycle process.

In this paper, we used B-spline basis functions to approximate the varying coefficients associ-

ated with each transcriptional factor. B-spline basis functions provide flexible models for MTC

gene expression data and have been applied for clustering MTC gene expression data (Luan and

Li, 2003; Storey et al., 2004) and for identifying temporally regulated genes (Hong and Li, 2006).

Our application to real data sets in this paper further demonstrated its utility in modeling the

MTC gene expression data. However, it should be noted that other basis functions can also be

used to approximate the coefficient functions βk(t). For example, one can use linear spline with

truncated lines as the basis for regression. Such a linear spline was used in MARS (Friedman,

2001) and in Das et al. (2006) for modeling regulatory subnetworks. The proposed gSCAD can

equally work for such linear spline approximation.

The proposed methods can be extended in several ways. First, in Model (1), we assume an

additive model for the effects of the transcriptional factors on the gene expression levels over

time. However, genetic regulation often involves interacting cis-control motifs. One way to

incorporate such interactions is to extend the proposed model (1) to include interaction effects

between two transcriptional factors as

Yi(t) = µ(t) +
K∑

k=1

βk(t)Xik +
K∑

k=1

∑

k′ 6=k

βkk′(t)XikXik′ + εit,

where βkk′ measures the interaction effects between two transcriptional factors k and k′. The

gSCAD procedure proposed in this paper should be applicable to such models also. Second,

although the models and the procedure considered in this paper are motivated by analysis of

MTC gene expression data, the proposed gSCAD procedure will be easily extended to other

regression models such as the generalized linear models and Cox models with varying coefficients.

These are the topics that deserve further investigation.

In summary, we have proposed a penalized estimation procedure using SCAD for selection of

grouped variable in a linear regression model setting. We particularly considered the application

of such a group SCAD procedure to selection of time-varying coefficients in high-dimensional
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functional response regression model settings. The procedure is useful for identifying the tran-

scriptional factors that are related to microarray time course gene expression data measured

during a given biological process. The transcriptional factors identified can provide useful infor-

mation about the transcriptional networks.
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Figure 1: True (solid lines) and estimated (dashed and dotted lines) time-dependent transcrip-

tional effects for four transcriptional factors, where the dashed lines (dotted lines) correspond to

noise variance of 1 (3).
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Figure 2: Estimated time-dependent transcriptional effects for 21 known yeast transcriptional

factors related to cell cycle process using gSCAD. Note that CBF1 and GCN4 were not selected

by gSCAD.
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Figure 3: Estimated time-dependent transcriptional effects for eight out of 52 additional yeast

transcriptional factors related to the cell cycle process identify gSCAD.
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